
Using Regression Verification to Revalidate
Real-Time Software on Multicore Computers

Sagar Chaki1, Arie Gurfinkel1, and Ofer Strichman2

1 SEI/CMU
2 Technion

1 Position

Technological innovation is the hallmark of the computer hardware industry.
Keeping pace with this innovation is a major challenge for software engineering:
new hardware makes new resources available, but to take advantage of them the
software must be migrated (or ported) to the new hardware platform. This is not
trivial. An idealistic approach of developing and validating new software from
scratch for every (significant) improvement in hardware is impractical in view of
deadlines and budgetary constraints. For example, it is infeasible to rewrite all
of the existing sequential software to take full advantage of the new multi-core
CPUs. At the same time, it is dangerous to directly reuse software written for
one platform on another. A new platform changes the underlying assumptions
and requires the software to be revalidated, at great cost. This is particularly a
problem in safety-critical domains that depend on complex software with life-
times spanning decades and several major technological changes. In the rest of
this position, we call the problem of deciding whether an existing system behaves
correctly under a new set of environmental assumptions the revalidation prob-
lem. Note that by environmental assumptions we broadly mean the assumptions
on the environment in which the program is executing. This includes assump-
tions on the actual physical environment as well as assumptions on the hardware
platform, the architecture of the system, etc.

We believe that automated program verification can play a crucial role in
ameliorating the revalidation problem. By analyzing the source code of the pro-
gram statically, it is possible to infer what happens in all possible run-time
executions without ever executing a single line of code. By varying the seman-
tics used by the analysis, it is possible to capture different environmental as-
sumptions. Thus, a single program analysis pass reveals how specific changes in
environmental assumptions affect the execution of the software.

One technique, regression verification [?,?,?] – deciding the behavioral equiv-
alence of two closely related programs – stands out as a way to improve usability
of automated verification for re-validation. First, it completely sidesteps the need
for formal specifications – the base program takes the place of the specification.
Second, there are various opportunities for abstraction and decomposition that
only apply when establishing an equivalence of similar programs – hence, im-
proving scalability. In the best possible scenario, the effort required for regression



verification is proportional only to the difference between programs being com-
pared, and not to their absolute sizes. This makes the approach tractable in
practice. Third, often, invariants strong enough to prove equivalence of recursive
functions and loops can be generated automatically. Regression verification is
now supported by two research tools, RVT [?] and Microsoft’s SymDiff3.

The original definition of regression verification applies to proving equiva-
lence of similar software. We believe that it extends naturally to revalidation.
Although, in this case, the effort required must also take into account the differ-
ence in the assumptions.

While the challenge of migrating software between platforms occurs in many
contexts, we believe that the problem is particularly severe in the case of mi-
gration of real-time embedded (RTE) systems from single-core to a multi-core
platforms. There are several reasons for concentrating on this domain. First,
RTE systems are often safety-critical. Their validation is necessary and costly.
Second, they are tightly integrated in our daily life. Arguably, human existence
as we know it today depends on RTE systems operating correctly. Third, the
RTE platforms are often very restricted (a prerequisite for predictable real-time
behavior). This might be leveraged for a scalable analysis.

In summary, we argue that, today, there is a lack of usable automated verifi-
cation techniques to aid in migrating RTE systems from single-core to multi-core
environments. We believe that applying regression verification to this problem
is a promising direction of future research that address the two major usability
challenges – formal specification of requirements and scalability. In the rest of
this position, we elaborate on some of the problems of migrating from single-core
to multi-core, give a brief background on regression verification, and conclude
with an outline of open challenges.

2 Migrating to Multicore

At a first glance, it appears that from safety and security perspectives, porting
of an RTE software to multi-core platforms is trivial. After all, the software
has been extensively validated and possibly even formally verified on single-
core platforms, and is not being modified. It must, therefore, be functionally
unchanged and remain as safe and secure on multi-core hardware. But, this is
not so! The key insight is that software’s behavior depends not only on the
source code itself, but also on the underlying hardware (i.e., on the architectural
assumptions provided by the hardware). Catastrophic failures have occurred
when legacy software has been used without due consideration to changes in the
environment in which the software is operating. A well known example is the
infamous Ariane 5 disaster [?].

