
Using PVSio-web and SAPERE for rapid prototyping of
user interfaces in Integrated Clinical Environments

Paolo Masci
∗

Queen Mary Univ. of London,
United Kingdom

p.m.masci@qmul.ac.uk

Piergiuseppe Mallozzi
University of Pisa, Italy

piergiuseppe.mallozzi
@gmail.com

Francesco Luca
De Angelis

University of Geneva, ISS
Carouge, Switzerland

francesco.deangelis@unige.ch
Giovanna Di Marzo

Serugendo
University of Geneva, ISS

Carouge, Switzerland
giovanna.dimarzo@unige.ch

Paul Curzon
Queen Mary Univ. of London

United Kingdom
p.curzon@qmul.ac.uk

ABSTRACT
Integrated clinical environments (ICEs) consist of interop-
erable medical devices that seamlessly exchange data and
commands to create safety interlocks and closed loop con-
trols to improve the quality of care delivered to the patient.
Currently at the prototype stage, they promise to form the
basis of a new generation of healthcare systems for high
acuity patients. Regulators such as the US Food and Drug
Administration are promoting the development of tools and
techniques for verification and validation of essential safety
requirements for ICEs. To date, little research has focused
on the certification and assurance of their user interfaces
with respect to use errors. In this work, we demonstrate how
the PVSio-web prototyping tool can be conveniently used in
combination with the communication framework SAPERE
to generate realistic ICE systems prototypes from formal
models. This approach is particularly suitable for exploring
requirements, design, and regulatory issues of usability and
safety of the user interfaces of ICE systems. An example
ICE system prototype is presented, along with an example
analysis demonstrating how the prototype can be used to
explore subtle user interface design issues that could lead to
usability and safety hazards in clinical scenarios.

Keywords
Interoperable medical devices, Prototyping toolchain, For-
mal methods technologies

∗Corresponding author.

1. INTRODUCTION
Modern medical devices have communication capabilities
that can be exploited to improve the safety and effectiveness
of the overall medical system. For example, consider a clini-
cal situation where an infusion pump is infusing a painkiller,
such as morphine, into the bloodstream of a critically ill pa-
tient. If a monitoring device is connected to the patient,
then the monitor could interoperate with the pump to stop
the infusion when the onset of a respiratory depression is
detected, thus saving the patient’s life.

The benefits of interoperable medical devices are clear. How-
ever, careful design decisions need to be taken to ensure
safety of operation. For example, in the previous example,
what happens if the patient monitor is accidentally mis-
configured, operated incorrectly, or malfunctioning? Is it
safe to substitute one interoperable patient monitor with
another interoperable monitor in the middle of a clinical sit-
uation? It is certainly desirable to have assurance that the
infusion pump would operate as safely as in a case where
the pump is not exchanging data and commands with the
patient monitor.

Regulators such as the US Food and Drug Administration
(FDA) are promoting the development of experimental plat-
forms to facilitate the analysis of requirements and architec-
tures for interoperable medical devices. A platform that
is currently gaining traction is the Integrated Clinical En-
vironment (ICE) [4]. It is a prototypical model of the next
generation medical system for high acuity patients. The con-
ceptual architecture of the ICE prototype (adapted from [4])
is shown in Figure 1. It includes the following main types of
technological elements.

I ICE-compatible medical devices: medical devices capable
of sending and receiving application data and commands
using an ICE Network Interface. The ICE Network Inter-
face can be either incorporated in the medical device, or be
external to it.

I An ICE Network Controller, which creates the necessary
communication infrastructure to enable application-level in-



Figure 1: ICE architecture (adapted from [4]).

teroperability among ICE-compatible equipment.

I An ICE Supervisor, which defines the application logic
to orchestrate and combine ICE-compatible medical devices
in a safe manner. Example application logic elements in-
clude: safety interlocks, closed-loop controls, and integra-
tion of alarm conditions.

I An ICE Data Logger, which timestamps and logs data for
retrospective analysis of incidents, near-misses, and perfor-
mance figures.

I An ICE External Interface, which connects ICE with
other networks, e.g., the hospital’s healthcare facility net-
works, or the Internet.

I An ICE Manager, which groups together the four core
elements of the ICE architecture: ICE Supervisor, ICE Net-
work Controller, ICE Data Logger and ICE External Inter-
face.

