Software Verification

Peter H. Schmitt Mattias Ulbrich

Karlsruhe Institute of Technology (KIT)
October 29, 2010

1 Our view of the field of Verification

When a technology reaches a higher level of maturity, its development begins
to diversify and to differentiate. In 1885 engineers were happy to build the first
car powered by a gasoline engine. Today we see a whole spectrum of vehicles
ranging from city cars, limousines, off-road vehicles, sports cars, buses, trucks,
etc., that share some basic technologies but greatly differ in details. Software
Verification has entered this phase of diversification and we need to start this
exposee with a rough classification. On the top level we distinguish between
model verification and program verification.

By model verification we understand the formal analysis and modelling of
systems, algorithm or software at a high level of abstraction using mathematical
notions like sets, sequences, relations. Representatives of this category are for
instance the B-method, the Z approach, or abstract state machines (ASM).
With these, often some concept of refinement is involved, that formalizes the
transition from an abstract model to a more concrete model. The goal of these
methodologies may be characterized by the label: correctness by construction.
Another set of methods use temporal logic model checking (e.g., Promela, CSP).
Methods and tools in this category support system development but do not look
into the actual implementing code. They are good for eliminating design flaws
at a very early stage.

Biased by our own interests and competence we will say no more on this
kind of verification and concentrate on program verification. This approach
presupposes the existence of executable program code together with a specifi-
cation. Usually the specifications come as annotations in the code written in a
specification language closely related to the programming language in use.

Before we can comment on the usability of program verification, we need to
have an idea to what use it shall be put. Here is a first coarse classification of
the use cases of formal methods in programming:

1. Find bugs: Formal methods are used to analyse a program with no or
little additional annotations to identify possible runtime anomalies.

2. Increase confidence: Code is proved (or at least formally checked) to
satisfy the specification given through its annotations. The annotations
need not completely cover a full functional specification, but may address
specific issues, such as the absence of runtime exceptions, valid sequence
of method invocations on objects, or ensuring that memory is correctly
initialised. This is sometimes referred to as lightweight verification.

3. Prove correctness: To establish the highest level of confidence, full
functional verification can be performed. The annotation overhead is sig-
nificantly higher both in length and in complexity of the specifications.
The costs to achieve ultra-dependable software are still very, very high.

In all three areas, formal verification has successfully passed the proof-of-
concept stage. On the other hand, it has to be admitted that no clear business
cases have so far emerged in any of these categories.

Some ten years ago, the verification community took the challenge to verify
not only examples in toy languages but to face the complexity of existing real
programming languages, especially Java, Ada, C# and C.

There have been many projects in the field of Java and Spec# verification. It
seems that modelling the sequential semantics of modern, well-typed languages
with automatic memory management into logic has been solved satisfactorily.
There are no principal obstacles caused by the complexity of these languages to
full functional verification.

Verification of programs written in C has started with some delay. The se-
mantics of C is less well-defined. This makes the formalisation and subsequent
verification of C programs significantly more complex than that of Java pro-
grams even if thorny issues like pointer arithmetics are excluded. On the other
hand, programs written in C are much more error-prone, which makes program
verification even more worthwhile.

The VCC project and L4.verified have proved that C formalisation up to
a rather detailed degree is possible. HAVOC and SLAM and CBMC/LLBMC
have proved that lightweight methods for C are able to detect plenty of bugs.

Another positive development is the dramatic improvement in the power
of the available decision procedures to discharge the proof obligations arising
from program verification. The wide-spread adoption of the SMT interface has
boosted this development by increasing competition.

However, there are topics that still await a satisfactory solution.

1. The problem of framing: Which memory locations are affected by a certain
piece of code? This is badly needed for good modularisation.

2. The problem of concurrency: How do several threads which run in parallel
affect the shared data? How can one guarantee correct programs if lock
and channel communication is used?

3. Application of data types: The link between model world and implemen-
tation is often still underdeveloped. But data abstraction most often asks

for mathematical structures like trees, sets, sequences, ... To work with
them and connect them with actual implemented data structure is under
investigation.

These issues are not connected to a particular language but address cross-
cutting research problems in their own right.

In our opinion research on issue 1 has made greater progress than the oth-
ers. Several promising candidate solutions for dealing with the frame problem
have been put forward including data groups, dynamic frames, separation logic,
ownership, and regional logic.

We believe that verification of concurrent programs, issue 2, is still not en-
tirely understood. The treatment of cooperating threads that communicate in
a well-defined and specified manner (using channels, locks or assume-guarantee
contracts) is being worked on, but still lacks efficiency. Chalice has been devel-
oped as a verification language to model concurrency. Is this a symptom that
existing programming languages do not offer the right means for concurrent
programming?

From a wider perspective issue 3 might be seen as a bridge over the gap
between program verification and what we called model verification in Section
1. Taking the verification of the Schorr-Waite algorithm as an example, there
exist about a dozen papers solving this task using a number of different tools,
it certainly makes sense to separate the verification of the correctness of the
algorithm from the verification of the implementation. At the moment none of
the proposed solution accomplishes this completely.

