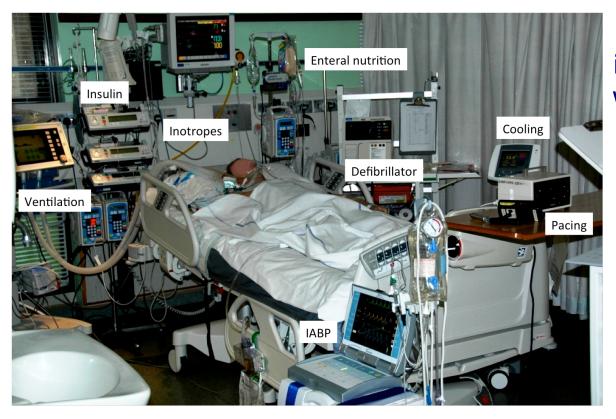
Towards a Logical Foundation for Assurance Arguments for Plug & Play Systems

Lu Feng, Andrew King, Insup Lee, Oleg Sokolsky


PRECISE Center School of Engineering and Applied Science University of Pennsylvania

VeriSure: Verification and Assurance Workshop at CAV 2015 San Francisco, 18 July 2015

Medical Device Interoperability

Problem: little to no integration of devices with each other

- Humans must automate even simple clinical workflows
- Unnecessary burdens placed on human caregivers
- Few opportunities for "sensor fusion" (better alarms and diagnostics)

Clinical Scenario: Laser Surgery / Ventilator

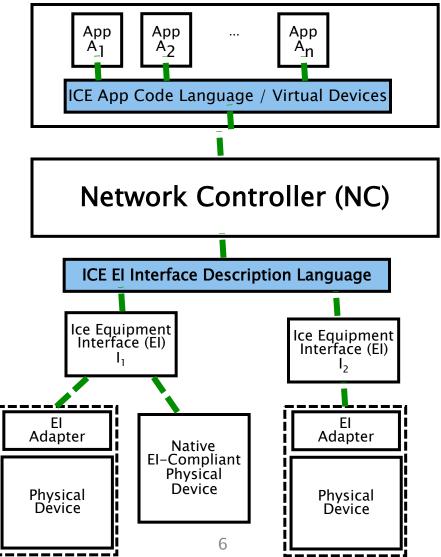
- Doctors enforce the following invariant
 - If laser = on then oxygen = off
 - If patient's SpO2 < 95 then oxygen = on
- Systems of Systems approach
 - Let devices communicate and automate safety invariant enforcement

Benefits of Medical Device Interoperability

- Interoperable medical devices can self-coordinate
 - Provide continuous monitoring
 - Handle routine tasks and respond to obvious problems
 - Alert caregivers in more serious cases; reduce alarm fatigue
 - Physiological closed-loop control in many cases

Future

Medical Device Plug-and-Play Open Systems

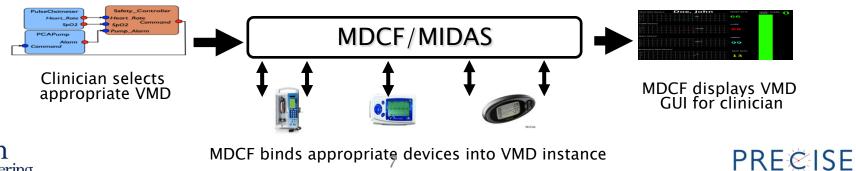

- Medical Device Plug-and-Play (MD PnP)
 - Interoperable medical devices based on plug-and-play
 - Vender neutrality based on open medical device interfaces
 - www.mdpnp.org
- Emerging Interoperability Standards
 - ASTM Standard F2761-2009 for Integrated Clinical Environment (ICE) defines a high-level architecture and functional concept
 - The ICE architecture standard is the focal point for FDA's evaluation of MAP (Medical App Platform) concepts in future medical systems