To date, little research has focused on the certification and
assurance of the user interfaces of ICE systems with respect
to use errors. In the present work, we start to address this
gap.

Contribution. We introduce a modelling and analysis
toolchain for exploring requirements, design, and regula-
tory issues related to the usability and safety of ICE sys-
tems user interfaces. The toolchain is based on the PVSio-
web [10, 15] prototyping tool, and the communication frame-
work SAPERE [1]. It allows developers to generate realistic
interactive prototypes of both ICE-compatible medical de-
vices and of the ICE supervisor, and link them together
using real communication networks. It uses a model-based
approach centred on formal methods technologies. An il-
lustrative example is presented where the toolchain is used
to develop an ICE system prototype based on commercial
medical devices. An example analysis is also presented to
demonstrate how prototypes generated with the toolchain
can be used to explore subtle issues in the design of ICE
user interfaces.

Organisation. The rest of the paper is organised as fol-
lows. In Section 2, related work on tools for modelling and
analysis of ICE systems is compared and contrasted to our
work. In Section 3, PVSio-web and SAPERE are intro-
duced, as they are the pillars of our toolchain. Then, the
main contributions of our work are presented: our toolchain
for prototyping ICE systems (in Section 4); an example use
of our toolchain for rapid prototyping a realistic ICE sys-
tem based on commercial medical devices (in Section 5); an
example analysis based on the developed prototype is then
presented (in Section 6). Finally, Section 7 presents con-
cluding remarks and future work.

2. RELATED WORK
Several research groups have focused on developing testbeds
and physical prototypes of ICE systems. The Massachusetts
General Hospital MD PnP Lab (www.mdpnp.org), for ex-
ample, has developed an ICE testbed to facilitate multi-
disciplinary discussion about safety and performance of ICE
systems. In their testbed, they use modified versions of com-
mercial medical devices. Similarly, other two research labs
— the Precise Research Center (precise.seas.upenn.edu) and
Santos Lab (santoslab.org — developed a Java-based pro-
gramming environment [7, 17] and a testbed [6] for explor-
ing performance requirements and interoperability of data
formats in ICE systems. These approaches are excellent for
demonstrating the technical feasibility of ICE systems, but
lack the flexibility needed for systematic exploration of dif-
ferent configurations and clinical scenarios. From this per-
spective, our toolchain complements their effort well: it fo-
cuses on user interfaces, rather than performance and data
formats; it provides a faster and cheaper approach for rapid
prototyping with respect to developing physical prototypes;
and it enables the use of advanced formal methods technolo-
gies (e.g., theorem proving) for the analysis of the business
logic of the system in addition to testing-based approaches.
Also, as will be explained, prototypes developed with our
toolchain can be used within their testbeds, as our proto-
types can use real communication networks to exchange data
and commands with other prototypes and devices connected
to that network.

Other research has focused on requirements for ICE sys-
tems. For example, in [19] and [8], high level requirements
are discussed that can be used to assess the safety and effec-
tiveness of the ICE system. In [18], a systematic approach
is also presented identifying system requirements that can
mitigate identified hazards. Our work also complements this
strand of research well, as prototypes developed with our
toolchain facilitate multidisciplinary discussion between en-
gineers and domain experts for identifying and validating
system requirements. Furthermore, our toolchain gives a
testbed with which to demonstrate how a variety of for-
mal tools can be usefully used to formalise and verify ICE
requirements. It can also be used to explore the different
kinds of assurance arguments that can be supported by a
verification effort. This can be based on concrete examples
developed within the toolchain.

3. BACKGROUND
Our toolchain for model-based generation of ICE systems
prototypes is based on the prototyping tool PVSio-web [10,
15] and the communication framework SAPERE [1]. In this



Figure 2: Snapshot of the PVSio-web environment while creating an interactive device prototype, in this
case an infusion pump used in healthcare to infuse medications or nutrients to patients. Framed boxes of the
picture highlight the interactive parts of the prototype.

section, we therefore introduce these two technologies, and
illustrate the main functionalities that we have used in our
toolchain.

