
Position paper on Usable Verification

Saddek Bensalem Joseph Sifakis

Verimag Laboratory, Université Joseph Fourier Grenoble, CNRS

1 Introduction

Verification techniques have definitely found important applications. After the first two decades of intensive
research and development, recent years have been characterized by a shift in focus and intensity. Today we
have fairly efficient verification algorithms. However, all suffer from well-known inherent complexity limitations
when applied to large systems. To cope with this complexity, we should move from monolithic verification to
compositional techniques. We need divide-and-conquer approaches for inferring global properties of a system
from the properties of its components. The current state-of-the-art does not meet our initial expectations. The
main approach is by “assume-guarantee”, where properties are decomposed into two parts. One is an assumption
about the global behavior of the system within which the component resides; the other is a property guaranteed
by the component when the assumption about its environment holds. As discussed in a recent paper [13], many
issues make it difficult to apply assume-guarantee rules, in particular because synthesis of assumptions (when
feasible) may cost as much as monolithic verification.

In our opinion, any general compositional verification theory will be highly intractable and will be of theoret-
ical interest only. We need to study compositionality results for particular classes of properties and/or particular
classes of systems. For instance, finding compositional verification rules guaranteeing deadlock-freedom or mu-
tual exclusion instead of investigating rules for safety properties in general. Potential deadlocks can be found by
analysis of dependencies induced by interactions between components. For proving mutual exclusion, a different
type of analysis is needed.

The results thus obtained should allow us to identify “verifiability” conditions (i.e., conditions under which
verification of a particular property and/or class of systems becomes scalable). This is similar to finding
conditions for making systems testable, adaptable, etc. In this manner, compositionality rules can be turned
into correct-by-construction techniques.

To illustrate the above ideas, we present a heuristic method for checking deadlock-freedom of component-
based systems. The method is compositional and consists in computing a particular type of global invariants of
a composite component as the conjunction of two types of invariants: invariants of its constituent components
and interaction invariants. These characterize the effect of the interactions on the global behaviour. They are
computed symbolically by resolving a set of boolean constraints on the global state space. The method is an
iterative process for computing progressively stronger global invariants. It concludes deadlock-freedom if a global
invariant is found such that it does not contain deadlock states. It has been implemented in the D-Finder tool.
Experimental results on non-trivial case studies show that the method scales up smoothly and over-performs
monolithic verification techniques.

The paper is structured as follows. First, we present the principle of the method and its theoretical justifica-
tion. Second, we describe the general architecture of the D-Finder tool. Third, we provide experimental results

1

for various case studies. Finally, we conclude by a discussion on the advantages and limitations of the presented
approach.

2 The principle of the method

In [1], we have presented a new and efficient method for verifying properties of concurrent systems. Key
to that method is the tight approximation of the reachable states of a composite component by compositional
computation of invariants based on the following rule:

{Bi<Φi>}i,Ψ∈II(‖γ{Bi}i,{Φi}i),(
∧
iΦi)∧Ψ⇒Φ

‖γ{Bi}i<Φ>
The rule allows to compute a global invariant Phi of a composite component ||(γ{Bi}i from invariants Phiiof

its atomic components Bi and an interaction invariant Ψ. The latter characterizes the effect of the composition
of

This is a general rule for proving safety properties. We specialize it for verifying deadlock-freedom of
composite components by computing a specific class of interaction invariants. The method consists in checking
if the obtained global invariant (

∧
iΦi)∧Ψ implies ¬DIS, where DIS is a state predicate characterizing all

deadlock states of the composite component.

Computing Component Invariants. The component invariants Φi are invariants that over-approximate
the reachable states of atomic components Bi. The behavior of Bi is described as an automaton extended with
local data. each one of its transitions is labeled with a port p, a guard g (boolean condition on data) and a
function f (data transformation) . From a given state (control location and data valuation), the transition is
enabled when an interaction involving p is enabled and its guard is true.

A component invariant Φi of Bi is the conjunction assertions holding at control locations, computed iter-
atively. If φi is the assertion associated with location li, φi+1 is obtained by conjuncting φi with the post-
conditions of the assertions phij associated with locations lj which are direct predecessors of li (see figure).
Initially, locations are assigned the assertion true. This computation continuously leads to stronger invariants
until eventually a fixed-point is reached. For finite state atomic components Bi, the set of the reachable states
can be computed and used as it is the strongest component invariant Φi. See [2] for more details.

Computing Interaction Invariant. The interaction invariant Ψ captures constraints on the behavior of the
system that are induced by the synchronization of the components. Static analysis of the parallel components
and their interactions gives Boolean behavioral constraints [3], which are structural properties of concurrent
systems that allow to relate the communication between different components with their internal transitions
and hence model a unified transition relation. Solutions of BBCs can be used to symbolically compute a strong
interaction invariant.

