
Towards Checking the Usefulness of Verification
Tools

Willem Visser and Jaco Geldenhuys

Computer Science Division
Department of Mathematical Sciences

University of Stellenbosch, South Africa
{wvisser,jaco}@cs.sun.ac.za

Abstract. Building verification tools is what researchers in the field are
good at, but evaluating if they are actually useful and useable is often
a much harder problem. We propose a very simple idea to address this
problem, namely, a framework in which we capture what a programmer
does during a programming exercise and mechanisms to then allow us to
incorporate verification (including testing) tools to analyze the resulting
code snapshots. The ultimate idea is to build up a very diverse set of
code benchmarks on which verification tools can be evaluated. However
unlike current benchmarks that are somewhat cherry-picked for showing
off certain tools’ strengths, this one will be based on actual code being
captured during programming.

1 Introduction

This work stems from our desire to capture the errors that programmers make
during the actual code development; more precisely we want to know exactly
when an error is introduced and when is removed. In addition we want to capture
the type of the errors. This requires a way to closely observe programmers as they
develop code. For example, looking at revision repositories is not at a fine enough
level of granularity: by the time code is committed many errors may already have
been removed and we don’t really know how much time was wasted on finding
and repairing the code. We therefore take a code snapshot whenever a developer
saves a file.

Once we have the snapshots we can analyze each snapshot to see which
errors occurs. Of course one needs to know what the code is supposed to do.
In this first iteration of our approach we fix the domain to observe students
doing well-specified programming puzzles, akin to Google Code Jam or the ACM
programming competitions. We can thus construct what we refer to as the perfect
oracle, which concretely consists of a large test suite that the code must pass to
be considered correct.

The code snapshots plus the test suite makes it possible to classify each
snapshot in terms of which snapshots are correct and which ones have errors. A
natural extension of this approach is to not just run the code to determine which
errors are present, but to also run tools on the code to try and find the errors

2 Willem Visser and Jaco Geldenhuys

automatically. Our current framework only supports one type of tool, namely
static analysis tools for runtime error detection. However the results obtained
already seem to be in stark contrast to common beliefs about the usefulness of
these kinds of tools: we found that even well-respected tools like FindBugs [2,
8, 6] didn’t find a single one of the errors that actually occurred (we also tried
Lint4J [4] and Tpgen [10]).

In the following we describe our current framework in more detail and also
discuss the evaluation of the static analysis tools. Note that although our cur-
rent system only works within the Eclipse IDE, it can trivially be extended to
other languages and IDEs. We currently focus on bug finding tools, but nothing
prevents us from also adding verification tools to analyze the snapshots to check
which ones are easy to prove correct or invalid, the level of annotations required,
the need for human intervention, etc.

2 Framework

The framework for our experiments consists of two parts: Intlola, a data-gathering
IDE plug-in, and Impendulo, a data analysis and visualisation tool [11]. As they
are used during two distinct phases, the components are entirely independent of
each other.

2.1 Gathering the Data

We have implemented a plug-in for the Eclipse IDE platform that operates in
the background. All that is needed is for the user to switch on recording for a
particular project. As the user develops their program, the plug-in takes a com-
plete snapshot of the project whenever code is saved, either explicitly by the user
or implicitly by the IDE. This happens, for instance, when the user compiles or
executes the code. The program code is recorded along with a small amount of
meta-data. Collecting the data is fast and therefore unobtrusive, and requires a
reasonably small amount of space. The data-gathering plug-in is not tied inex-
orably to the Eclipse platform, and, in fact, we plan to develop similar plug-ins
for other environments. Once the experiment is completed, the stored snapshots
are collected in an archive and passed to the next phase of the experiment.

2.2 Analysing the Data

While individually small, the collected snapshots for a group of participants
represent a large amount of raw data, and need to be organized and managed
effectively. We have implemented a visualization tool to help with this. The tool
has three components: (1) a central data manager that keeps track of different
projects, different participants for each project, different snapshots for each par-
ticipant, and the different files in each snapshot; (2) a modular architecture for
managing different forms of analyses; and (3) a modular architecture for visual-
izing the output of the different analyses and the overall view on a participant
or project.