3.1 PVSio-web
PVSio-web is a new research tool for modelling, prototyping,
and analysis of interactive systems. It is based on the in-
dustrial strength formal verification system, PVS [16], which
provides sophisticated proof, animation, and modelling en-
vironment. PVSio-web provides a graphical environment
for creating realistic stand-alone prototypes based on un-
derlying executable formal models (see Figure 2). To in-
teract with a PVSio-web prototype, developers click but-
tons on the prototype’s user interface, and watch the re-
sults of the interactions in real time on its displays. Un-
derneath the graphical environment, PVSio-web uses the
PVSio [14] component of PVS for model animation. The
tool is particularly suitable for: validating system speci-
fications and requirements before starting the verification
process; demonstrating formal analysis results to engineers
and domain experts in a way that is easy to understand;
and enabling lightweight formal analysis based on user cen-
tered design methods, such as user testing and expert walk-
throughs of prototypes. PVSio-web has been successfully
used to demonstrate previously undetected design flaws in
medical devices [12], and to explore the causal relationships
between user interface design issues and software defects [9].
Additional information about how prototypes are generated
using PVSio-web are presented as needed in Section 5, while
illustrating the development of the ICE system prototype.

3.2 SAPERE
SAPERE [1] is a communication and coordination frame-
work for heterogeneous networked systems. It provides a
common platform to build distributed multi-agent perva-
sive systems, and offers automated functionalities for data
exchange and aggregation of heterogeneous services, appli-
cations and sensors. The exposed interface infrastructure
supports dynamic discovery of devices and services, as well
as sophisticated nature-inspired aggregation algorithms for
distributed processing of data. The framework has been
successfully used to engineer multi-agent systems in the con-
text of pervasive scenarios [20], and supports a development
methodology that facilitates reusability and composability
of services in pervasive systems [3].

The SAPERE coordination model is composed of the fol-
lowing components.

I Live Semantic Annotations (LSAs): active tuples
composed of one or several properties of type (name, value)
encapsulating information about entities taking part in co-
ordination processes. LSAs can interact with each other;
such process is guided by predefined laws named Eco-Laws.

I LSA Space: container of shared LSAs hosted in a single
network node. Inside an LSA Space, reactions among LSAs
are spontaneously fired by Eco-laws.

I Agents: active entities that coordinate the communica-
tion processes between external components (services, sen-



LSA Space
Eco-laws

Bonding Aggregate DiffusionDecay

Service

Agent

Sensor

AgentAgent

Application

LSA

LSA

LSA LSA

LSA

Figure 3: SAPERE coordination model

sors, applications, etc.) and the LSA Space. Each agent is
bound to one LSA, and implements the logic for managing
notification of events triggered when the LSA interacts with
other LSAs of the same LSA Space.

I Eco-laws: active entities implementing four basic bio-
inspired mechanisms that enforce interactions among LSAs.
Eco-laws are executed periodically at a specific rate, tunable
by the system administrator. In the developed toolchain, we
use the following Eco-laws:

(i) Bonding : instant relationships among LSAs. A bond
is a unidirectional link created between an LSA A con-
taining a property of type (name x, ∗) or (name x, ?)
and a second LSA B containing a property (name x,
value x). Once the bond is created, the agent associ-
ated with A can read and monitor changes to the value
value x of the property in B. Such mechanism repre-
sents the main modality to share information among
agents. Values ∗ and ? are named operators and they
allow for the creation respectively of one or several
bounds at the same time.
Example: Given LSAs A = [(temperature, ?)] and
B = [(temperature, 15)], a bond will be created be-
tween A and B because of the property (temperature, ?).
Through this bond, the agent associated with A will
be able to read the property (temperature, 15).

(ii) Decay : reduction of information relevance. This mech-
anism automatically updates an LSA containing a prop-
erty (decay, n) by decreasing the numeric property value
n by one unit at every execution of the Eco-law. Once
n = 0, the whole LSA is removed from the space.
Example: the LSA [(temperature, 15), (decay, 10)] will
be deleted from the LSA Space after 10 executions of
the decay Eco-law.

Eco-laws generate notifications to keep agents updated re-
spect to the changes applied to their tuples. Several more
complex bio-inspired mechanisms (e.g. gradient, chemotaxis,

quorum sensing,...) can be obtained by opportunely com-
bining four basic Eco-laws (bonding, decay, aggregate, and
diffusion) provided by SAPERE.

