Computer-Aided Reasoning for the Masses

Panagiotis Manolios

College of Computer and Information Science
Northeastern University
360 Huntington Ave., Boston MA 02115, USA
pete@ccs.neu.edu

Abstract. A good test of the usability of formal verification techniques
and tools is whether they can be successfully integrated into the under-
graduate curriculum. Widespread use of formal verification techniques
at the undergraduate level will require that we convince our colleagues
that such techniques benefit our students more than the material they
replace. Widespread use of formal verification tools will not only require
robust, mature, and usable tools, but will highlight the true remaining
usability issues. At Northeastern University, we embarked down this path
several years ago. We introduced a required freshman class that teaches
students how to reason about the programs they write using ACL2s, the
ACL2 Sedan. So far, over 200 undergraduate students have taken the
class.

1 Formal Methods at the Undergraduate Level

The case for teaching formal methods at the undergraduate level is easy to make:
formal methods provide the foundations that allow us to understand, reason
about, and gain predictive power over computational processes and artifacts. If
we want to train engineers who can build the computational systems our society
is increasingly dependent so that they are robust, dependable, and secure, then
we have to teach these engineers how to model and reason about computational
systems using mathematical rigor and precision. This is inherently different from
what students learn in courses on algorithms. There the emphasis is on introduc-
ing paradigms that are useful for designing computationally efficient algorithms,
such as dynamic programming and the greedy method.

The next step is to figure out where such a class fits in at the undergraduate
level. What are the prerequisites? Well, students have to have a solid foundation
in programming. At Northeastern, they get that in their first semester, when
they learn how to design programs using a Scheme-based functional program-
ming language [2]. The earliest we can teach a course on formal methods is in the
second semester of the undergraduate program, and that is what we do. While
there are obvious disadvantages to teaching such a course that early, the advan-
tages are greater: if we want to change how students think about programming
and computer science, we need to instill these values in them early. Teaching for-
mal methods during the first year, helps shape how they think about computer
science as they navigate through the undergraduate program.



A more unpleasant question is what course to displace. The choice we made
at Northeastern was to replace a course on logic with the course on formal
methods. We still do teach many of the concepts previously taught, but now the
emphasis is on using logic to reason about computation. The advantage is that
this plays into the strengths of our undergraduates: they can program, they have
very good intuitions and strong interests in programming. In contrast, they often
have difficulty seeing the point of logic presented in a classic, abstract setting.

Regarding course content, our focus is on teaching students how to reason
about programs. The narrative is simple: we remind them that when they design
programs they write informal “contracts” that specify the intended domains for
function inputs and outputs. They write tests that check whether their programs
give the expected result on particular inputs. In this class, they learn how to
formalize their contracts, and how to specify the intended behavior of their
programs not only on individual inputs, but across an infinite number of inputs.
They also learn how to prove that their conjectured contracts are in fact true.
There is a strong emphasis on gathering requirements and stating specifications,
because these skills can and will be used throughout their careers, no matter
what they do.

One of the challenges we faced is that the material is new for almost everyone
in the class. None of them were playing around with theorem provers or proving
correctness by hand in high school! In order to have a smooth transition from
what they do know to what they do not know, we start with propositional logic.
In this setting, we introduce notions such as tautology, satisfiability, falsifiable,
and unsatisfiable. We show that one can falsify a conjecture by providing a
single counterexample and that the lack of a counterexample implies that the
conjecture is true. In fact, one can exhaustively test propositional conjectures,
and they write their own validity solvers to do that. When we get to reasoning
about programs, the story is almost the same: one can falsify a conjecture with a
single counterexample. They understand this because they know how to evaluate
programs. They also understand that if there is no counterexample, then the
conjecture is true. What they do not know how to do is to check for this, as
exhaustive testing does not work. So, we tell them that this is the power of
logic: with finite work you can deduce an infinite number of conclusions, namely
that exhaustive testing will not find a counterexample. The key proof technique
used is induction. It is introduced as an extension of what they already known.
When they design programs, they are (for the most part) data-driven, i.e., the
recursion scheme they use to define functions is based on the data definitions
of the inputs to said functions. For example, in the recursive call for a function
operating on lists, they can assume that the function will return the right result
on the rest of the list, so all there is to think about is how to take this correct
result and the first element of the list and put them together in a way that
satisfies the contract for the function. Similarly, the data definition gives rise
to an induction scheme that is used to reason about their programs. In the
induction step, they can assume that their conjecture holds for the rest of the
list, and using that, they have to show it holds for the whole list.



Another important aspect of our class is that we use lots of examples from
computer science to motivate what we are doing. This has the benefit of intro-
ducing students to parts of computer science that they will not see until later
on and teaches them to separate correctness aspects from efficiency aspects. For
example, we discuss how to build circuits that perform bit-vector arithmetic,
and how to specify and reason about what they do. We discuss various sorting
algorithms. Simple sorting algorithms, such as insertion sort, are easier to verify
than more efficient algorithms, such as quicksort, but they both have the same
specification. We discuss compilation and design a simple compiler that given
expressions generates instructions for a stack-based machine. We then specify
what it means for the compiler to be correct, which is subtle, and prove it. We
also prove program equivalence between programs whose running times are very
different, a recurring theme in computer science.

2 Usability of Formal Verification Tools

A formal verification tool that is appropriate for the above class is one that
is based on a function programming language and which is robust, well engi-
neered, and usable. We use the ACL2 Sedan theorem prover (ACL2s). ACL2s
is an Eclipse plug-in that provides a modern integrated development environ-
ment, supports several modes of interaction, provides a powerful termination
analysis engine, and includes fully automatic bug-finding methods based on a
synergistic combination of theorem proving and random testing. ACL2s is freely
available, open-source, and well supported [1]. Installation is simple, e.g., we
provide prepackaged images for Mac, Linux, and Windows platforms.