Towards Checking the Usefulness of Verification Tools 3

The data manager and visualization modules are, if not trivial, at least
straightforward, and the biggest challenge is integrating diverse forms of analyses
into a uniform design that makes it easy to add new techniques to the tool. Some
basic tools such as the compiler and unit tests are standard fixtures, but to be
able to add different forms of analyses, we settled on the following plug-and-play
style:

– When the user requests an analysis of a participant’s work, the relevant snap-
shots are unpacked one by one. For each snapshot, a copy of the participant’s
work is reconstructed.

– The analysis may involve one or more tools, depending on how the system
is configured. The location of the unpacked snapshot is passed to each tool
in turn.

– The tool performs the analysis and captures and interprets the output. Mech-
anisms for persistent storage of results are provided, so that the same snap-
shot need not be analysed more than once by the same tool.

– Tools are expected to produce both verbose and summary output.

As a simple example, the compiler is implemented as such a tool. Given a
snapshot location, it invokes the Java compiler and records the compiler’s output
for the user to inspect. It also parses the output to collect information about the
number and nature of the errors.

2.3 Visualization

The visualization tools can be quite useful. For example, the graph in Figure 1
shows the progress of a particular student at a glance. In this context, each
snapshot must pass three stages. First it is compiled, then it is subjected to a
small set of tests (“Easy”), and finally to a large, complete set of tests (“All”).
The smaller set is convenient for programmers to find initial bugs. For each of
the two sets, a snapshot can either produce failures (terminate abnormally), or
errors (terminate normally but produce the wrong answer). Note that the large
set also checks the scalability of the code hence we additionally record if tests
timeout.

Each dot in the figure represents a snapshot: its horizontal position denotes
the time it was taken, and its vertical position is its status. Those snapshots on
the first (lowest) line do not compile at all, those on the next line compile but
produce “Easy” failures, those on next line produce “Easy” errors, and so on.
Those on the top line pass all the tests. If a snapshot appears at a certain level,
this means that it has successfully passed all of the levels below it.

2.4 Extensibility

The architecture allows users to develop and add their own visualizations, anal-
ysis tools and tool chains — tools that invoke a sequence of other tools. Also, it
remains flexible enough to accommodate almost any kind of analysis.

4 Willem Visser and Jaco Geldenhuys

Fig. 1. Visualization of a participant’s progress

Towards Checking the Usefulness of Verification Tools 5

3 Experimental Results

We have conducted several trials runs of the system. An overview of the data
collected is shown in Table 1. The S column shows the number of students, and
the P shows the number of snapshots. This is followed by the average number of
snapshots per student, the average number of seconds between snapshots, and
the total time spent on the problem by all of the students combined.

Table 1. Overview of collected data

Average Total
Problem S P P/S interval time

welcome 3 256 85.3 36.5 5h12m
kselect 19 835 44.0 110.7 22h47m
triangle 8 199 24.9 193.7 8h22m
watersheds 7 495 70.7 100.7 8h33m
triangle2 13 452 34.8 162.5 9h53m
LRS 42 2136 50.9 93.2 37h41m
welcome2 4 677 169.3 151.3 8h55m
Total 965050 52.6

3.1 Problem Selection

The choice of problem is a critical aspect of the experiments. The problems were
chosen to be challenging but doable within one hour each. We have tried to
avoid problems that require deep mathematical insight and concentrate on more
traditional computer science problems.

– In the welcome problem the programmer is given an input string and asked
to count how many times a second, fixed string appears as a non-contiguous
substring of the first.

– kselect presents the programmer with an array of integers that belongs
together in pairs (i.e., the first two numbers form the first pair, the next
two numbers form the second pair, and so on); the task is to sort the pairs
lexicographically. As an example of what a problem specification looks like
we added the kselect specification to the Appendix.

– The triangle problem asks the programmer to find the longest path from
a specified vertex in a triangle-shaped acyclic directed graph (with a poten-
tially exponential number of paths). triangle2 refers to the same problem
given to a different set of students.

– LRS is a problem in which the programmers needed to find the longest re-
curring substring. This problem was given to a class of first year students
and contains the most snapshots of all.