4. OUR TOOLCHAIN
We now introduce our modelling and analysis toolchain for
exploring requirements, design, and regulatory issues related
to the usability and safety of ICE systems user interfaces.
The PVSio-web prototyping tool is used to generate real-
istic interactive prototypes of both ICE-compatible medi-
cal devices and of the ICE supervisor. The communication
services provided by SAPERE are used to enable exchange
of data and commands between prototypes developed us-
ing PVSio-web. To enable the combined use of PVSio-web
and SAPERE, we have developed a new PVSio-web exten-
sion, the PVSio-web Network Controller. This new exten-
sion installs virtual communication ports on the PVSio-web
prototypes, and allows developers to “plug in” PVSio-web
prototypes in to real communication networks to discover
devices connected to the network, and exchange data and
commands with them.

Our toolchain based on PVSio-web and SAPERE therefore
leads to ICE system prototypes that include the following
elements (see Figure 4):

I A PVSio-web prototype for the ICE Supervisor.
A PVS model defines the internal logic of the supervisor and
the behaviour of the supervisor’s user interface. A picture of
the supervisor’s user interface defines the visual appearance
of the prototype.

I A PVSio-web prototype for each ICE-Compatible
Medical Device in the system. A PVS model defines
the interactive behaviour of each device. A picture of the
device user interface defines the visual appearance of each
prototype.

I A PVSio-web Network Controller to enable real-
time exchange of data and commands between the PVSio-



Figure 4: Logic architecture of the ICE system prototype generated using PVSio-web and SAPERE. Boxes
in the picture represent functional modules (black boxes identify new PVSio-web extensions developed to
support interoperability between prototypes). Arrows between modules represent flow of commands/data.

web prototypes during simulation. The PVSio-web Network
Controller uses an instance of SAPERE to implement the
communication service.

4.1 The PVSio-web Network Controller
The PVSio-web Network Controller uses SAPERE to mimic
a publish-subscribe communication protocol. That is, each
PVSio-web prototype includes a Network Controller Agent
that can publish messages for the PVSio-web prototype, and
receive messages published by other PVSio-web prototypes
connected to the same network. To do this, each Network
Controller Agent includes a cluster of SAPERE agents (see
Figure 4). Agents in the cluster implement different func-
tions: one agent (PublishAgent) is for publishing messages;
and one or more agents (SubscribeAgents) are used for re-
ceiving messages published by other PVSio-web prototypes
through their PublishAgent.

The developed PVSio-web Network Controller has a graph-
ical user interface to monitor and control the status of the
network. A snapshot of the Network Controller user inter-
face is in Figure 6. It shows a scenario with three PVSio-web
prototypes (represented as labelled boxes with control but-
tons disconnect/remove) are connected to the network and
exchange messages. One prototype acts as (ICE) supervi-
sor, whilst the other two act as (ICE-compatible) medical
devices. In the snapshot, SAPERE agents are represented
as circles. Lines connecting circles represent flow of messages
and commands between prototypes. Note that, in Figure 6,
the supervisor prototype has two SubscribeAgents because
it is designed to receive data published by two device pro-
totypes connected to the network. The device prototypes,
on the other hand, have just one SubscribeAgent, as they
are designed to receive data only from the supervisor in this
case.

5. EXAMPLE
In this section, we use our toolchain based on PVSio-web and
SAPERE to develop an ICE system prototype. The aim of
this example is to demonstrate that our toolchain facilitates
the rapid generation of realistic ICE system prototypes suit-

able to explore usability- and safety-related aspects of ICE
user interfaces. This is especially useful at the early stages
of the development lifecycle of these systems, when physical
prototypes of ICE-compatible devices and the ICE infras-
tructure are not readily available, as well as when a full
specification of the system is still under development.

In the following, we first present a description of the func-
tionalities of our example ICE system. Then, we illustrate
the steps followed to generate a realistic ICE system proto-
type using our toolchain. Then, in Section 6, we discuss the
types of analysis that can be carried out with the prototype,
and illustrate an example analysis that reveals subtle gaps
in the interactive behaviour of the system that could lead to
usability and safety issues.