ACL2s uses ACL2 as its core reasoning engine. ACL2 is a powerful system for
integrated modeling, simulation, and theorem proving that is based on a simple
Lisp-like applicative programming language [4, 3, 5]. Think of ACL2 as a finely-
tuned racecar. In the hands of experts, it has been used to prove some of the
most the complex theorems ever proved about commercially designed systems.
Novices, however, tend to have a different experience: they crash and burn. Our
motivation in developing ACL2s, the ACL2 Sedan, was to bring computer-aided
reasoning to the masses by developing a user-friendly system that retained the
power of ACL2, but made it possible for new users to quickly, easily learn how
to develop and reason about programs.

Usability is one of the major factors contributing to ACL2’s steep learning
curve. To address the usability problem, ACL2s provides a modern graphical in-
tegrated development environment. It is an Eclipse plug-in that includes syntax
highlighting, character pair matching, input command demarcation and classifi-
cation, automatic indentation, auto-completion, a powerful undo facility, various
script management capabilities, a clickable proof-tree viewer, clickable icons and
keybindings for common actions, tracing support, support for graphics develop-
ment, and a collection of session modes ranging from beginner modes to advanced
user modes. ACL2s also provides GUI support for the “method,” an approach
to developing programs and theorems advocated in the ACL2 book [4].



The other major challenge new users are confronted with is formal reason-
ing. A major advantage of ACL2 is that it is based on a simple applicative
programming language, which is easy to teach. What students find more chal-
lenging is the ACL2 logic. The first issue they confront is that functions must
be shown to terminate. Termination is used to both guarantee soundness and to
introduce induction schemes. Unfortunately, students quickly see functions that
ACL2 cannot prove terminating, without user assistance. This involves reasoning
about infinite ordinal numbers. Introducing the ordinal numbers and measure
functions to freshmen is probably not a good idea, so we developed and im-
plemented Calling-Context Graph termination analysis (CCG), which is able
to automatically prove termination of the kinds of functions arising in under-
graduate classes [6]. This definitely helped, but then we noticed that beginners
sometimes define non-terminating functions, and it would be nice if we could
provide termination counterexamples. We added this to ACL2s, and more [7].

Once their function definitions are admitted, new users next learn how to rea-
son about such functions, which first requires learning how to specify properties.
We have seen that beginners often make specification errors. ACL2s provides a
new lightweight and fully automatic synergistic integration of testing and the-
orem proving that often generates counterexamples to false conjectures. The
counterexamples allow users to quickly fix specification errors and to learn the
valuable skill of generating correct specifications. This works well pedagogically
because students know how to program, so they understand evaluation. Inval-
idating a conjecture simply involves finding inputs for which their conjecture
evaluates to false. This is similar to the unit testing they do when they develop
programs, except that it is automated.

The next area to focus on is better support for understanding rewrite rules,
for driving the theorem prover, and for understanding what went wrong when
the theorem prover fails.

3 Conclusions

Formal verification has been successfully used in industry by highly trained en-
gineers, and is here to stay. In order for this technology to be more widely
used, we have to train the next generation of engineers by integrating it into
the undergraduate curriculum. This paper gave an overview of our experience
in introducing formal methods at the freshman level at Northeastern Univer-
sity, where we used ACL2s to teach eight sections of a required second-semester
freshman course entitled “Logic and Computation.” The goal of the class is to
teach fundamental techniques for describing and reasoning about computation.
Students learn that they can gain predictive power over the programs they write
by using logic and automated theorem proving. They learn to use ACL2s to
model systems, to specify correctness, to validate their designs using lightweight
methods, and to ultimately prove theorems that are mechanically checked. Stu-
dents reason about data structures, circuits, and algorithms; they prove that
a simple compiler is correct; they prove equivalence between various programs;



they show that library routines are observationally equivalent; and they develop
and reason about video games.

It is much too early to declare this a success. What we need are good books
and course materials in addition to usability improvements so that other faculty
at different universities can try the same experiment. Success will depend on
getting Formal Methods integrated into the undergraduate curriculum across
many universities.

Acknowledgments

Harsh Raju Chamarthi, Peter C. Dillinger, and Daron Vroon have made signif-
icant contributions to the development of ACL2s. We owe a huge debt to Matt
Kaufmann and J Moore, the authors of ACL2. Frankly, most of what ACL2s does
is to call ACL2. Matt and J have been very supportive of our efforts and have
added significant functionality to ACL2 that supports ACL2s. Finally, Matthias
Felleisen was a driving force behind the introduction of Logic and Computation
as a freshman course at Northeastern University.

References

1. Harsh Raju Chamarthi, Peter C. Dillinger, Panagiotis Manolios, and Daron Vroon.
ACL2 Sedan homepage. See URL http://acl2s.ccs.neu.edu/.

2. Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. How to design programs: an introduction to programming and computing.
MIT Press, Cambridge, MA, USA, 2001.

3. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors. Computer-
Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, June 2000.

4. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Rea-
soning: An Approach. Kluwer Academic Publishers, July 2000.

5. Matt Kaufmann and J Strother Moore. ACL2 homepage. See URL http://-
WWW.cs.utexas.edu/users/moore/acl2.

6. Panagiotis Manolios and Daron Vroon. Termination analysis with calling context
graphs. In Computer Aided Verification, CAV, volume 4144 of LNCS, pages 401—
414. Springer, 2006.

7. Panagiotis Manolios and Daron Vroon. Interactive termination proofs using ter-
mination cores. In Matt Kaufmann and Lawrence C. Paulson, editors, Interactive
Theorem Proving, ITP 2010, volume 6172 of Lecture Notes in Computer Science,
pages 355-370. Springer, 2010.



