
Unleashing the Verification Genie in the Cloud
Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074,USA
nbjorner@microsoft.com

Abstract

Z3 is a state-of-the-art SMT (Satisfiability Modulo Theories) solver available from Microsoft
Research. It is used as a logic engine in several program analysis, test-generation and verification
systems. Z3 exposes a number of APIs for these applications,but is in itself a low-level tool. We
discuss the design trade-offs we have faced and different ways we lower the barrier of entry to use Z3.
This includes using programming language abstractions, such as quotations and LINQ (Language
Integrated Query features) and exposing Z3 as a web service.

1 Introduction

Most program analysis, test and verification tools rely on a reduction to logic queries. At their core, most
logic queries can be formulated as first-order logic formulas, and answers to these logic queries can be
categorized as a yes/no answer (is this formula satisfiable or dually valid), a model (a counter-example
to validity), a proof, or less ambitiously, an unsatisfiablecore, which is a subset of the assertions that
together suffice to produce a proof. What makes the program analysis, test and verification tools usable
is a combination of ease of use and appropriateness for theirdomain together with scale, performance
and precision of their analysis engine. Much of the burden for the latter is on the logic engine and how it
is used.

The Z3 [3] solver available from Microsoft Research is a state-of-the-art SMT (Satisfiability Modulo
Theories) solver. It serves the purpose as the logic engine under several higher-level tools. This position
paper discusses some of the recent efforts in making Z3 even more usable, and some efforts around Z3
to lower the barrier of entry to using it.

Section 2 summarizes some of the (more recent) core enhancements that seek to improve usabil-
ity. Section 3 discusses select interaction models for Z3. The emphasis is on using Z3 using modern
programming language features and from the cloud.

2 Core Technologies

2.1 What makes an SMT solver good for usable verification?

First and foremost, our experience has been a that automaticand scalable support for a rich set of base
theories is the most important part. Different tools use different theory features. For example, Boo-
gie/Spec# [1] uses the theory of integers and formulas usingquantifiers. On the other hand, Pex [4]
uses arrays, bit-vectors and to a lesser extent integers andquantifiers even though they are good to have.
FORMULA [6] uses quantifiers, bit-vectors, algebraic data-types.

2.2 Special features

Base theories, however are not enough. The SLAyer [5] systembuilds first-order formulas from symbolic
execution based on separation logic. This introduces quantified formulas over integers and arrays and
good quantifier elimination support is required to handle such formulas [2]. Furthermore, SLAyer also
benefits with access to all the equalities that are implied from a given formula. Consequently, Z3 exposes
a function to retrieve label a set of terms by their equivalence class representatives.

1



Z3 and the Genie in the Cloud Bjørner

Example: The formula
ϕ : x≤ y+1∧y≤ z−1∧z≤ x

is satisfiable, but it constrains the interpretations forx,y, andzsuch thatx= y+1= z. From SMT-LIB2,
you can learn the implied equalities using a query of the form:

(declare-funs ((x Int) (y Int) (z Int)))

(assert (and (<= x (+ y 1)) (<= y (- z 1)) (<= z x)))

(get-implied-equalities x z (+ y 1) y (- z 1))

; (18 18 18 19 19)

Theget-implied-equalities function takes a list of terms as arguments. It produces a list of integers.
Each integer identifies a partition, so that two terms in the same equivalence class receive the same
partition identifier. In the example the termsx, z and(+ y 1) are equal, so arey and(- z 1).