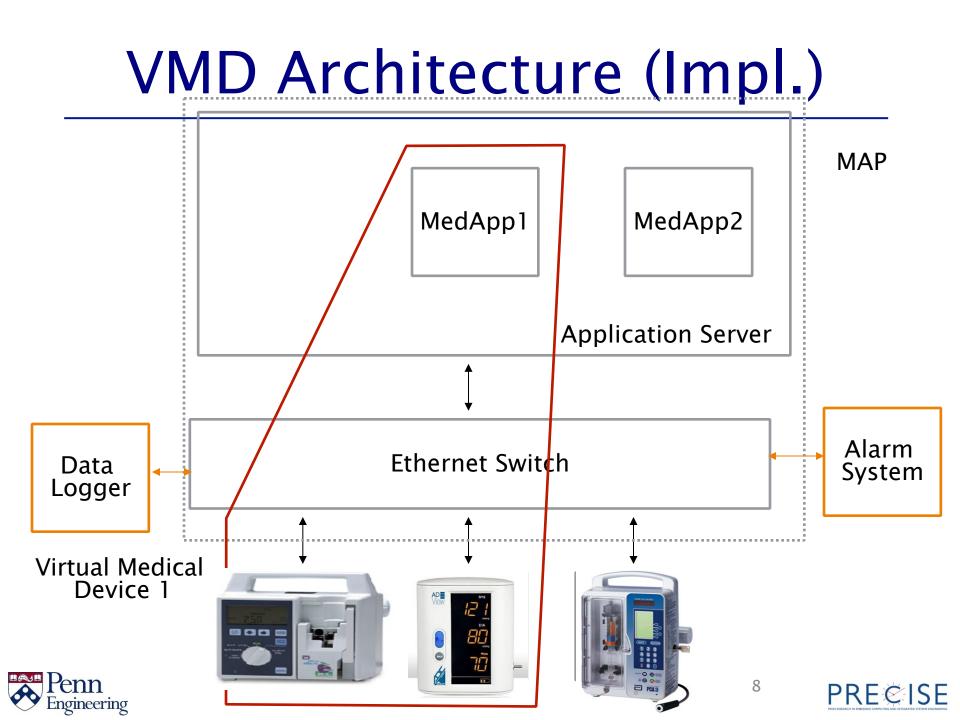
ICE Architecture

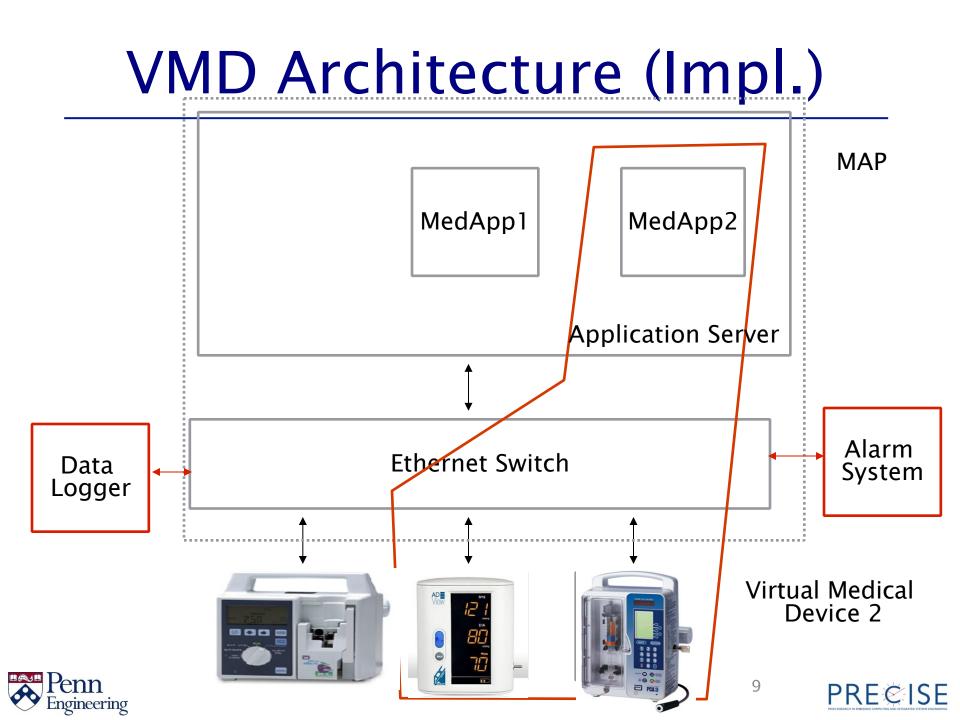
Supervisor

PRECISE

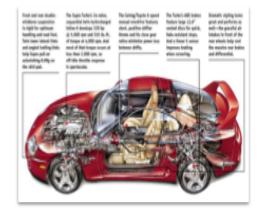
Virtual Medical Device (VMD)


MD PnP enables the concept of VMD


Engineering


 A set of medical devices coordinating over a network for clinical scenario

- VMD does not physically exist until instantiated at hospitals
- The Medical Device Coordination Framework (MDCF)
 - Our prototype middleware for managing the correct composition of medical devices into VMD.