This method has been implemented in D-Finder, a tool which takes as input programs described in the BIP
(Behavior, Interaction, Priority) [4] language - BIP is a new (but already widely used) tool for component-based
design. It has been shown that D-Finder is capable of checking deadlock-freedom of non trivial programs. In
addition to composionality, ones can exploit incrementality of the design process. Incremental system design
proceeds by adding new interactions to existing sets of components. Each time an interaction is added, it is
possible to verify whether the resulting system violates a given property and discover design erros as soon as
they appear.

2

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ve
rif

ic
at

io
n

tim
e

(m
in

ut
es

)

Number of philosophers

D-Finder: incremental based on positive mapping
D-Finder: incremental based on fixed-point

D-Finder: global based on positive mapping
D-Finder: global based on fixpoint

D-Finder: enumerative
NuSmv

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
em

or
y

us
ag

e
(M

b)

Number of philosophers

D-Finder: incremental based on positive mapping
D-Finder: incremental based on fixed-point

D-Finder: global based on positive mapping
D-Finder: global based on fixed-point

D-Finder: enumerative
NuSmv

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

Ve
rif

ic
at

io
n

tim
e

(m
in

ut
es

)

Gas Station: size = N x (50 pumps + 500 custumers)

D-Finder: incremental based on positive mapping
D-Finder: incremental based on fixed-point

D-Finder: global based on positive mapping
D-Finder: global based on fixed-point

NuSmv

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14
M

em
or

y
U

sa
ge

 (M
b)

Gas Station: size = N x (50 pumps + 500 custumers)

d-finder: incremental by positive mapping
d-finder: incremental by fixpoint

d-finder: global by positive mapping
d-finder: global by fixpoint

nusmv

Figure 1: D-Finder results: Verification time (left) and memory usage (right) for two classical benchmarks,
dining philosopher (up) and Gas Station (down)

We have proposed a new technique for incremental construction and verification of component-based systems
[3]. The technique is based on the use of sufficient conditions that ensure the preservation of invariants when
new interactions are added along the component construction process. When these conditions are not satisfied,
new invariants are generated by reusing invariants of the interacting components. Reusing invariants reduces
considerably the verification effort.

Figure 1 shows deadlock verification times as a function of complexity measured by the number of com-
posed components for i) monolithic verification by using NuSmv; ii) compositional verification; iii) incremental
verification.

3 The D-Finder tool

Figure 2 gives an overview of the main modules of the tool: Model, Analysis, and Expression handling.
The Model block handles the parsing of the BIP code into an internal model and provides the means to
compute Φ, Ψ, and DIS. These results are passed to the Analysis block, which performs further steps like the
generation of possible deadlocks and, most recently, generation of counterexamples for Boolean systems (CEX).
The Expression block allows uniform handling of expressions with data (using the Eclipse Modeling Framework,
EMF), and a more succinct representation as BDDs for Boolean systems. Both can be used interchangeably
with the respective tools being called transparently for actual computations. Figure 2 shows the use of external
tools for models with non-Boolean data; otherwise, BDDs are used in all computation steps. Additionally to
the method for computing the interaction invariants Ψ proposed in [1], we now also provide modules for BDD

3

Expression Analysis

satisfiability
Φ ∧Ψ ∧ DIS

Model

Abstraction
Φi

generation
DIS

generation

Ψ
generation

BIP

DIS
�

ΦiΨ

Predicate-
abstraction

DL free
false DL

suspects

CEX
generation

feasibility
check

predicates

true

CEX

Omega

Yices

BDD

Figure 2: Structure of the D-Finder tool

#> dfinder -f p1000.bip --incr_file incr_15.incr

--method=pm --analysis=dl

overall analysis :

compute II using incremental pm :

Eliminate Variables Abstraction(Phil... :

Compute CI for Philosopher : 0:01

Eliminate Variables Abstraction(Phil... : 0:02

...

get common locations : 0:03

compute BBCs[0] : 0:01

...

integrate for increment[1] : 0:00

...

dual compuatation : 0:00

concretization : 0:02

compute II using incremental pm : 0:41

incremental DIS : 0:24

Found 1 deadlocks:

overall analysis : 1:07

Figure 3: Call from the command line

based fixed-point and positive mapping methods in global and incremental versions.
An excerpt of a call to D-Finder with 1000 Philosophers in 20 increments (and hence 20 intermediary

interaction invariants) is shown in Figure 3. The first step is the computation of an abstraction without variables
(using the post conditions from Φ computation (CI) to split the states), followed by the local computations
(BCC) for each of the increments and their integration. Computation of the dual and mapping to the concrete
values finishes the computation of Ψ (II), which is used to directly compute the intersection with DIS. Finally,
the tool successfully reports one deadlock.

