
Verification-Cases: Characterizing the Completeness
Degree of Incomplete Verification for C Programs

Towards Using Formal Verification for Low Criticality Functions

Daniel Ratiu
Siemens Corporate Technology

Research and Technology Center
Otto-Hahn-Ring 6

81739 Munich, Germany
daniel.ratiu@siemens.com

Vincent Nimal
Department of Computer Science

University of Oxford
Oxford OX1 3QD, UK

vincent.nimal@cs.ox.ac.uk

ABSTRACT
Current code-level verification tools are powerful enough to
be usable in industry for performing functional verification
at sub-system level. Due to the nature of these tools (e.g.
bounded model checkers) or to abstractions that are per-
formed in order to make the verification possible (e.g. as-
sumptions about the environment of the system or the used
APIs), the verification results are not complete: some errors
may remain undetected. Even in this case, the verification
results can be good enough for verifying functionality at low
criticality levels. Furthermore, when the sources of incom-
pleteness are well understood, the results can be combined
with testing for verifying highly critical code. In order to
use these results in building assurance cases, we need sys-
tematic means to characterize the completeness degree of
incomplete verification. In this paper we introduce the con-
cept of a “verification case” as means to make explicit the
incomplete parts of verification. We characterize common
sources of incompleteness when verifying C programs and
present our tool support for characterizing incompleteness of
verification when analyzing C code using the CBMC model
checker. This paper is part of our efforts to use language en-
gineering technologies in order to make formal verification
accessible for practicing engineers.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Software Quality Assur-
ance; D.2.4 [Software/Program Verification]: Model Check-
ing

1. INTRODUCTION
In the last decade formal verification techniques at code level
have become mature enough to be applied in practice. Nu-
merous papers [1, 2, 6, 9, 11, 14] investigate the use of C
model checking techniques to find bugs in large systems.

Some [12, 16, 18] even analyze fragments of the Linux kernel,
demonstrating the feasibility of verification for “real world”
programs. Formal methods are used by industrial actors
from critical sectors like aviation and nuclear. However, the
status quo w.r.t. the use of verification in “common” indus-
try is significantly behind what the technology allows.

Even in the development of safety critical systems, formal
verification techniques are not broadly used. Apart from
the cases in which the use of formal methods is highly rec-
ommended by safety standards like IEC 61508 (for SIL 4),
developers are reluctant to use verification in the develop-
ment of functions with lower criticality (SIL 1, SIL 2 or even
SIL 3). The lack of affordable, qualified, robust tools, some
misconceptions regarding the inherent cost of formal verifi-
cation and the complexity of these techniques are often the
justifications to the absence of formal verification in a low
criticality project.

Using formal verification is challenging for non-experts. Fur-
thermore, the model checking tools available for C programs
often face important scalability issues. Achieving a complete
formal verification in this context is therefore a very complex
task, many times in infeasible. Incomplete verification is,
however, much easier to perform in practice on a continuous
basis. We conjecture that incomplete functional verification
can be economically feasible, also in common projects in-
volving low critical software functions. The most important
obstacle to overcome is that it is currently unclear how the
results of incomplete verification can be used as evidence in
assurance arguments for certification.

Working context: mbeddr and CBMC. Our long term
work is focused on drastically improving the usability of for-
mal verification tools up to the point where they are usable
by practicing engineers on a daily basis. Our approach relies
on domain specific languages, in order to mask the complex-
ity of working directly with verification tools. We have built
a stack of C code and domain specific analyses as part of
the mbeddr1 project [15, 17]. mbeddr aims to simplify the
verification process from the point of view of the end-users,
with the objective of making formal verification as easy to
use as testing. All of the following examples are done using

1http://www.mbeddr.com



mbeddr and CBMC. We are, however, convinced that the
results presented here can be easily generalized and applied
to other tools.