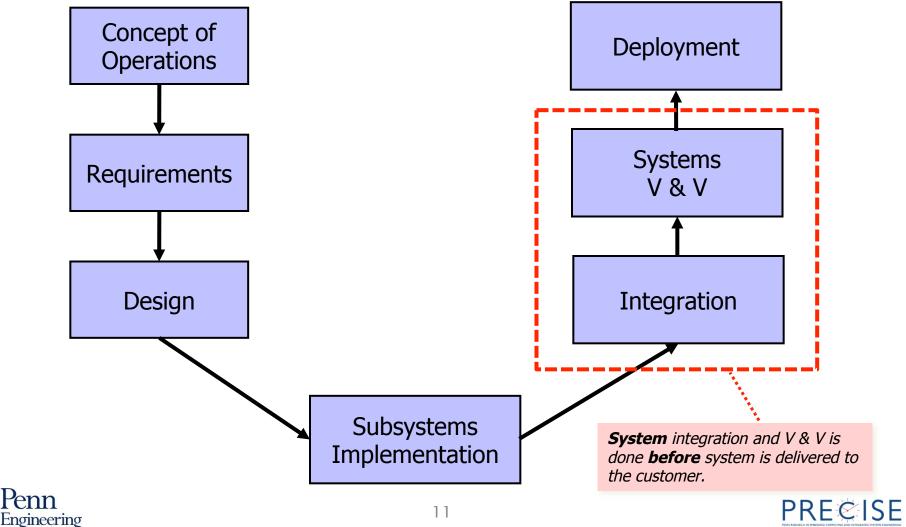


Safety Assurance Challenge for VMD

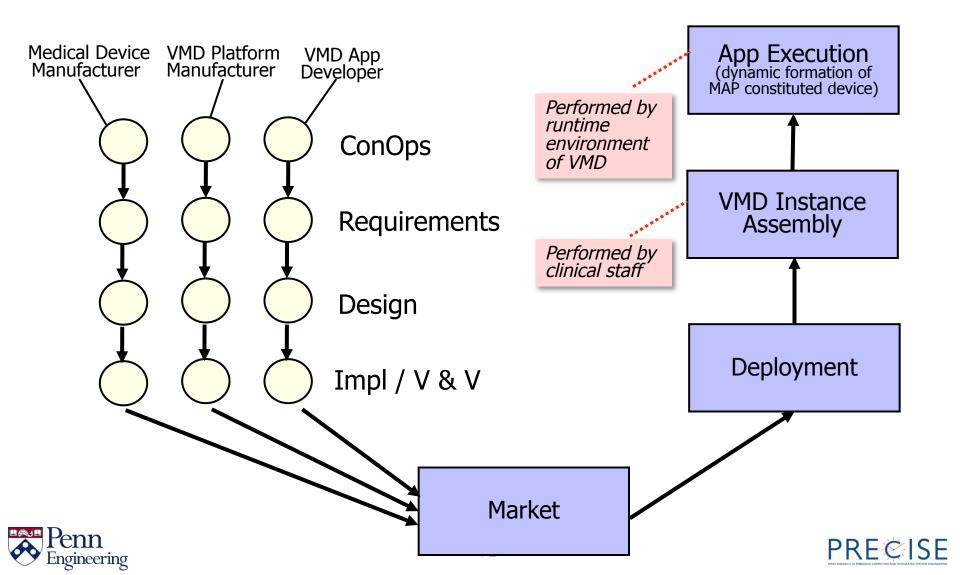
- The new system integration paradigm of VMD has serious implications for safety assurance, where the traditional approach won't scale
- Traditional safety critical systems
 - fixed function
 - designed and integrated by a single system integrator