2 What Might Happen

Turning to the question of usability obviously the additional effort that is needed
to apply formal verification will be a major criterion for adopting it or not. Let
us again look at the three possible goals of formal verification from the first enu-
meration in Section 1 now augmented with comments on the overhead needed
for their application.

Usage Annotation overhead | Technologies

Extended no/little additional Abstract interpretation,

debugging annotations Software model checking,
Type systems

Increase partial functional Runtime assertion checking,

confidence specification (< 100%) Extended static checking

Ultra full functional Theorem provers,

dependability | specification (> 100%) | Interaction

As far as debugging technologies are concerned, we understand that static
analyses, dynamic (i.e., run-time) formal methods and similar techniques are
pretty evolved and are about to be deployed to mass markets. The inclusion of
code contracts in Visual Studio is good evidence for that.

One would have expected that full functional verification would be enthusi-
astically welcomed in safety critical areas as, for instance, avionics. However,
progress is very slow. Formal method interest groups have formed themselves
within the relevant bodies, but have not yet gained major influence. It is hard
to tell if, when, in what form verification of ultra-dependable systems will be
applied in the real world. From a scientific perspective, however, it seems the
right thing to do. You never know for sure. Maybe the cybercrime debate will
change things?

The middle segment in our coarse classification is set apart from the first
category by an increased effort of writing contracts. We can only speculate how
much overhead will be acceptable to how many people. We are, however, not
too pessimistic.

Is the goal of the future to facilitate the use of simple, less powerful lightweight
methods or advances in more powerful heavyweight approaches which require
more effort?

Perhaps, it is a goal to move the “border” between light and heavyweight
such that properties which require considerable effort today can be automat-
ically verified in the future without much doing on the part of the verifying
person.

Another development that so far has not gained momentum may be de-
scribed by the headline designed for verification, i.e., the design of systems and
programs in such a way that they are easy to verify.

3 Next Steps

In this section we propose a short- and medium-range agenda for the next steps
to be pursued in the development of usable program verification systems.

1. Specification Languages
There certainly are still research issues in the area of framing, invariant
semantics, and data abstraction, but we know enough already to imple-
ment solutions into existing specification languages. We particularly think
of JML in this context.

To gain a broader acceptance, specification languages should cover a wide
range of applications. It should be possible to use the same specification
mechanisms (or, even better, the same specifications) for runtime checking,
static analyses, test case generation, heavyweight approaches, and so on.
Although this is advertised already today, interpretations of the semantics
of one language can differ considerably between approaches.

2. Verified Libraries
It is essential for a wide-spread use of program verification that library
functions can be used without restraints and preferably without additional
overhead. There may still be one or the other research question involved
in this task, but on the whole it is just a tremendous routine job. This is

not a task for an academic research project. Also the community efforts,
e.g., by the JML community, so far did not make much headway.

3. Domain Specific Applications
It is the rationale behind this item that in more specific domains, specifi-
cations can be directly formulated in the vocabulary used in this domain
and thus be accessible to an audience not trained in formal methods.

For full functional verification, the specification is often longer than the
actual implementation, diminishing the documentation character of the
specification. Domain specific descriptions are usually conciser and more
intuitive to read. Such specifications can be shorter and less complex and,
at the same time, as precise as a general specification.

4. Bridge the Gap between Model and Program Verification
The use of abstract data types for model and ghost variables, fields and
methods in annotation languages is a first step to move from code to a
more abstract level. More needs to be done along these lines.

Formal modelling methodologies used in early design stages should seam-
lessly pass into program verification. This would possibly be done using a
notion of refinement. It is already common to automatically generate code
from informal models (model driven architecture). Similar generative ap-
proaches should be done using formal models (and modelling languages).

5. Increase automation and efficiency and integrate automation and interac-
tion
Automation is crucial for the usability of verification. However, we know
that not everything can be done automatically. Hence, the interaction
with the verifying person is of great importance: Feedback on source code
level, counter examples in case of an error, hints to where the verification
failed if no decision could be made, ...Moreover, tools need to provide
good support (e.g., using static analyses) for the search for auxiliary spec-
ifications, such as loop invariants, lemmata, modifies clauses.

Another important point which is somewhat orthogonal to the presented
points is the acceptance of formal methods amongst developers. With formal
methods becoming a stable field, they have to become an integral part in the
education of computer scientists and software developers. Even if they do not
present the formal details, already basic programming courses should teach spec-
ification techniques to make them more popular and accepted.

For a better acceptance in development and teaching, tools need to be mature
and stable. Expectations towards formal methods are high, and people may
turn away discouragedly if these expectations cannot be fulfilled. It is better to
introduce a tool which handles a few topics perfectly, rather than to introduce
a powerful tool which fails as soon as the input deviates from a schema.