Testing vs. verifying. Writing test-cases represent the most
widespread manner today to verify functional requirements
at subsystem level in the industry. Test-cases are relatively
easy to understand, use and review by embedded systems
practitioners. Furthermore, running many test-cases is very
fast, developers get quick feedback about the results and
when tests fail they are usually easy to debug. Measuring
the quality of test-cases is done through code-level cover-
age tools. For SIL 1 and SIL 2 functions, for example, IEC
61508 requires only a statement coverage of the tests, ba-
sically that for each safety requirement there are enough
tests such that each statement is executed at least once. For
SIL 3 functions, the standard requires a condition coverage.
From the point of view of the verified requirement, starting
from SIL 2, IEC 61508 highly recommends that the tests
consider equivalence classes and input partition testing, in-
cluding boundary value analysis.

Yet, a suite of tests covers only points from the state space of
the system as illustrated in Fig. 1. Tests are finite by nature,
whereas software with unbounded loops are not uncommon
– e.g., for controls.

Verifying a system allows us to reason over several paths at
the same time and cover a set of initial values with a single
run of a model checker. In Fig. 1, the regions delimited by
the blue box and the red boxes represent the state space
analyzed – covering the same space with tests may require
a very large number of test vectors.

Even though model checking would cover a state space larger
than the one covered by some tests, these tests would often
be preferred, as they correspond to a concrete reality whose
bounds and assumptions are visible to the practitioners. Ad-
ditionally, after the verification is initially performed by an
engineer, it will be applied again and again as new changes
are incorporated. Therefore, the verification needs to be un-
derstood by others and ultimately by an external assessor
in order to provide certification.

Structure and contributions. In this work, we aim to char-
acterize the assurance level that can be given by incomplete
verification. When incomplete verification is used, the en-
gineers need to assess the limitations of the analysis, or, in
other words, to assess its completeness degree. In Sec. 2,
we describe typical sources of incompleteness when using
code-level model-checking. The set of assumptions making
the verification incomplete needs to be characterizable in an
explicit manner, so that the confidence in the verification
results can be quantified. In Sec. 3, we develop the concept
of verification-case in order to emphasizes on the incomplete
nature of verification. In Sec. 4, we give an overview over
the related work and then we conclude the paper and present
our future plans in Sec. 5.

Environment:
data environment

library environment

Initialization:
system-under-verification

initial system state

Verification parameters:
loops

recursions

Figure 1: Test-cases vs. verification-cases.

2. INCOMPLETENESS OF VERIFICATION
Even though verification covers a larger portion of the state
space than testing does, it will still remain incomplete in
many practical cases. Each of the following sub-sections
presents an aspect of this incompleteness along with a small
example. These aspects are orthogonal, so a particular veri-
fication can provide results that are incomplete along several
dimensions at the same time.

2.1 Initialization
The verification of a system needs to start from an ini-
tial state space. This covers in particular the initial values
of global and static structures and variables, the values of
the parameters passed as arguments to the system-under-
verification and the objects in memory (e.g., a chained list
in the heap).

Choosing configuration parameters. Many embedded soft-
ware systems are parametrized by constants used for calibra-
tion or different configurations of the code. The values of
these parameters have a highly restricted range and known
in advance. The set of possible valid values is often discrete.
Typically, these parameters are flashed on a read-only mem-
ory before the product is shipped or during an off-line main-
tenance. The parameters are subsequently used as constants
during the run of the code.

In Fig. 5, the maximum size of the data treated is fixed in
the code as a global constant.

Figure 2: Example of configuration parameter:
max_size_data.



Choosing the initial state. Many times, the system-under-
verification will run into a loop and do some computations
iteratively (e.g., read sensors values, then perform compu-
tation, then issue commands). Often such systems have an
internal state which can be reached from the program start
after a high number of iterations. We can, however, let the
verification start from an arbitrary state by (nondetermin-
istically) choosing values for the state variables. By choos-
ing the initial state in a nondeterministic manner the initial
state that we chose might be a subset of all possible states
that the system-under-verification could reach during a run
and thereby the assumption for our verification is too narrow
and we cover only a subset of the possible reachable states.