Aerospace

gineering


Automotive

Nuclear



Traditional System Integration

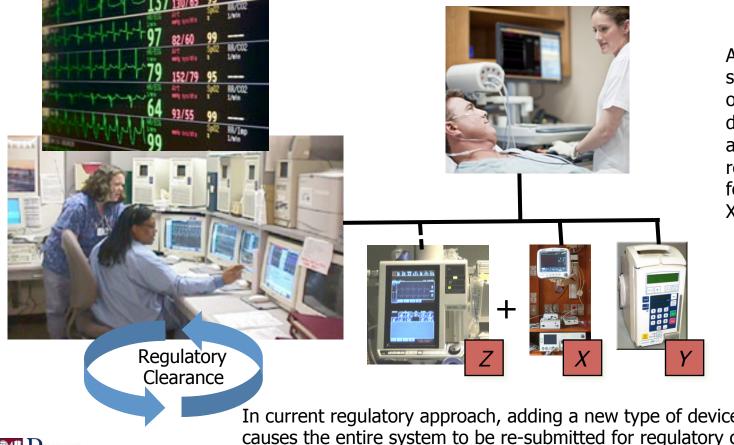
• End to end process managed by prime contractor

VMD Development & Assembly

VMD Characteristics

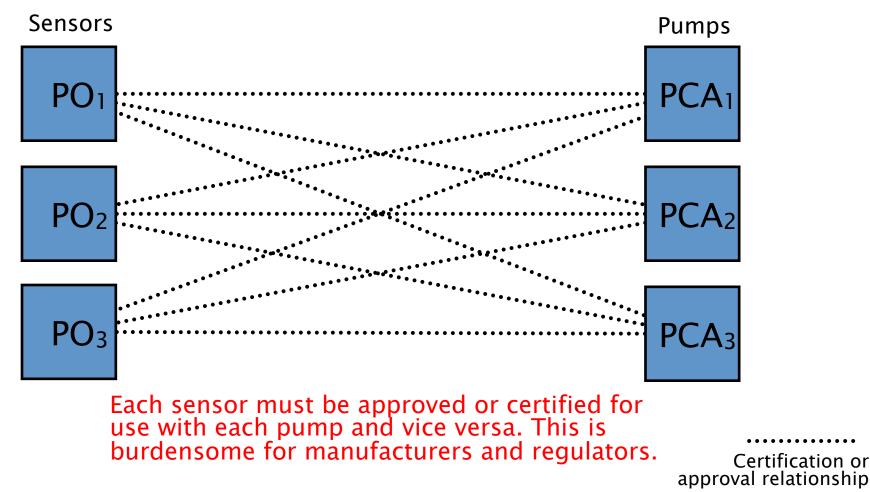
- There is no prime contractor that is responsible for VMD integration and system-level V&V
 - Assembly is performed after deployment
 - Assembler (hospital staff) does not have expert-level technical knowledge of components & system behavior
 - App developer is responsible for overall system safety arguments
 - Platform services (compatibility checks) assist in determining at app launch time if platform and attached devices satisfy requirements of app
 - The app's directions for assembly of the platform constituted device are stated only in terms of properties/capabilities that are exposed on the interfaces of the platform and devices

Medical Device Certification


- In the U.S., FDA approves medical devices for specific use
 - Safety and effectiveness are assessed
 - Evaluation is process-based: ISO 9001 (quality management) and ISO 14971 (risk management)
 - Hazard analysis is key to approval
 - FDA's 510(k) requires "substantially equivalent" to devices on the market
- No certification of interoperable medical devices
 - Currently, each collection of interconnected devices is a new medical device to be approved.

Current Regulatory Approach

Current regulation of integrated systems (e.g., central station monitors) requires "pair-wise" clearance: whenever a new type of device is added to the monitoring platform, the entire infrastructure must be re-cleared.

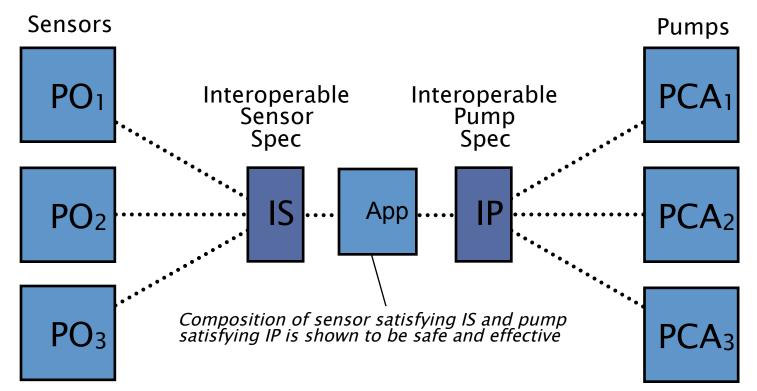

Engineering

Assume monitoring system was originally developed, verified, and received regulatory clearance for devices of type X & Y.