5.1 Description of the ICE system
The considered ICE system is based on one of the represen-
tative ICE clinical scenarios illustrated in [4] and [19]. It
includes two types of medical devices: a patient controlled
analgesia (PCA) pump, which delivers a continuous infu-
sion of a pain killer (morphine) into the bloodstream of a
critically ill patient; and a patient monitor, which continu-
ously measures the patient’s condition by checking her/his
respiratory rate and blood oxygen saturation level. The ICE
supervisor implements a safety interlock application that au-
tomatically stops the infusion when the patient’s monitored
parameters indicate the onset of a respiratory depression.

5.2 Infusion pump prototype
The infusion pump prototype is based on a commercial med-
ical product [2]. The device has a user interface with a dis-
play and buttons for setting up the infusion parameters and
control the delivery of the therapy. A blueprint of the device
user interface is shown in Figure 7(a). It includes:

I A display, capable of rendering the current pump mode,
the infusion parameters programmed in the pump; and la-
bels for three programmable function keys;

I Two pairs of chevron keys for editing infusion parameters



Figure 5: Architecture of the PVSio-web Network Controller.

and selecting menu items;

I A bolus button, to trigger the delivery of bolus doses;

I A pause button, to pause the infusion;

I A power button, to power the pump on and off

The device has three main modes of operation: infusing,
where the pump is infusing; on hold, where the infusion is
paused; and alarm, where the pump signals situations that
need to be solved by a human operator, e.g., occlusion of
the infusion line. Setting up the infusion involves interacting
with the pump user interface to configure two main param-
eters: infusion rate, and volume to be infused. Once these
parameters are set, the infusion can be started. Infusion pa-
rameters can be changed while the infusion is running, e.g.,
to adjust the therapy to changed patient conditions. A de-
tailed description and analysis of the user interface design
of this device is in [11, 15, 5].

Developing the prototype. Using PVSio-web, we gen-
erated an interactive prototype of the device using an exe-
cutable PVS model of the device and a picture of the real
device (see Figure 7(b)). That is, we loaded a picture of
the real device in our PVSio-web prototyping environment,
created interactive areas over buttons and displays of the
picture, and linked them with the PVS model of the device.
Namely, user actions over buttons in the picture are asso-
ciated with state transition functions defined in the PVS
model. These functions take the current state of the model
as argument, and return the next model state as result of
the function evaluation. For example, click actions over the
run button are associated with a function click_run de-
fined in the PVS model. Therefore, every time the run but-
ton is clicked by the user, PVSio-web automatically triggers

the evaluation of function click_run over the current model
state. The next model state is thus obtained, and rendered
using the displays of the prototype. For display elements, in-
teractive areas are created over the device displays and LED
lights, and associated with corresponding fields in the PVS
model state. Complex display elements that render mul-
tiple information are segmented into simpler sub-displays.
For example, the device display includes a topline, which is
associated with a field topline defined in the state of the
PVS model, and 4 additional sub-displays, each rendering
a different infusion parameter (in this case, infusion rate,
volume to be infused, volume infused, and remaining time).
The PVS model used for the prototype includes information
about which sub-display is visible in which device mode.
This information is used by PVSio-web to dynamically re-
veal and conceal sub-displays of the prototype, and thus
closely resemble the visual look and feel of the real device in
different screens.

5.3 Patient monitor prototype
The patient monitor prototype is based on a commercial
medical product [13]. The device has a touchscreen user
interface, and a mechanical button to power on and off the
monitor. A blueprint of the user interface of the device is
shown in Figure 8(a). It includes:

I A touchscreen display for rendering the patient’s vital
signs, and to setup alarm thresholds. Here, we consider two
vital signs, as indicated in the clinical scenarios described
in [4] and [19]: the patient’s blood oxygen saturation level
(SpO2), and the respiratory rate (RRa).

I A power button, to power on and off the patient monitor.

The device has two main modes of operation: monitoring,
and alarming. When in monitoring mode, the device renders



Figure 6: User interface for accessing the functionalities of the PVSio-web Network Controller. Snapshot of
an ongoing simulation. Circles represent SubscribeAgents or PublishAgent. Lines between circles represent
flow of information between agents.

the current values of SpO2 and RRa, the recent history of
measured values, and the alarm levels. When alarming, a
blinking alarm icon is rendered next to the current value
of the patient’s vital sign that is generating the alarm. By
default, the device is in monitoring mode. The device mode
changes into alarming when the current value of at least one
of the monitored vital signs exceeds given alarm thresholds
pre-set by the operator (typically, a nurse).