In Fig. 3, the function partial_iterate is intended to be
called in a loop for each element of an array (passed as ar-
gument). If a value unexpected by the treatment function
treat is in array[65535], we need to iterate 65535 before
finding this value. If we choose nondeterministically the in-
dex used to execute this function, we will reach directly the
case in which the unexpected value is read by treat.

Figure 3: Example of initial state: current_index.

2.2 Environment
Once the system-under-verification has been defined (typi-
cally a program module called by a unique function), the
environment represents all the other parts of the system
that interact with the system-under-verification. This cov-
ers, e.g., global variables, files and calls to APIs.

Data environment. The inputs of the system are provided
by the environment. In order to make the verification feasi-
ble, we typically restrict the input space. A good example
for this is the case of embedded programs that process infor-
mation from sensors. We might assume – for the verification
– that the data provided by the sensors lie within a certain
range. Another example are cases where the system-under-
verification manipulates recursive data structures or arrays
of variable length. In these cases, we might choose to set a
bound on their sizes.

For example, in Fig. 4, we present a function which computes
the braking power. This function uses the currentSpeed

and the value of two distance sensors. We can perform the
verification for example by covering only a subspace of the
possible inputs like speed is between [0..50] meter per second
and distance between [0..200] meters.

Library environment. In some cases, the system-under-
verification makes use of libraries which provide lower-level
services (e.g., calls to standard libraries or device drivers
APIs). The implementation of these libraries might be un-
available when the code is analyzed, or might be too complex

Figure 4: Example of data environment: distIn-

fraredSensor, distCameraSensor.

to analyze in addition to the system-under-verification. In
these cases, mock-ups or models of these libraries can be
used instead; this leads however to incomplete results.

In Fig. 5, the implementation of a mutex lock is not pro-
vided. Assuming that the function is correctly implemented,
we abstract this function by an equivalent model. In detail,
this function atomically checks if the mutex has correctly
been initialized. If it is the case, it then ensures that after
the assumption, the mutex is released so that mutex_lock

can acquire it. In essence, this assumption could replace a
blocking while which would spin until the lock was released
by another thread. mutex_lock acquires the lock at the end.

Figure 5: Example of library environment: mu-

tex_lock.

2.3 Verification parameters
The exploration of the state space by the model checker may
be incomplete by itself. Model checking in general is known
to be undecidable – the analysis may never terminate. In-
complete verification tools thus introduce some parameters
to limit the exploration. Bounded model checkers impose,
for instance, to set loop and recursion unwinding bounds.
These restrictions restore the decidability of the analysis, at
the cost of an additional incompleteness degree.

Loops unwinding. Bounded model checkers must unwind
the loops in order to perform verification. Very often, the
complete unwinding cannot be performed (eg, the loop it-
self depends on a variable input parameter, the loop is un-
bounded and the breaking condition is complex, or simply
very deep unwinding makes the verification too complex).
In such cases, engineers need to decide on the depth of the
unwinding and this leads again to incomplete results.

In Fig. 6, the function treatment waits in a blocking while
until another process set the volatile global variable flag to
1. It then calls the function treat. During the blocking
while, it counts the number of iterations in cnt, which is
a uint32. If the engineers want to observe the overflow of
cnt, they need to unwind at least 65535 times the while



loop. If cnt is not the center of their attention, they can
unwind an arbitrary number of times. In the case of blocking
loops, they can also abstract the loop by replacing it with
an assumption imposing its final state – here, assume(flag
== 1) – at the cost of abstracting completely cnt.

Figure 6: Example of loop unwinding: blocking
while.

Recursion bounds. Similarly to loops, recursive calls can
appear in the code. According to IEC 61508, a limited use
of recursion is allowed for SIL 1 and SIL 2 functions. Other
coding standards like MISRA forbid the use of recursion. In
comparison to loops, recursions is often more problematic,
since each recursive call consumes memory on the stack (de-
pending on the amount of data passed between calls and
local variables). When performing the verification using
bounded model checkers at C level, engineers need to de-
cide on the depth of unwinding of the recursive calls making
thereby the verification incomplete

In Fig. 7, the recursive function max is recursively called on
all the elements of a list of an arbitrary size. Any unwinding
of this function would thus be partial. However, this func-
tion is called in the specific context of apply, which limits
the number of elements to 20. In this case, the complete
verification of max called in the context of apply only can
be performed with unwinding 20 times the recursion.