4 Case Study: The DALA Robot

We applied the rigorous BIP design flow for the development of a new version of the functional layer of the
DALA robot controller [5]. This was initially developed by using the GeNoM framework [6]. The design flow
for the functional layer of the robot involves the following steps:

1. Hierarchical decomposition of the functional layer into components. The overall architecture can be
represented as a tree. Its root is the function layer and the leaves correspond to atomic components.
The grammar below shows how the designed system can be obtained as the incremental composition of
components:

Functional Layer ::= (Module)+

Module ::= (Service)+ . (Execution-Task)+ . (Poster)+

Service ::= (Service-Controller) . (Activity)
Execution-Task ::= (Timer) . (Scheduler-Activity)

2. Description of the behavior of each atomic component,
3. Description of composite components as the composition of atomic components by using only interactions

and priorities, without adding additional behavior. This is possible because BIP is expressive enough for
expressing any kind of coordination by using only architectural constraints.

Using this approach we have been able to:

• built a complete BIP model of the functional layer for the DALA robot, from which we generated C++
code (500K lines),

• formally verify by using D-Finder that the BIP model is deadlock-free and also that it satisfies other safety
properties such as data freshness. Results about the models complexity and verification times are reported
in figure 1.

4

Execution controller (R2C)

Pos
Y

Module
X Functional Module Poster

Procedural
executive

(open-PRS)

Planner and
temporal executive

(IxTeT)

Execution control level

OR

Functional level

Decisional level

Antenna
PosPOM

Po
sVME

Science

Aspect Obs

Laser
RF ScanCamera Im.

NDD Speed

PosRFLEX

Platine

Simulator
GAZEBO

Figure 4: An overview of the DALA system

• synthesize of a controller that encodes and enforces safety properties, thereby facilitating the development
of safe and dependable robotic architectures,

• run experiments with the code generated automatically from the BIP model on the DALA rover, and
to demonstrate via fault injections that the BIP engine successfully stops the robot from reaching unde-
sired/unsafe states.

module component location interaction states time (minutes)
SICK 43 213 202 220×329×34 1:22
Aspect 29 160 117 217×323 0:39
NDD 27 152 117 222×314×5 8:16
RFLEX 56 308 227 234×335×1045 9:39
Battery 30 176 138 222×317×5 0:26
Heating 26 149 116 217×314×145 0:17
Platine 37 174 151 219×322×35 0:59

Table 1: Deadlock-freedom checking results on DALA modules. For every module, we provide the number of
atomic components, the (overall) number of control locations, the number of interactions, an over-approximation
of the number of reachable states and the total verification time. All modules have been proven deadlock-free.

5 Discussion

Most usable verification techniques consist in computing invariants (static analysis, abstract interpretation,
model checking for safety properties). Depending on the type of properties to be verified, the invariants are
expressed in an adequately chosen language e.g. boolean algebra, Presburger arithmetic, polynomial constraints.

5

We show that deadlock-freedom can be checked compositionally to overcome limitations of monolithic verifi-
cation. A key idea is separate computation of component invariants and interaction invariants. The latter
characterize how the product state space is restricted by interactions. Moreover, interaction invariants can be
computed symbolically from a set of boolean constraints on n variables where n is bounded by the total number
of control locations of the system.

Deadlocks are the most common sources of errors in asynchronous component-based systems where interac-
tion is based on strong synchronization. The application of the proposed technique to systems modelled in BIP
proves to be particularly effective as shown by experimental results. BIP uses a high level language to describe
incrementally the coordination of components by using hierarchically structured synchronization constraints.
Deadlocks are the most likely design errors induced by such constraints.

The application of our approach for other properties e.g. mutual exclusion will need a different type of
analysis to compute interaction invariants and also a more expressive language for their description.

References

[1] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. Compositional verification for
component-based systems and application. In ATVA, pages 64–79, Seoul, 2008.

[2] Saddek Bensalem and Yassine Lakhnech. Automatic generation of invariants. Formal Methods in System
Design, 15(1):75–92, 1999.

[3] S. Bensalem, M. Bogza, A. Legay, T. H. Nguyen, J. Sifakis, and R. Yan. Incremental component-based
construction and verification using invariants. In FMCAD, 2010.

[4] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in bip. In SEFM ’06,
pages 3–12, Washington, DC, USA, 2006.

[5] A. Basu, S. Bensalem, M. Gallien, F. Ingrand, C. Lesire, T.H. Nguyen, and J. Sifakis. Incremental
component-based construction and verification of a robotic system. In 18th European Conf. on Artificial
Intelligence (ECAI), 2008.

[6] S. Fleury, M. Herrb, and R. Chatila. Design of a modular architecture for autonomous robot. In IEEE
International Conference on Robotics and Automation, Atlanta, USA, 1994.

6