In the context of multi-core platforms, the crucial change in assumption is
the switch from virtual to real concurrency. In a single-core system, concurrency
is “virtual” in the sense that only one instruction is executing at any given time.

3 http://research.microsoft.com/en-us/projects/symdiff

2



The tasks (or threads) are executed concurrently, but the instructions (or atomic
blocks) are not. In a multi-core system, concurrency is “real” – multiple threads
run on multiple cores with multiple instructions (or atomic blocks) executing
concurrently.

Real concurrency has real consequences. For example, RTE systems exploit
virtual concurrency in the widely used priority ceiling mutual exclusion protocols
(PCP) [?]. A PCP ensures an exclusive access to a shared resource (e.g., memory,
peripheral devices, etc.) by allowing the highest-priority threads to access shared
resources at will. The platform ensures that no other thread is able to preempt
(and execute) while the highest-priority thread is accessing the resource. The
priority of a thread changes dynamically at run time according to the shared
resource it attempts to access. Specifically, each resource has a priority ceiling,
and whenever a thread t locks a resource r, its priority is raised to the ceiling of
r. This way, no other thread that wants to access r is a able to get scheduled.
PCP is widely used in embedded software owing to its simplicity. It requires
no special mutual-exclusion primitives (e.g., locks, semaphores, monitors etc.),
and (in combination with priority inheritance) reduces chances of concurrency-
related errors like races and deadlocks.

However, priority-ceiling breaks down on multi-core platforms! Here, having
the highest priority does not guarantee exclusive access to the hardware. This
leads to more thread interleavings, and, therefore, to new races and deadlocks.
Therefore, software that runs safely and securely on a single-core platform might
misbehave on a multi-core hardware. A major challenge for architecture migra-
tion is to detect such problems as early as possible (and prevent them as early
as possible).

3 Current Approaches

A number of known techniques can be used to address revalidation problems,
including testing, static analysis and software model checking. Each of these com-
plementary methods has its advantages and disadvantages compared to regres-
sion verification. Testing is of course relatively easy to do, but is not exhaustive.
Critical errors have escaped detection even after years of rigorous state-of-the-art
testing effort. This problem is even more acute for concurrent programs where
testing is able to explore only a minute fraction of the enormous number of
inter-thread interactions. Exhaustive approaches, like static analysis and model
checking are expected to be more vulnerable to scalability issues, because un-
like regression verification, it cannot use the fact that most of the code (or all,
in this case) hasn’t change in order to simplify the verification problem. More
importantly, they require a target specification to verify. Writing down appro-
priate specifications is known to be difficult and time-consuming. In the absence
of good specifications, exhaustive approaches provide only limited guarantees. It
seems that there is no “silver bullet” for this problem, and novel solutions must
be explored to complement and aid existing ones. In particular, we propose to
explore the applicability of program equivalence techniques in this context.

3



Regression Verification. The problem of proving the equivalence of two suc-
cessive, closely related programs Pold and Pnew is called regression verifica-
tion [?,?,?]. It is potentially easier in practice than applying functional veri-
fication to Pnew against a user-defined, high-level specification. There are three
reasons for this claim, as was briefly mentioned in the introduction. First, it
circumvents the complex and error-prone problem of crafting specifications. In
some sense, regression verification uses Pold as the specification of Pnew. Second,
there are various opportunities for abstraction and decomposition that are only
relevant to the problem of proving equivalence between similar programs, and
these techniques reduce the computational burden of regression verification [?].
Specifically, the computational effort is proportional to the change, rather than
to the size of the original program. This is in stark contrast to testing and func-
tional verification: in testing, a change in the program requires the user to rerun
the whole (system) test suite; in formal verification, depending on the exact sys-
tem being used, reusing parts of the previous proof may be possible, but it is
far from simple and in general not automated. Third, loops and recursion are
typically not a problem, because as suggested in [?], the statement that the two
compared functions are equivalent is typically an inductive invariant. It is simple
to test this invariant by using uninterpreted functions.