6 Willem Visser and Jaco Geldenhuys

– Lastly, in the watersheds problem the programmer is given a two-dimensional
integer array of function values; the task is to identify the local minima and
the “closest” minimum for each array element according to a fixed definition
of distance. watersheds2 refers to the same problem given to a different set
of students.

The welcome and watersheds problems were taken from the annual Google
Code Jam programming competition, the triangle from a puzzle website, and
the kselect problem is original. (It appears in the Appendix)

Generally speaking, we tried to make the students think in a programmatic
way, and to make them exercise their technical programming skills. For example,
because the numbers in the kselect problem are paired, the students are not
able to use a standard library sorting routine. We expected the students to make
different kinds of errors both across the problems, and within a single problem,
and we hoped that the analysis tools would be able to identify some of these
errors.

3.2 Results

To our surprise the results from the tools were quite dismal. Lint4J reported
basically no errors on any of the examples, FindBugs reported some possible
errors but not the ones that occurred when running the code, and Tpgen reported
a few errors that actually occurred but also missed many. Note that the code
fragments were relatively small and all the tools ran within seconds; we also tried
to fine-tune each tool to make it perform to the best of its ability.

One of the primitive visualizations provided by our tool allows the user to
view the raw output of the analysis tools. A typical sample of code and the
corresponding output is shown in Figures 2 and 3; both trimmed for the sake of
brevity. FindBugs complains about a futile assignment in line 32, while Tpgen
reports a null pointer exception on line 13 (a false positive) and an index-out-of-
bounds error on line 46. In fact, most of the Easy tests produced errors because
of an array-out-of-bounds error on line 33.

Lint4J can be somewhat exonerated because the errors that did occur often,
namely null pointer dereferences and index-out-of-bounds accesses, are not errors
that it looks for. Still it seems that even these novice programmers didn’t make
the kind of silly mistakes Lint4J catches. FindBugs on the other hand should
have found these errors but didn’t. We believe it is due to FindBugs being
tuned for large code bases and thus it doesn’t report errors unless it is quite
certain it will be triggered during execution. Tpgen, which is the tool that most
closely follows real executions caught the most real bugs, but it did suffer from
scalability issues since some of the errors occur at path depths beyond which it
can scale to. However it is just a research prototype and we believe that it shows
that path sensitive analyses are an important avenue for future work in applying
static tools early in the development cycle.

Towards Checking the Usefulness of Verification Tools 7

5 public int kselect(int k, int[] V) {

6 int temp1 = 0, temp2 = 0;

10 if (k < 0) { k = k*(-1); }

13 if (k > ((V.length)/2)) { return 0; }

18 for (int i = 0; i < V.length; i += 2){

19 for (int j=i+2; j < V.length; j += 2)

20 if (V[j] <= V[i]){

21 temp1 = V[i];

22 temp2 = V[i+1];

23 V[i] = V[j];

24 V[i+1] = V[j+1];

25 V[j] = temp1;

26 V[j+1] = temp2;

27 }

28 }

31 for (int i = 0; i < V.length; i += 2){

32 int j = i;

33 while (V[i] == V[i+2]) {

34 if (V[i+1] > V[i+3]){

35 temp1 = V[i];

36 temp2 = V[i+1];

37 V[i] = V[i+2];

38 V[i+1] = V[i+3];

39 V[i+2] = temp1;

40 V[i+3] = temp2;

41 }

42 i = i+2;

43 }

44 }

46 return V[k];

47 }

Fig. 2. The source code corresponding to Figure 3

8 Willem Visser and Jaco Geldenhuys

FindBugs: Dead store to $L6 in kselection.KSelection.kselect(int, int[])

At KSelection.java:[line 32]

Tpgen: Running 5 test(s)...

1) Solution (0)

REAL? Caught expected exception: java.lang.NullPointerException

Occurred at kselection.KSelection.kselect:13

...