In current regulatory approach, adding a new type of device (e.g., Z) typically causes the entire system to be re-submitted for regulatory clearance. PRECISE

Pairwise Certification Complexity

Example "interoperable" device ecosystem 3 different (model/manufacturer) blood oxygen sensors, 3 different (model/manufacturer) PCA pumps:



Interface-based Certification

Example "interoperable" device ecosystem 3 different (model/manufacturer) blood oxygen sensors, 3 different (model/manufacturer) PCA pumps:

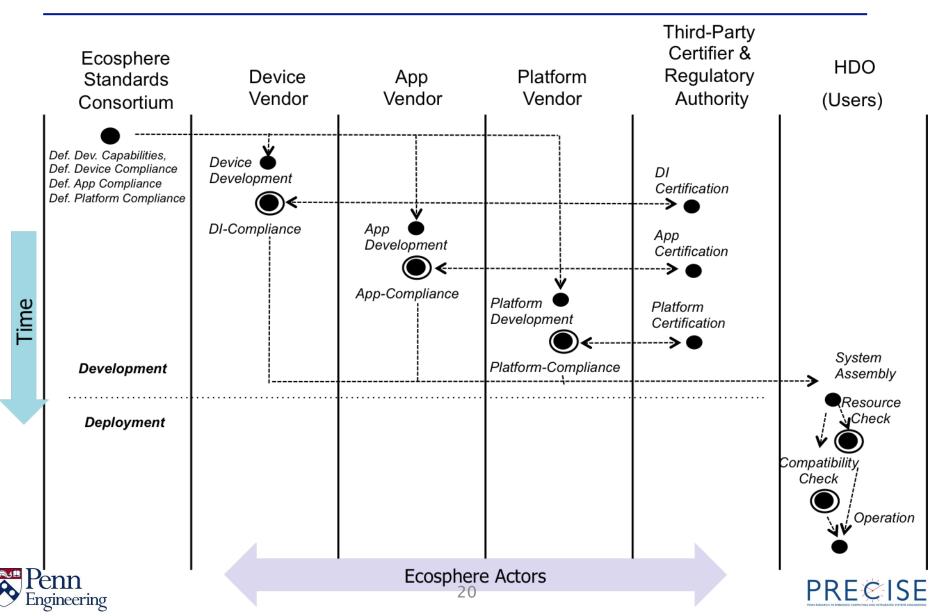
Each sensor (or pump) only needs certification or approval w.r.t. the interface spec. Additionally, the ecosystem can grow without forcing recertification (or re-approval) of previously analyzed devices

Certification or approval relationship

PRECISE

Some Observations ...

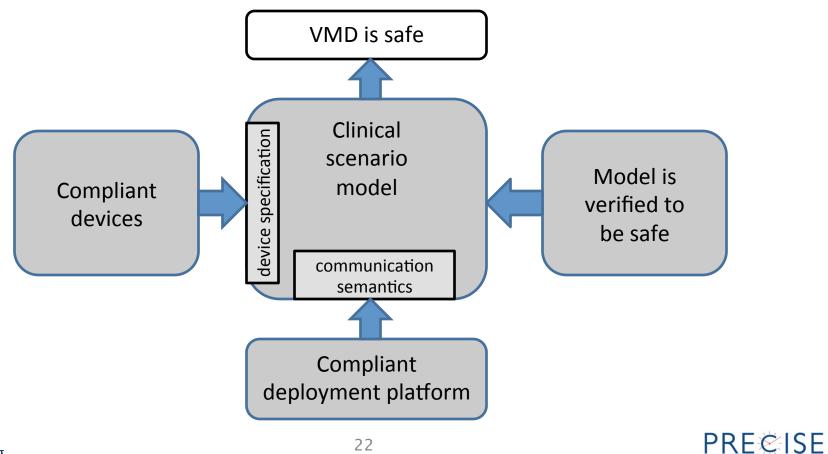
- Safety can only be assured by predicting the emergent system behavior
 - Vendors cannot use traditional methods to directly predict a VMD's behavior, because the system does not exit until assembled by hospital users
- Safety requirements for specific clinical scenarios
 - Devices can interact in unexpected ways, creating new hazards for the patient
 - Manufacturers unlikely anticipate safety hazards for all possible clinical scenarios