Both functional verification and program equivalence of general programs
are undecidable problems. Coping with the former was declared in 2003 by Tony
Hoare as a “grand challenge” to the computer science community [?]. Program
equivalence can be thought of as a grand challenge in its own right, but there
are reasons to believe, as indicated above, that it is a “lower hanging fruit”. The
observation that equivalence is easier to establish than functional correctness
is supported by past experience with two prominent technologies: (i) regression
testing – the most popular automated testing technique for software, and (ii)
equivalence checking – the most popular formal verification technique for hard-
ware. In both cases the reference is a previous version of the system.

Although, as listed above, regression verification has its advantages, the no-
tion of correctness guaranteed by equivalence checking is weaker than complete
verification: rather than proving that Pnew is “correct”, we prove that it is “as
correct” as Pold. However, equivalence checking is still able to expose functional
errors since failing to comply with the equivalence specification indicates that
something is wrong with the assumptions of the user. In practice, this is of
tremendous benefit. In addition, due to its lower complexity, equivalence check-
ing is often feasible in cases where the alternative of complete functional verifi-
cation is not.

4 The Road Ahead

In this section, we list some of the key challenges in the areas of semantics,
scalability, and evaluation.

Semantics. All the prior research in regression verification has focused on check-
ing equivalence between two syntactically different sequential (i.e., one thread

4



of control) programs running on identical hardware. In contrast, revalidation re-
quires checking equivalence between two syntactically identical concurrent (i.e.,
multiple threads) programs running on different hardware. Therefore, existing
notions of program equivalence used in regression verification today do not apply
directly. This is further complicated by the reactive nature of most RTE systems.

Scalability. Most of the research on verification of concurrent systems does not
exploit any knowledge of a scheduler – a scheduler is assumed to be completely
non-deterministic. This is a reasonable assumption for systems that are expected
to work under a variety of scheduling disciplines. However, RTE systems operate
in restricted environments, and the exact knowledge of the scheduler is exploited
in their timing analysis. Exploiting this knowledge for achieving scalability in
functional verification remains a challenge.

Evaluation. It is important to establish a re-validation challenge problem for
the research community motivated by industrial needs. We hope that we can
leverage an interaction with experts in real-time embedded systems to construct
examples that highlight the problems faced in the industry. This must include
a description of the old and new architectures and a formal model (perhaps a
C/C++ code) of the software.

To summarize, we argue that revalidation of real-time embedded code on
multicore computers is an important problem, and that regression verification
has a reasonable chance to cope with it.

References

1. Godlin, B., Strichman, O.: “Regression Verification”. In: Proceedings of the 46th
Design Automation Conference (DAC’2009). pp. 466–471. San Francisco, California,
USA (2009)

2. Hoare, C.: “The Verifying Compiler: A Grand Challenge for Computing Research”.
Journal of the ACM (JACM) 50(1), 63–69 (2003)

3. Sha, L., Rajkumar, R., Lehoczky, J.P.: “Priority Inheritance Protocols: An Appoach
to Real-Time Synchronization”. IEEE Transactions on Computers 39(9), 1175–1185
(1990), doi:10.1109/12.57058

4. Strichman, O.: “Regression Verification: Proving the Equivalence of Similar Pro-
grams”. In: Proceedings of the 21st International Conference on Computer Aided
Verification (CAV ’09). p. 63. Grenoble, France (2009)

5. Strichman, O., Godlin, B.: “Regression Verification – A Practical Way to Verify
Programs”. In: Proceedings of First IFIP TC 2/WG 2.3 Conference on Verified
Software: Theories, Tools, Experiments (VSTTE’05). pp. 496–501. Zurich, Switzer-
land (2005)

6. Wikipedia: Ariane 5 Flight 501, http://en.wikipedia.org/w/index.php?title=

Ariane_5_Flight_501&oldid=388509601

5