Figure 7: Example of recursion unwinding: max.

3. VERIFICATION CASES
A verification-case combines the information about the system-
under-verification, the environment definition, the initial state
of the system and the parameters with which the verification
tool is called. Thereby it makes explicit all the assumptions
that are done when the verification is performed.

In Fig. 8, we present an overview of our approach. As a
first step, the engineers define a verification-case for a sys-
tem. Based on the system definition and on the verification-
case, mbeddr will generate C code which is subsequently
fed as input into CBMC (the verification tool that we use).
CBMC will perform the actual verification using the param-
eters specified in the verification-case and return a set of

results. These results can then be used as evidence in an as-
surance case together with the verification-case definition –
which characterizes the completeness degree of verification
and thus the confidence upon the results. In the follow-
ing, we will describe in more detail the process of building
the verification-case and using the verification results as ev-
idence.

program

Verification 
Case Verification

Results

Verification
tool (CBMC)

Assurance 
Case

confidence ev
id

en
ce

mbeddr

C
code

Figure 8: Overview of our approach.

3.1 Defining a verification-case
mbeddr provides a first-class language construct to define
verification cases. In order to verify a piece of code in
mbeddr, embedded software engineers need to build a verification-
case and perform the following steps:

1. Delimit the system under verification (at C level, this
is usually one or more C functions)

2. Define the initial state from which the verification will
be performed (eg, initialize global variables).

3. Define the environment in which the system-under-
verification will run. The environment definition cap-
tures the input data to the system. If the system-
under-verification is part of a layered architecture and
makes use of lower-level functionalities, developers must
decide where they integrate these functionalities as
part of the system-under-verification or not.

4. Choose verification parameters with which CBMC will
be called. Important parameters that affect complete-
ness of the verification results are, for example, the
loops unwinding.

5. Define the property to be verified by using C level as-
sertions. This property can match exactly the require-
ment specification or can be a restriction thereof.

In the upper part of Fig. 9, we present a simple C function
which takes an array of integers (elems) and an element to
be searched in this array (el). The function returns the
number of occurrence of the element in the array. In the
lower part of Fig. 9, we present a test-case that checks if
the function exhibits the desired behavior. This test-case is



sufficient to achieve a condition coverage at C level. In the
lower part of the figure we present a“verification-case”which
defines the environment for performing the verification, ini-
tializes the input variables and checks the expected behavior.
The data belonging to the environment is highly restricted
when compared to the variable space that the count func-
tions accepts: the size of the input vector (mySize) is be-
tween 0 and 10, the elements of the vector are between 0
and 100 even if the count function takes a broader input
(int64), and the value of the searched element is fixed.

By looking at the implementation of the count function, we
notice two bugs. The first bug is that the for-loop does not
iterate over the entire array and therefore the occurrence of
the searched element at the last index would not be counted.
The second bug is that if elements array is very large and
the searched element occurs many times, the variable cnt

will overflow. Our tests example misses both of these bugs.
However, the verification (even if incomplete) catches the
first bug but misses the second one.

Figure 9: Motivating example: simple function to
be verified, a test case and s verification case.

3.2 Confidence in incomplete results
If the verification is successful (i.e. the property representing
requirements holds), the results can be used as evidence in
an assurance case. Verification-cases allow engineers to make
explicit all assumptions and limitations of the verification
that can cause incomplete results. Each of the sources of

incompleteness should be explicitly treated and additional
assurance might be necessary.

Incompleteness due to the chosen initial state. When
the choice of the initial state for the verification is too re-
stricted, the verification might miss the property violation
that would occur for some other uncovered, yet possible ini-
tial states. The completeness degree can be increased by
defining additional verification-cases specifying other initial
states. When the choice of initial states is to broad, it might
cover impossible initial states. Furthermore, some of the
“valid initial states”, albeit possible, could be reached by the
system only after a very long run. It is highly improbable
that such states would be reach in the production system.