2.3 Extensibility

There comes a point where Z3 cannot be a host of arbitrary theories or features. Consider for example,
the theory ofobject graphswith read-only fields. It comprises of the signature

〈O,null : O,value: O→ Int, left : O→ O ro, right : O→ O rw〉

whereO is the sort of objects,null is a special constant of object sort. Thevaluefield associates with
an object an integer value andleft andright retrieve the left and right children of an object. Furthermore
the left field is read-only. The intent here is that this field cannot be updated, and therefore objects can
only have well-founded chain of left-pointers (eventuallyending withnull). Theright field is writable,
a program can update this field and create a cyclic reference.Z3 does not support the theory of object
graphs. The theory of algebraic data-types supports extensional equalities, equality over object graphs
is not extensional, and algebraic data-types are well-founded. On the other hand, co-inductive types
don’t capture the acyclic read-only fields. We can soft-codeobject graphs as uninterpreted sorts and
uninterpreted functions. A trick to enforce well-founded left chains is to associate an ordinal with each
node and require that the ordinal decreases with each left deference:

∀x : O . null 6= x→ ord(x)> ord(left(x))

Soft-coding does not allow the user to control preferences for some models over others. A specialized
theory solver allows for full control and Z3 exposes methodsfor implementing custom theory solves.
The custom theory solver for the theory of object graphs works essentially the same as the solver for
algebraic data-types, except that it allows to disregard extensionality and it only requires acyclicity along
read-only fields:

1. It maintains a set of objects that are asserted as non-null. The set is updated when the SMT core
asserts a dis-equality between a term of sortO andnull.

2. It maintains three queues for building interpretations of object terms. Producing an interpretation
is the main feature of the decision procedure.

(a) The first queue contains terms that the procedure will attempt assigning tonull. Terms that
are already in the set of non-nulls are inserted directly into the second queue. For term that
are not already non-null and not already equal tonull, the procedure creates an equality literal
t ' null and asks the solver core to assign the equality totrue. If the solver core is unable to
assign the atom totrue, it backtracks and assigns the atom tofalse.

2



Z3 and the Genie in the Cloud Bjørner

(b) The second queue contains terms that cannot benull, and needs to be assigned to one of the
legal object sub-types.

(c) Once the proper object type has been fixed with an object term, terms from the last queue
have their object fields assigned. The fields may recursivelybe objects.

3. To enforce acyclicity of read-only fields it checks partial assignments for occurs check violations.

The resulting theory solver can be programmed using Z3’s managed API in less than 250 lines of F#.

3 Exposing Z3

3.1 Using Z3 from LINQ

Figure 1: An excerpt from Bart De Smet’s
blog on using Z3 from LINQ

LINQ, Language Integrated Queries, has been a part
of Microsoft’s C# language since C# v3.5 (November
2007). Its main use is making it easier to write SQL
queries. However, it is easily re-targeted as the underly-
ing mechanism is to build expression trees and rely on a
back-end to process the expression trees. This was ex-
ploited more than a year ago by Bart De Smet during a
plane trip and put up on his personal blog under aCrazy
Sundaytag. Indeed, writing the LINQ provider is fairly
straight-forward. The payoff with ease of use in the con-
text of the host language C#, however, is significant. The
comment left byaL, inspired the title of this paper: writ-
ing expression manipulating programs is sufficiently te-
dious that it poses a barrier of entry.

3.2 Using Z3 with F# Quotations

The Z3 distribution comes with power utilities for the F#
programming language. A prolific feature of F# is the
availability of quotations. Quotations have their origins
in LISP: you can quote a piece of code and treat it as data. You can also quote code in F#, and access
the abstract syntax tree for it. This feature is used for encoding formulas as F# expressions. It makes for
quite legible syntax. The scheduling constraints using thequotation support from the Z3 distribution can
be formulated as follows:

open Microsoft.Z3

open Microsoft.Z3.Quotations

do Solver.prove <@ Logic.declare

(fun t11 t12 t21 t22 t31 t32 ->

not

((t11 >= 0I) && (t12 >= t11 + 2I) && (t12 + 1I <= 8I) &&

(t21 >= 0I) && (t22 >= t21 + 3I) && (t32 + 1I <= 8I) &&

(t31 >= 0I) && (t32 >= t31 + 2I) && (t32 + 3I <= 8I) &&

(t11 >= t21 + 3I || t21 >= t11 + 2I) &&

(t11 >= t31 + 2I || t31 >= t11 + 2I) &&

(t21 >= t31 + 2I || t31 >= t21 + 3I) &&

3



Z3 and the Genie in the Cloud Bjørner

(t12 >= t22 + 1I || t22 >= t12 + 1I) &&

(t12 >= t32 + 3I || t32 >= t12 + 1I) &&

(t22 >= t32 + 3I || t32 >= t22 + 1I)