Developing the prototype. Using PVSio-web, we gener-
ated an interactive prototype of the device (see Figure 8(b)).
As for the infusion pump prototype, we then loaded a pic-
ture of the real device in PVSio-web, and created interactive
areas over buttons and displays to link them to the PVS
model of the device. Button clicks on the power button are
thus associated with a function click_onOff defined in the
PVS model. Two display elements were created, one for
each monitored vital sign. Each display element is further
segmented into five sub-displays: three sub-displays render
numerical data (current value, and maximum and minimum
alarm levels); another sub-display renders alarms (in this
case, an alarm icon); and one additional sub-display renders
historical values (tracings displays).

5.4 ICE supervisor
The blueprint of an ICE supervisor user interface is shown
in Figure 9(a). It includes:

I A touchscreen display for rendering the infusion pump
status.

I A touchscreen display for rendering the status of the pa-
tient monitor.

I A power button, to power the ICE supervisor on and off.

By default, the ICE supervisor user interface renders the
same information shown on the main screens of the medi-
cal devices connected to the system. For the patient moni-
tor, the ICE display therefore presents the current value of
the measured SpO2 and respiratory rate, the alarm levels,
and the recent history of measurements. For the infusion
pump, the ICE display shows the infusion parameters (infu-
sion rate, volume to be infused, volume infused, and remain-
ing time), and the current pump status (on hold, infusing,
etc.). Additionally, the ICE user interface allows operators
to view historical data of infusion parameters. This func-
tion can be accessed with a touch gesture on the infusion
parameters rendered on the prototype display.



(a) Blueprint of the AlarisGP pump, identifying the main
elements of the user interface.

(b) PVSio-web prototype of the AlarisGP pump. The figure
shows a snapshot of the prototype executed within PVSio-web.

Figure 7: ICE-compatible infusion pump prototype based on the Alaris GP pump.

(a) Blueprint of the Radical7 patient monitor, iden-
tifying the main elements of the user interface.

(b) PVSio-web prototype of the Radical7 monitor. The figure shows
a snapshot of the prototype executed within PVSio-web.

Figure 8: ICE-compatible patient monitor prototype based on the Radical7 monitor.

The safety interlock mechanism implemented in the ICE su-
pervisor has the following logic. If the measured levels of
two monitored parameters (in this case, SpO2 and RRa) are
outside given safety thresholds, then a command is automat-
ically sent to the pump to stop the infusion, and a respira-
tory distress alarm is also generated to alert the nurse. The
generated alarm is marked as high priority if the measure-
ments are critically low and indicate distress. Otherwise,
the alarm is marked as medium priority.

Developing the prototype. Unlike the other two pro-
totypes, realistic physical prototypes of ICE supervisors are
not yet publicly available. We therefore borrowed the skin of
another commercial product, and used it to create the pro-
totype (see Figure 9(b)). A PVS model was also developed
to specify the internal logic of the supervisor for detecting
respiratory distress and send commands to the pump. The
internal logic is specified in a function tick, which models
the periodic operations performed by the device to check
whether the conditions are met that trigger a pause com-

mand for the pump. The state of the supervisor includes
fields for storing data received from the pump and the mon-
itor. For the developed system, the pause command sent by
the ICE supervisor to the pump has the same effect as press-
ing the pause button on the infusion pump user interfaces.

6. EXAMPLE ANALYSIS
Using the developed prototype, we explored usability- and
safety-related aspects of the ICE user interface. The per-
formed analysis is based on simulations, and involved inter-
acting with the developed prototypes in different clinical sit-
uations. In particular, we were interested in checking what
happens when one of the ICE-compatible devices (either the
infusion pump or the patient monitor) is re-programmed in
the middle of an alarm situation.

Intersting cases were quickly identified where the system be-
haved unexpectedly because of subtle combinations of events.
For example, we found that the safety interlock application
can cause mode changes in the pump while entering infu-



(a) Blueprint of ICE supervisor. (b) PVSio-web prototype of the ICE supervisor executed
within PVSio-web.