Incompleteness due to the chosen environment. Choos-
ing only small regions from the possible input space or us-
ing abstractions for the API calls can significantly speedup
the verification. This generates incomplete results, since the
property under check might be violated by verification with
inputs that are not considered. In these cases, verification
can be complemented with tests which can provide addi-
tional confidence for the evidence.

Incompleteness due to unwinding bounds. Limiting the
unwinding of loops is often unavoidable when using bounded
model checkers. However, the chosen unwinding can be
large enough to produce verification results with high cov-
erage. Even if the unwinding is incomplete (e.g., in case
of unbounded loops), the verification tool can still provide
program traces that were explored. These traces can subse-
quently be used to measure the coverage of the verification
at code level. Note that the model checker that we use can
also unwind as many time as required if the bound is obvi-
ous (e.g., in for-loop with fixed values of the form for(i =

0; i<N; i++)).

4. RELATED WORK

Making the verification incompleteness explicit. To the
best of our knowledge, making the incompleteness of incom-
plete verification explicit was not formally addressed in the
literature.

Verfication for software assurance. In [5], Coppit et al.
use bounded exhaustive testing to provide software assur-
ance. Similarly to our approach, but in the context of tests,
they explicitly state the limits of these tests and the confi-
dence that can be obtained out of their results. Shen and
Shapiro explore in [3] the application of model checking to
software assurance. In particular, they state precisely un-
der which conditions the tool is sound. They tell their ex-
perience of using (incomplete) model checking in building
confidence.

Interpretation of specific bounds in incomplete verifi-
cation. Often, authors specialize in one or two specific in-



complete parameters of their approach. For example, Kroen-
ing et al. [4] explicitly mention the boundedness of the state
space exploration: the tool CBMC will only prove program
for the number of loop unwinding provided. An assertion is
nevertheless inserted at the end of the loop unwindings, so
that simple cases where the state space can exhaustively be
explored after a few unwindings can be covered.

In the domain of concurrency, Donaldson et al. use a max-
imum number of threads [7]. Lal and Reps use alterna-
tively a maximum number of context-switches [13]. Joshi
and Kroening suggest to limit the number of weak memory
reorderings allowed in a counter-example [10]. Many other
measures can be found in the verification literature.

Test-cases for verification. Verification-cases are analo-
gous to test-cases. This observation was already empiri-
cally made by some developers. Rapicault already imple-
mented verification tasks as unit tests in the Eclipse plugin
of CBMC2. A similar approach has been explored by Nimal
in an improvement of the Visual Studio plugin of CBMC3.
Yet, no interpretation of these verification tasks is provided.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a first attempt to qualify explic-
itly the completeness degree of incomplete verification. To
the best of our knowledge, this characterization had not been
formulated in the past. We introduced the verification-case,
which is analogous to a test-case but covers a larger region
of the state space. We instantiated in mbeddr verification-
cases for CBMC, with limitations specific to bounded model
checking. We hope that the verification-cases will mark a
first step towards building assurance cases using incomplete
verification results.

There are additional parameters that are currently not taken
into account in these verification-cases. The platform and
operating systems on which results are valid, the processor
architectures, the memory management are elements that
also need to appear in an additional dimension of our veri-
fication space in Fig. 1. Parameters like the thread bounds,
the maximum number of thread interferences or interrupt
priorities should also complete the verification-case compo-
nent“Verification parameters”. We leave this as future work.
Other measures introduced by the verification community
like the maximum number of context-switches or the num-
ber of weak memory reorderings in a trace would also be rel-
evant to verification-cases, but might be correlated to other
existing components.

We addressed in this paper the case of low critical systems.
Incomplete verification can also be used for highly-critical
systems: if we understand the state space coverage of a
verification-case (like the boxes in Fig. 1), we can combine
testing and verification. Quantitative evaluation of the cov-
erage of a verification-case remains a challenge.