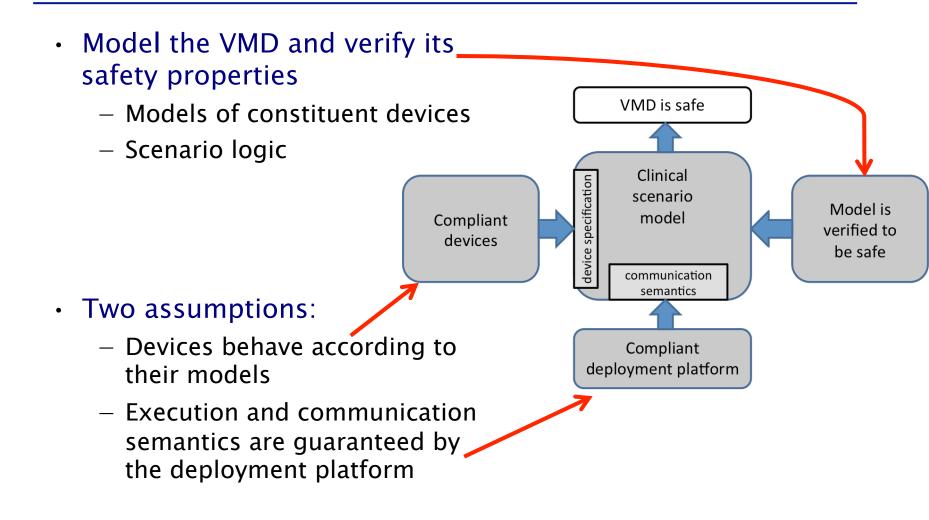

The Proposed Platform Approach

- Maintain a curated ecosphere of Devices, Apps, and Platforms
 - Apps define "the system":
 - > Implement the clinical scenario algorithm
 - > Specify required devices and their required behavior
 - > App can be analyzed for safety using "models" as proxies for concrete devices and environment
 - **Devices** carry out required functions
 - · Its (formal) capabilities model is captured by its "interface"
 - · Adherence of a device to its capabilities needs to be "certified"
 - Platforms run the applications and facilitate system composition:
 - > Ensures apps are only composed with compatible devices
 - > Ensures app QoS requirements are met
- How does the ecosphere work?

VMD Ecosphere

Model-based Safety Reasoning


- Why model-based reasoning (MBR)?
 - Each App defines a set of possible systems, each of which is an allowed combination of medical devices and platforms
 - App vendors would not be able to analyze all possible systems directly since
 - > The number of device/platform combinations may be huge
 - > New devices may be admitted after the App is certified
- What type of models?
 - Models must capture all the relevant behavior of allowed system combinations
 - The suitability of models and their analysis is dependent on:
 - > Ecosphere certification/assurance processes
 - > Platform quality / capabilities
 - > Ecosphere notion of device / app compatibility
 - Intended use of the system
 - > The safety properties being checked


Safety Assurance for VMD

- Model-based analysis at design time
- Validation of modeling assumptions during assembly

Development and Instantiation

Assume-Guarantee Safety Assurance

• <u>Goal</u>: guarantee that $P(A) (||_{j=1...n} D_j) || E \models \phi$

The execution of App A on the platform P, denoted by P(A), together with the assembly of medical devices $D_1, ..., D_n$ in the environment E satisfies the safety property ϕ .