Figure 9: ICE supervisor prototype.

sion parameters. For the specific device used in the ICE
prototype, this happened when a pause command sent by
the ICE supervisor is received by the pump while the pump
is infusing and the operator is reprogramming the volume to
be infused (VTBI). Upon receiving the pause command, the
pump suddenly changes mode of operation from Edit VTBI
to Edit Rate, without halting data entry. The combination
of events could happen either coincidentally at the same
time when the operator is reprogramming the pump, or as
a result of the reprogramming of the pump. In either case,
if the data entry mode changes and the operator does not
notice the change, a programming error could occur, where
volume to be infused is accidentally changed. It is worth not-
ing that the identified combination of events are unlikely to
happen when the pump is operated as a stand-alone device,
disconnected from the ICE system – to reproduce the same
situation, the operator would need to press simultaneously
the data entry buttons and the pause button on the infusion
pump user interface. When connected to ICE, on the other
hand, the pause command is automatically triggered by the
ICE supervisor, potentially at any time.

Other similar exploratory analyses can be carried to artic-
ulate scenarios, requirements, and concerns related to the
behaviour of the system. This is extremely valuable within
the development lifecycle of ICE systems, as it helps engi-
neers to understand what needs to be verified in the system
to ensure safety of operation. Being based on formal mod-
els, the same prototypes can then be used for a full formal
analysis of safety and usability properties, e.g., following the
approach described in [12, 5]

7. CONCLUSIONS
Rigorous analysis tools based on formal methods technolo-
gies enable systematic and full exploration of system config-
urations and inputs. Tools, however, are needed that can re-

duce the perceived cost of using these powerful technologies.
Tools are also needed that can be used by domain experts
that are not familiar with formal methods to assess what
is being verified. Without a clear understanding of what
is being verified, the verification effort is potentially point-
less, e.g., because the verified properties depart from the in-
tended meaning of safety requirements used in assurance ar-
guments for the system. Our prototyping toolchain moves in
this direction, as it facilitates multi-disciplinary discussion of
safety- and usability-related aspects of ICE user interfaces.
Being based on formal models, the same models developed
for the prototypes can be used for full formal analysis of the
ICE system behaviour. An aspect that needs investigation
is how to best include the ICE Network Controller in the
formal analysis of the system. In the developed ICE system
prototypes, in fact, the ICE Network Controller is software
code, rather than formal models. A promising solution that
we are exploring is the definition of abstract models of the
ICE Network Controller that capture hypotheses about the
quality of service offered by the controller, e.g., its ability
to deliver messages to the intended destinations. This way
of proceeding facilitates the verification of ICE systems for
broad classes of ICE Network Controllers (as opposed to spe-
cific implementations of the ICE Network Controller). Fur-
ther work is also needed to understand how nature-inspired
algorithms, such as those implemented in SAPERE, can be
used to improve the performance of the system. An interest-
ing option is, under this perspective, to implement another
variant of the PVSio-web Network Controller, that includes
a different communication middleware. This would give us
insights about the performance and reliability of different
communication middleware.

Acknowledgments
This work is part of CHI+MED (EPSRC grant EP/G059063/1).



References
[1] Developing pervasive multi-agent systems with

nature-inspired coordination. Pervasive and Mobile
Computing, 17, Part B:236 – 252, 2015. 10 years of
Pervasive Computing’ In Honor of Chatschik
Bisdikian.

[2] Cardinal Health Inc. Alaris GP volumetric pump:
directions for use, 2006.

[3] F. L. De Angelis, J. L. Fernandez-Marquez, and
G. Di Marzo Serugendo. Self-composition of services
in pervasive systems: A chemical-inspired approach.
In Agent and Multi-Agent Systems: Technologies and
Applications, pages 37–46. Springer International
Publishing, 2014.

[4] J. M. Goldman. Medical Devices and Medical
Systems-Essential safety requirements for 5 equipment
comprising the patient-centric integrated clinical
environment 6 (ICE)-Part 1: General requirements
and conceptual model 7. ASTM International, 2008.

[5] M. D. Harrison, P. Masci, J. C. Campos, and
P. Curzon. Demonstrating that medical devices satisfy
user related safety requirements. In 4th International
Symposium on Foundations of Healthcare Information
Engineering and Systems (FHIES2014), 2014.