3) Solution (2)

REAL? Caught expected exception:

java.lang.ArrayIndexOutOfBoundsException: 0

Occurred at kselection.KSelection.kselect:46

Easy tests: Time: 0.063

There were 13 failures:

1) java.lang.ArrayIndexOutOfBoundsException: 12

at kselection.KSelection.kselect(KSelection.java:33)

2) java.lang.ArrayIndexOutOfBoundsException: 12

at kselection.KSelection.kselect(KSelection.java:33)

...

FAILURES!!!

Tests run: 15, Failures: 13

Fig. 3. Typical output produced by FindBugs and Tpgen, and error output produced
by the East tests.

Towards Checking the Usefulness of Verification Tools 9

4 Related Work

There is a vast amount of related research to ours, but the closest is the Marmoset
system [9]. As with our framework it can record programming iterations within
Eclipse, but their goal is not to analyse the types of errors found, but rather
to analyse students’ programming behavior and to provide a more stimulating
learning environment for novice programmers. One should be able to extend
Marmoset to do the same analysis we perform.

5 Conclusions

The framework we have shown here and the initial experiments with static anal-
ysis tools indicate that the snapshots will be a fruitful source of benchmarks to
evaluate testing and verification tools. The current focus has been on testing
tools, and given that these tools can be evaluated on fault-detection capabil-
ity, evaluating these tools are straightforward. Verification tools on the other
hand will be much harder to evaluate. One nice feature though is that the pro-
grams are relatively small, and thus should not pose any scalability issues for
the verification tools.

References

1. Coverity. www.coverity.com
2. Findbugs. findbugs.sourceforge.net
3. Klocwork. www.klocwork.com
4. Lint4j. www.jutils.com
5. Polyspace. www.mathworks.com/products/polyspace
6. N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and YuQian Zhou. Evaluating

static analysis defect warnings on production software. In Proc. 7th Workshop
Program Analysis for Software Tools and Engineering, pages 1–8, 2007.

7. A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. Engler. A few billion lines of code later: using
static analysis to find bugs in the real world. CACM, 53(2):66–75, 2010.

8. D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106,
2004.

9. J. Spacco, D. Hovemeyer, and W. Pugh. An eclipse-based course project snap-
shot and submission system. In Proc. 3rd Eclipse Technology Exchange Workshop
(eTX), 2004.

10. A. Tomb, G. Brat, and W. Visser. Variably interprocedural program analysis for
runtime error detection. In Proc. 2007 Intl. Symp. Software Testing and Analysis,
pages 97–107, 2007.

11. W. Visser and J. Geldenhuys. Impendulo: Debugging the Programmer. To appear
in Proc. Intl. Conf. Automated Software Engineering, 2010, tool paper.

10 Willem Visser and Jaco Geldenhuys

6 Appendix

Given two pairs of integers (a, b) and (c, d) we can compare them by first com-
paring the first component and then the second. For example,

(a, b) < (c, d) if and only if a < b or a = b ∧ c < d.

The k-selection problem is to find the k-th smallest pair in a list of pairs.
When k < 0, the task is to find the −k-th largest pair. If k = 0, or if the absolute
value of k is greater than the length of the list, we shall say that the answer is
zero. Given the list

(3, 1) (4, 1) (5, 9) (2, 6) (5, 3) (5, 8)
1 2 3 4 5 6

then (2, 6) < (3, 1) < (4, 1) < (5, 3) < (5, 8) < (5, 9) and we know that the

1-th smallest pair (2, 6) is in position 4
4-th smallest pair (5, 3) is in position 5
−1-th smallest pair (5, 9) is in position 3 and
−4-th smallest pair (4, 1) is in position 2.

Your task is to write a routine in the “KSelection.java” class that accepts two
parameters: (1) the value of k and (2) the list of integer pairs, stored in a single
array. Your routine must return the position of the k-smallest pair as an integer.

public int kselect(int k, int V[])

For example, if A is an array containing the values [3, 1, 4, 1, 5, 9, 2, 6,

5, 3, 5, 8], then

kselect(1, A) should return 4

kselect(-3, A) should return 5

kselect(7, A) should return 0

You may assume that

– the list will contain n pairs, where 1 ≤ n ≤ 10000,
– none of the pairs are equal, and
– each integer x in the list will satisfy 0 ≤ x ≤ 106.