)

)

@>

Let us explain some of the features used in the example:

• Solver.prove consumes an expression of typeExpr<bool>, a quoted expression of typebool.
It checks for validity of the formula that results from compiling the expression. Since, we are
interested insatisfiabilityof the scheduling constraints we check for validity of theirnegation.

• Logic.declare is a function that takes an arbitrary curried lambda expression and creates fresh
constants for the variables that are bound by the lambda expression. In this case, it creates constants
for t11 t12 t21 t22 t31 t32. The F# type inference will infer that these variables have type
BigInteger. Z3 represents these as plain integers.

• The notationbig integerliterals in F# is to suffix numbers with anI, for example1I and8I. For
“normal” integers, such as1 and8, Z3’s quotation compiler uses fixed-size bit-vectors.

4



Z3 and the Genie in the Cloud Bjørner

3.3 Discover RiSE4fun.com

Figure 2: http://rise4fun.com

An important component of usability is also discover-ability.
What are the capabilities of a given tool? It is much easier to
make such discoveries interactively by using the tools directly.
Tool installation poses an additional obstacle that can be quite
inhibiting. Tools exposed over the web removes this barrierof
entry.

Thehttp://rise4fun.com web site sports a number of
tools developed at Microsoft’s RiSE (Research in Software En-
gineering) group, including Z3 and several tools using Z3 un-
der the hood; Bek, Boogie, Dafny, Pex, Rex, Spec#, and Vcc.
The interaction with Z3 is so far quite simple: a user poses a
formula in the SMT-LIB2 format and gets back and answer,
which can be a simplesat/unsat answer or it can be a model,
or unsatisfiable core, or it can be a proof object.

The interaction with Pex is significantly richer. Here a user
can enter a C#, F# or Visual Basic program, even aided by in-
tellisense (for C#), and obtain the unit test results of running
dynamic symbolic execution. A different interaction model,
known ascode duels, allows the user to learn a hidden spec-
ification by having Pex provide counter-example input/output
pairs. This seems to be by far the most popular feature. The
Rex tool likewise exposes a duel feature.

4 Conclusion

There are two parts to usability of SMT solvers: (1) the powerand adaptability of the core set of features
exposed by the solver; and (2) the ease of use. This position paper discussed what is done in the context
of Z3 to address these two challenges.

References

[1] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System: An Overview. InCASSIS
2004, LNCS 3362, pages 49–69. Springer, 2005.

[2] Nikolaj Bjørner. Linear Quantifier-Elimination as an Abstract Decision Procedure. InIJCAR, 2010.

[3] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakrishnan and J. Rehof, editors,
TACAS 08, volume 4963 ofLecture Notes in Computer Science. Springer, 2008.

[4] P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, W.Schulte, N. Tillmann, and M. Y. Levin. Automating
Software Testing Using Program Analysis.IEEE Software, 25(5):30–37, 2008.

[5] http://research.microsoft.com/en us/um/cambridge/projects/slayer/.

[6] Ethan K. Jackson, Dirk Seifert, Markus Dahlweid, ThomasSanten, Nikolaj Bjørner, and Wolfram Schulte.
Specifying and composing non-functional requirements in model-based development. In Alexandre Bergel
and Johan Fabry, editors,Software Composition, volume 5634 ofLecture Notes in Computer Science, pages
72–89. Springer, 2009.

5

http://rise4fun.com

	Introduction
	Core Technologies
	What makes an SMT solver good for usable verification?
	Special features
	Extensibility

	Exposing Z3
	Using Z3 from LINQ
	Using Z3 with F# Quotations
	Discover RiSE4fun.com

	Conclusion