[6] A. King, D. Arney, I. Lee, O. Sokolsky, J. Hatcliff, and
S. Procter. Prototyping closed loop physiologic control
with the medical device coordination framework. In
Proceedings of the 2010 ICSE Workshop on Software
Engineering in Health Care, pages 1–11. ACM, 2010.

[7] A. King, S. Procter, D. Andresen, J. Hatcliff,
S. Warren, W. Spees, R. Jetley, P. Jones, and
S. Weininger. An open test bed for medical device
integration and coordination. In Software
Engineering-Companion Volume, 2009.
ICSE-Companion 2009. 31st International Conference
on, pages 141–151. IEEE, 2009.

[8] B. Larson, J. Hatcliff, S. Procter, and P. Chalin.
Requirements specification for apps in medical
application platforms. In Proceedings of the 4th
International Workshop on Software Engineering in
Health Care, pages 26–32. IEEE Press, 2012.

[9] P. Masci, P. Oladimeji, P. Curzon, and H. Thimbleby.
Tool demo: Using PVSio-web to demonstrate software
issues in medical user interfaces. In 4th International
Symposium on Foundations of Healthcare Information
Engineering and Systems (FHIES2014), 2014.

[10] P. Masci, P. Oladimeji, P. Curzon, and H. Thimbleby.
PVSio-web 2.0: Joining PVS to Human-Computer
Interaction. In 27th International Conference on
Computer Aided Verification (CAV2015). Springer,
2015. Tool and application examples available at
http://www.pvsioweb.org.

[11] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi,
A. Gimblett, Y. Li, P. Curzon, and H. Thimbleby. The
benefits of formalising design guidelines: A case study
on the predictability of drug infusion pumps.
Innovations in Systems and Software Engineering,
Springer-Verlag London, 2013.

[12] P. Masci, Y. Zhang, P. Jones, P. Curzon, and
H. Thimbleby. Formal Verification of Medical Device
User Interfaces Using PVS. In ETAPS/FASE2014,
17th International Conference on Fundamental

Approaches to Software Engineering, Berlin,
Heidelberg, 2014. Springer-Verlag.

[13] Masimo. Radical7 patient monitor: system overview.
http://www.masimo.com/rainbow/radical7.htm, 2015.

[14] C. Muñoz. Rapid prototyping in PVS. Technical
Report NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of
Aerospace, 2003.

[15] P. Oladimeji, P. Masci, P. Curzon, and H. Thimbleby.
PVSio-web: A tool for rapid prototyping device user
interfaces in PVS. In 5th International Workshop on
Formal Methods for Interactive Systems (FMIS2013),
2013.

[16] S. Owre, J. Rushby, and N. Shankar. PVS: A
Prototype Verification System. In 11th International
Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages
748–752, 1992.

[17] S. Procter and J. Hatcliff. An
architecturally-integrated, systems-based hazard
analysis for medical applications. In Formal Methods
and Models for Codesign (MEMOCODE), 2014
Twelfth ACM/IEEE International Conference on,
pages 124–133. IEEE, 2014.

[18] S. Proctor, J. Hatcliff, A. Fernando, and S. Weininger.
Using stpa to support risk management for
interoperable medical systems. 2015 STAMP
Workshop Presentations, 2015.

[19] S. Weininger, Y. J. Kim, J. Hatcliff, V.-P. Ranganath,
and Robby. Integrated clinical environment device
model: Stakeholders and high level requirements.
2015.

[20] F. Zambonelli, A. Omicini, B. Anzengruber,
G. Castelli, F. L. DeAngelis, G. Di Marzo Serugendo,
S. Dobson, J. L. Fernandez-Marquez, A. Ferscha,
M. Mamei, S. Mariani, A. Molesini, S. Montagna,
J. Nieminen, D. Pianini, M. Risoldi, A. Rosi,
G. Stevenson, M. Viroli, and J. Ye. Developing
pervasive multi-agent systems with nature-inspired
coordination. Pervasive and Mobile Computing,
17:236–252, 2015. Special Issue “10 years of Pervasive
Computing” In Honor of Chatschik Bisdikian.


