
Blueprints

Leslie Lamport
Microsoft Research

25 September 2010

Abstract

Verification techniques have been used extensively for checking code.
This is important and successful work, and it will be the main and per-
haps the only topic of this workshop. However, I believe that in many
cases, the possibility of producing good software vanishes the moment
coding starts. Below is the opening section of a hyperbook I’m writing
that I hope explains why. The little of the hyperbook that has been
written is available at

http://research.microsoft.com/en-us/um/people/lamport/tla/
hyperbook.html

A number of years ago, my wife and I had our house remodeled. When
the architect came over to meet us and see the house, I expected that we
would discuss the placement of walls and the location of appliances and
cabinets. Instead, he questioned us about our lifestyle: Where did we spend
our time? Did we cook a lot? How often did we have people over? He then
sketched the layout of our house and left to think about what we had told
him.

Later on in the design process, we discussed one design that would require
removing an existing beam. I asked him if this would be structurally sound.
He replied that he was quite sure that the remaining beams were adequate,
but we didn’t have to trust his intuition. When he went back to his office,
he would use the plans to calculate the stresses and check that it was safe.

We went through several designs. The architect would draw the plans,
and my wife and I would go over them—looking for problems and thinking of
possible improvements. When we were satisfied, he drew a set of blueprints
and made final cost estimates, and we hired a contractor.

During construction, some small problems were discovered and minor
changes were made to the design. The contractor took longer than expected,

1

http://research.microsoft.com/en-us/um/people/lamport/tla/hyperbook.html 
http://research.microsoft.com/en-us/um/people/lamport/tla/hyperbook.html 


but overall construction was largely uneventful. We have been very happy
with the results.

Not long ago, I attended a workshop on concurrent programming. There
was a break-out session in which some ten of us discussed how to write
correct programs. Several ideas were presented. They all involved either
tools for finding errors in the code or better programming languages.

As people spoke, I compared what they were saying to my experience
remodeling our house. In my mind, I translated their proposals for elimi-
nating errors in programs into the analogous ones for houses. They wanted
to avoid mistakes in building houses by providing new construction tools
or better building materials—bigger hammers and stronger nails, or better
concrete. It never occurred to them that to build better houses, you should
start by drawing plans.

It is obviously much easier and cheaper to correct problems in houses
or in programs when designing them, before construction begins. But this
group of system designers and computer scientists were acting as if they had
never heard of blueprints.

Programming is very different from building houses. Programs are much
more complicated than houses. To me, programs seem to differ from one
another much more than houses do. (Perhaps architects have the opposite
view.) Houses use a small number of well-understood design elements such
as doors, windows, floors, and roofs. We have yet to develop corresponding
design elements for programs. These differences make careful design and
planning even more important for programming than for building houses.
Writing a complex program without a blueprint is much harder and more
error prone than building a house without one.

Programs also differ from houses by being non-physical objects. This
makes them appear to be easier to modify than houses. Why bother drawing
blueprints if it’s so easy to fix things? Programs are not easier to modify
than houses. It’s much faster and cheaper to move an interior wall of a
house than to modify an internal interface of a complicated program. It’s a
lot easier to fix a blueprint than to fix either a house or a program.

Blueprints for programs are called specifications. This hyperbook is
about writing and checking specifications. People have given many reasons
why these specifications are a waste of time: you can’t generate code from
them; you can never be sure that a program implements its specification;
programs need to be changed after they are written, and there is no way
to ensure that their specifications are changed accordingly; there are things
like “ease of use” that can’t be specified. When you hear such an argument,
translate it to the corresponding statement about blueprints and houses.

2



You will find that the argument is both true and irrelevant.

3