• Entities in the assume-guarantee reasoning rule

	Model	Software / Specification	Physical Embodiment
Арр	A ^m	Α	P(A)
Interface	AI_{j}^{m} (j=1n)	AI_{j} (j=1n)	
Devices		Dl _j (j=1n)	$D_{j}(j=1n)$
Platform	P ^m		Р
Environment	Em		E

	Model	Software / Specification	Physical Embodiment
Арр	A ^m	Α	P(A)
Interface	Al _j ^m (j=1n)	Al _j (j=1n)	
Devices		DI_{j} (j=1n)	$D_{j}(j=1n)$
Platform	P ^m		Р
Environment	E ^m		E

- (1) $A^m \simeq A$
- (2) $AI_j^m \simeq AI_j$
- $\textcircled{4} \quad \mathsf{E}^{\mathsf{m}} \simeq \mathsf{E}$

App developers need to assure that models are faithful to the implementation/platform/environment.

	Model	Software / Specification	Physical Embodiment
Арр	A ^m	Α	P(A)
Interface	Al _j ^m (j=1n)	Al _j (j=1n)	
Devices		Dl _j (j=1n)	$D_{j}(j=1n)$
Platform	P ^m		Р
Environment	E ^m		E

(1) $A^m \simeq A$

(2)
$$AI_j^m \simeq AI_j$$

```
\textcircled{4} \quad \mathsf{E}^{\mathsf{m}} \simeq \mathsf{E}
```

(5) $A^m (||_{j=1...n} AI_j^m) || P^m || E^m \models \varphi$

App developers use model checking to verify that the composed system model satisfies the safety property.

PRECISE

	Model	Software / Specification	Physical Embodiment
Арр	A ^m	Α	P(A)
Interface	Al _j ^m (j=1n)	Al _j (j=1n)	
Devices		Dl _j (j=1n)	$D_{j}(j=1n)$
Platform	P ^m		Р
Environment	E ^m		E

(1) $A^m \simeq A$

(2)
$$AI_j^m \simeq AI_j$$

(3) $P^m \simeq P$

(4) $E^m \simeq E$

Engineering

(5) $A^m (||_{j=1...n} AI_j^m) || P^m || E^m \models \varphi$

(1)–⑤ A (||_{j=1...n} Al_j) || P || E ⊨
$$φ$$

	Model	Software / Specification	Physical Embodiment
Арр	A ^m	Α	P(A)
Interface	Al _j ^m (j=1n)	Al _j (j=1n)	
Devices		DI_{j} (j=1n)	$D_{j}(j=1n)$
Platform	P ^m		Р
Environment	Em		E

(1)–(5) A (
$$||_{j=1...n}$$
 AI_j) || P || E $\models \varphi$

Device manufacturers need to assure that a device's capability specification conforms to its actual behavaior.

	Model	Software / Specification	Physical Embodiment
Арр	A ^m	Α	P(A)
Interface	Al _j ^m (j=1n)	Al _j (j=1n)	
Devices		Dl _j (j=1n)	$D_{j}(j=1n)$
Platform	P ^m		Р
Environment	E ^m		E

(1)–⑤ A (
$$||_{j=1...n}$$
 AI_j) || P || E ⊨ $φ$

(6)
$$\mathsf{DI}_{j} \simeq \mathsf{D}_{j}$$

7
$$AI_j \simeq DI_j$$
 (or DI_j refines AI_j)

The compatibility between the App's interface about the required device specification and the actual devices' capability needs to be checked, e.g. by third-party certifiers.

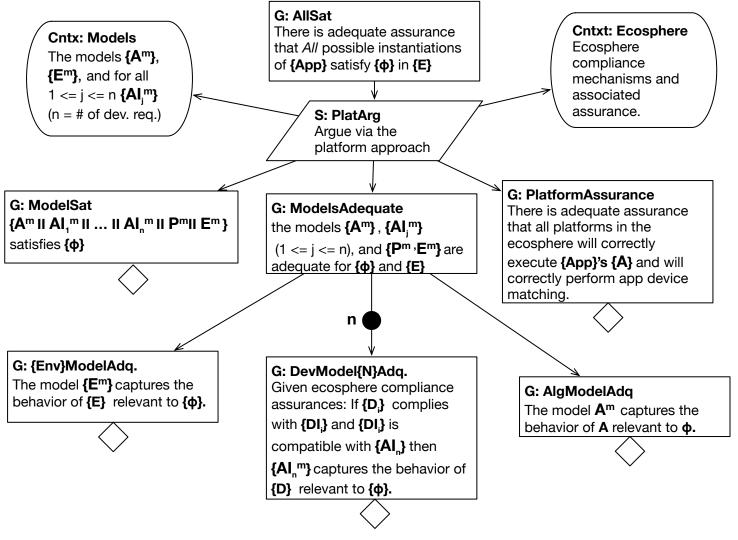
	Model	Software / Specification	Physical Embodiment
Арр	A ^m	Α	P(A)
Interface	Al _j ^m (j=1n)	Al _j (j=1n)	
Devices		DI_{j} (j=1n)	$D_{j}(j=1n)$
Platform	P ^m		Р
Environment	E ^m		E