6. REFERENCES
2http://www.cprover.org/eclipse-plugin/
3This plugin has not been released yet.

[1] T. Ball, V. Levin, and S. K. Rajamani. A decade of
software model checking with slam. Commun. ACM,
54(7):68–76, July 2011.

[2] D. Beyer, T. A. Henzinger, R. Jhala, and
R. Majumdar. The software model checker blast.
STTT, 9(5-6):505–525, 2007.

[3] H. Chen and J. S. Shapiro. Exploring static checking
for software assurance. Technical Report SRL-2003-06,
SRL, CS, Johns Hopkins University, 2003.

[4] E. M. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In Tools and Algorithms
for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part
of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain,
March 29 - April 2, 2004, Proceedings, pages 168–176,
2004.

[5] D. Coppit, J. Yang, S. Khurshid, W. Le, and
K. Sullivan. Software assurance by bounded
exhaustive testing. Software Engineering, IEEE
Transactions on, 31(4):328–339, April 2005.

[6] L. C. Cordeiro, B. Fischer, and J. Marques-Silva.
Smt-based bounded model checking for embedded
ANSI-C software. IEEE Trans. Software Eng.,
38(4):957–974, 2012.

[7] A. F. Donaldson, A. Kaiser, D. Kroening, and
T. Wahl. Symmetry-aware predicate abstraction for
shared-variable concurrent programs. In Computer
Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, pages 356–371, 2011.

[8] A. F. Donaldson, D. Kroening, and P. Rümmer.
Automatic analysis of DMA races using model
checking and k -induction. Formal Methods in System
Design, 39(1):83–113, 2011.

[9] J. Franklin, S. Chaki, A. Datta, J. M. McCune, and
A. Vasudevan. Parametric verification of address space
separation. In Principles of Security and Trust - First
International Conference, POST 2012, Held as Part of
the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012, Tallinn, Estonia,
March 24 - April 1, 2012, Proceedings, pages 51–68,
2012.

[10] S. Joshi and D. Kroening. Property-driven fence
insertion using reorder bounded model checking. In
FM 2015: Formal Methods - 20th International
Symposium, Oslo, Norway, June 24-26, 2015,
Proceedings, pages 291–307, 2015.

[11] M. Kim, Y. Kim, and H. Kim. A comparative study of
software model checkers as unit testing tools: An
industrial case study. IEEE Trans. Software Eng.,
37(2):146–160, 2011.

[12] D. Kroening and M. Tautschnig. Automating software
analysis at large scale. In Mathematical and
Engineering Methods in Computer Science, volume
8934 of LNCS, pages 30–39. Springer, 2014. invited
paper.

[13] A. Lal and T. W. Reps. Reducing concurrent analysis
under a context bound to sequential analysis. Formal
Methods in System Design, 35(1):73–97, 2009.

[14] L. Pike, S. Niller, and N. Wegmann. Runtime
verification for ultra-critical systems. In Runtime



Verification - Second International Conference, RV
2011, San Francisco, CA, USA, September 27-30,
2011, Revised Selected Papers, pages 310–324, 2011.

[15] D. Ratiu, M. Voelter, B. Kolb, and B. Schätz. Using
language engineering to lift languages and analyses at
the domain level. In NASA Formal Methods, 5th
International Symposium, NFM 2013, Moffett Field,
CA, USA, May 14-16, 2013. Proceedings, pages
465–471, 2013.

[16] B. Schwarz, H. Chen, D. Wagner, G. Morrison,
J. West, J. Lin, and W. Tu. Model checking an entire
linux distribution for security violations. In Computer
Security Applications Conference, 21st Annual, pages
10 pp.–22, Dec 2005.

[17] M. Voelter, D. Ratiu, B. Kolb, and B. Schätz.
mbeddr: instantiating a language workbench in the
embedded software domain. Autom. Softw. Eng.,
20(3):339–390, 2013.

[18] T. Witkowski, N. Blanc, D. Kroening, and
G. Weissenbacher. Model checking concurrent linux
device drivers. In 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE
2007), November 5-9, 2007, Atlanta, Georgia, USA,
pages 501–504, 2007.


