Toward Practical Use of Assurance Cases: Definitions, Methods, and Tools.

Nihon University
Yutaka Matsuno
matsuno.yutaka@nihon-u.ac.jp

© Yutaka Matsuno, 2015
Contents

• D-Case Project – Assurance Case Project in Japan
• AC Working Library in Japan
• Tool
• Concluding Remarks
D-Case Project

• Assurance Case Project in DEOS (Dependable Embedded Operating System) project funded by Japan Science and Technology Agency (2010-2015)
 – D: Dependability

• DEOS Consortium D-Case Working Group
 – Nihon U, Nagoya U, Fuji Xerox, Naist, Tokyo U, Denso Create, Change Vision, Mitsubishi, Aizu U, ...

© Yutaka Matsuno, 2015
Assurance Cases

• Recognized after serious incidents such as Piper Alpha (1989)

• Wrote AC in GSN for a demo system (2009)
 – Japanese Industry Expected AC as a common language inside and between companies
Challenges of AC

• When, who write and evaluate?
• Claim and argument structure setting
 – System is acceptably safe, dependable,...
 – Argument over lifecycle phases, system structure?
• Granularity、Size
 – Write reliability of a resister?
 – System becomes huge → AC becomes huge?

Most challenges were unsolved, so we started D-Case Project

© Yutaka Matsuno, 2015
Contents

• D-Case Project – Assurance Case Project in Japan
• AC Working Library in Japan
• Tool
• Concluding Remarks

© Yutaka Matsuno, 2015
AC working library in Japan

• Over 50 ACs in GSN since 2010, www.dcase.jp
• Size
 – 10 - 200 nodes, Ave. 63.5 (SD: 47)
 – 2 - 6 Depth, Ave. 4.1 (SD: 1.03)
• Contents
 – Fault Tolerance AC
 • DEOS Demo System
 – System Safety, Dependability AC
 • ISO26262, Automotive, Micro Satellite
 – Situational AC（Specific Context, Stakeholders, Goal）
 • Mitsubishi Elect., Denso Create, Fuji Xerox, ...
AC 1: Reception Robot Fault Tolerant (2010)

- Prepare a spare robot, and implement Fail-Over mechanism. By Fail-Over, in most cases, visitor only needs to wait 10 seconds when a failure occurs. In worst case (both robots are unavailable), visitor must wait 5 minutes.
- Goal "Robot recovers from failures within acceptable time"
Top Level

Context:C_1

- Reception Service is delivered by a camera robot consisting of Camera component and Robot component.
- There are a redundant pair of camera robots: Primary Camera Robot and Backup Camera Robot.
- Acceptable time limit for recovery is 10 seconds when Backup Camera Robot is functioning, otherwise 5 minutes.

Goal:G_1
Reception Service recovers from failures within the acceptable time limit

Strategy:S_1
Argument across failure detection and recovery action

Context:C_2

To detect a failure is to monitor for it and to alert Maintenance Personnel when it occurs.

Goal:G_2
Service failures are detected when they occur.

Strategy:S_2
Argument across monitoring and alerting

Goal:G_3
Reception Service recovers from a detected failure within the time limit

Strategy:S_3
Argument by cases

Goal:G_5
Maintenance Personnel is alerted when a failure occurs

Goal:G_6
If Backup Camera Robot is functioning, then it resumes Reception Service within 10 seconds.

Effective for Explicitly Presenting FT mechanism

Fault Tolerance AC
AC 2: Micro Satellite AC (2013)

- “Battery will never die”
- The developer (MS student) himself wrote AC according to the V model development process

http://park.itc.u-tokyo.ac.jp/nsat/hodo2.html
Micro Satellite AC

200 nodes, 1 month

System AC

Charge Function

Discharge Function

Temperature Control Function

Battery will never die
Defs (Environment, Operation, NASA Req.)

Heat System

Argument over Structure based on V development model

Argument over functions

FTA results are attached as Evidence

Other Engineers evaluate this AC is Good for traceability and explanation

© Yutaka Matsuno, 2015
AC 3: for Mitsubishi Simulator (2014)

Simulator for Setting relative order Of parameters

Relative ordering Of simulation parameters Can be done

Argument with and without Experts knowledge

Relative ordering Can be done in the Condition when Experts knowledge exists

Experts knowledge documents

Relative ordering Can be done in the Condition when Experts knowledge exists

Explicitly show that There are experts knowledge

Relative ordering Can be done in the Condition when Experts knowledge Does not exist

© Yutaka Matsuno, 2015
Simple Observation

• System AC
 – General Goal: System is safe, secure, ...
 – Typical Arguments (Argument over sub systems,...)
 – FTA, FMEA results as contexts and evidence
 Huge Cost -> Automation and Verification Needed

• Situational AC
 – Specific Goal: “Relative Ordering of Simulation Parameters can be done”
 – Situation Dependent Arguments, 20~ nodes
 Low Cost

© Yutaka Matsuno, 2015
Situational AC

Mitsubishi Case

Relative Ordering of Simulation parameters Can be done

Designer

Expert

© Yutaka Matsuno, 2015
Answers for AC challenges?

• When, who write and evaluate?
 – In a situation, by Stakeholders in which assumption, culture may be different
 – Ex. Automotive and Supplier Companies in design phase

• Goal, Argument Structure
 – Specific (not necessarily directly related to safety, security, …) and understandable for all stakeholders

• Granularity, Size
 – At most 20 nodes (in GSN), within a Power Point slide
Tool (DSN 2014 paper)

- Design and Implement GSN tool (D-Case Editor, www.dcase.jp)
 - Formalize GSN community Standard using Functional Programming Language Techniques
 - Pattern (parameter, loop, choice, multiplicity) and Module System

Design and implementation, and then verification

© Yutaka Matsuno, 2015
Concluding Remarks

• Dependability is Consensus Building
 – Assurance Case is a method for that

• System AC (huge cost, automation and verification required) and Situational AC (lightweight, practical)
Concluding Remarks

- DEOS Consortium
 - www.deos.or.jp
- D-Case Working Group
 - www.dcase.jp
 - Started writing Situational AC with Japanese Automotive companies
- D-Case Certification Scheme started in 2015.6
 - D-Case Syntax (Based on DSN2014 paper)
 Astah/GSN Certified!
 - D-Case Syllabus Denso Create Certified!

© Yutaka Matsuno, 2015