(1)–⑤ A (
$$||_{j=1...n}$$
 AI_j) || P || E ⊨ $φ$

(1)–⑦ A (||_{j=1...n} D_j) || P || E ⊨ φ

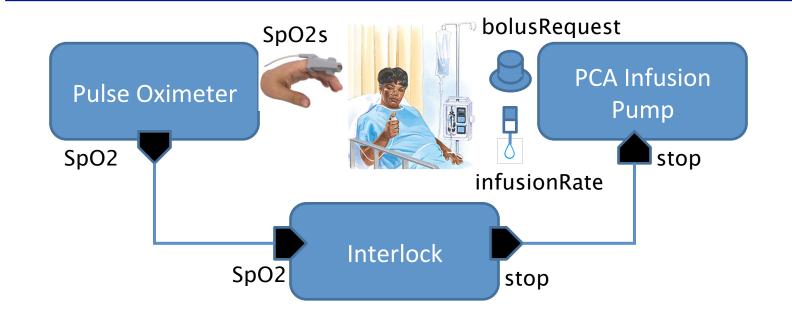
	Model	Software / Specification	Physical Embodiment
Арр	A ^m	Α	P(A)
Interface	Al _j ^m (j=1n)	Al _j (j=1n)	
Devices		Dl _j (j=1n)	$D_{j}(j=1n)$
Platform	P ^m		Р
Environment	E ^m		E

(1)-⑦ A (||_{j=1...n} D_j) || P || E ⊨ φ


(8) A || P \simeq P(A) /* P(A) means Dj's are compatible for A */

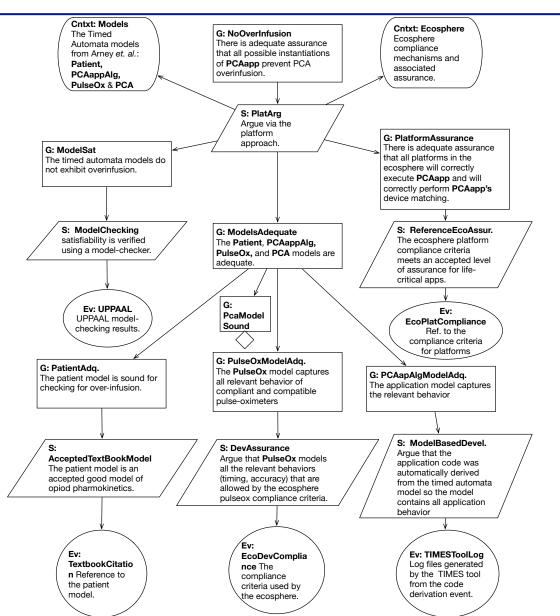
1-**8** $P(A) (||_{j=1...n} D_j) || E \models \varphi$

The execution of App A on the platform P, denoted by P(A), together with the assembly of medical devices $D_1, ..., D_n$ in the environment E satisfies the safety property ϕ .



Proposed Assurance Argument Pattern

Case Study: PCA Control App



vmd ClosedLoopPCA devices pcaPump : PCA po : PulseOximeterlogicmodules controller : PCATicketGeneratordataflows $po.SpO2 \rightarrow 50ms$ controller.SpO2 $controller.ticket \rightarrow 100ms$ pcaPump.ticket

Example Assurance Case

PRECISE

Summary

- Propose an assurance argument pattern to assist the safety analysis of plug & play MCPS that consist of
 - a set of medical devices
 - an App (i.e., a software component that coordinates the medical devices for a specific clinical scenario),
 - and a platform that runs the App
- Present an assume-guarantee compositional proof rule/ framework for plug & play MCPS and show how it can be used to as a logical basis for the proposed pattern
 - model-based analysis at design time
 - validation of modeling assumptions during assembly

Thank You! Questions?

