Unleashing the Verification Genie in the Cloud

Nikolaj Bjgrner
Microsoft Research, One Microsoft Way, Redmond, WA, 98QT3A
nbjorner@microsoft.com

Abstract

Z3 is a state-of-the-art SMT (Satisfiability Modulo Thea®liesolver available from Microsoft
Research. Itis used as a logic engine in several programsasalest-generation and verification
systems. Z3 exposes a number of APIs for these applicatboriss in itself a low-level tool. We
discuss the design trade-offs we have faced and differeyg wa lower the barrier of entry to use Z3.
This includes using programming language abstractiord) as quotations and LINQ (Language
Integrated Query features) and exposing Z3 as a web service.

1 Introduction

Most program analysis, test and verification tools rely oaduction to logic queries. At their core, most
logic queries can be formulated as first-order logic forrauénd answers to these logic queries can be
categorized as a yes/no answer (is this formula satisfialdieialy valid), a model (a counter-example
to validity), a proof, or less ambitiously, an unsatisfiabtee, which is a subset of the assertions that
together suffice to produce a proof. What makes the prograysis, test and verification tools usable
is a combination of ease of use and appropriateness fordbeain together with scale, performance
and precision of their analysis engine. Much of the burdeithfe latter is on the logic engine and how it
is used.

The Z3[3] solver available from Microsoft Research is aestaftthe-art SMT (Satisfiability Modulo
Theories) solver. It serves the purpose as the logic engideriseveral higher-level tools. This position
paper discusses some of the recent efforts in making Z3 ewea usable, and some efforts around Z3
to lower the barrier of entry to using it.

Section(2 summarizes some of the (more recent) core enhanteithat seek to improve usabil-
ity. Section[B discusses select interaction models for Z8e @mphasis is on using Z3 using modern
programming language features and from the cloud.

2 Core Technologies

2.1 What makes an SMT solver good for usable verification?

First and foremost, our experience has been a that autoaradiscalable support for a rich set of base
theories is the most important part. Different tools uséediint theory features. For example, Boo-
gie/Spec#l[l] uses the theory of integers and formulas ugiragtifiers. On the other hand, Péex [4]

uses arrays, bit-vectors and to a lesser extent integerguandifiers even though they are good to have.
FORMULA [6] uses quantifiers, bit-vectors, algebraic dtaes.

2.2 Special features

Base theories, however are not enough. The SLAyer [5] syBtalats first-order formulas from symbolic
execution based on separation logic. This introduces gighformulas over integers and arrays and
good quantifier elimination support is required to handlehsiormulas|[[2]. Furthermore, SLAyer also
benefits with access to all the equalities that are impliechfa given formula. Consequently, Z3 exposes
a function to retrieve label a set of terms by their equivededass representatives.

Z3 and the Genie in the Cloud Bjagrner

Example: The formula
¢ x<y+1lay<z—1Az<X

is satisfiable, but it constrains the interpretationsxgr andz such thatkk =y+ 1=z From SMT-LIB2,
you can learn the implied equalities using a query of the form

(declare-funs ((x Int) (y Int) (z Int)))
(assert (and (k=x (+ y 1)) (k=y (- z 1)) (<= z x)))
(get-implied-equalities x z (+ y 1) y (- z 1))

; (18 18 18 19 19)

Theget-implied-equalities function takes alist of terms as arguments. It produces aflistegers.
Each integer identifies a partition, so that two terms in thmes equivalence class receive the same
partition identifier. In the example the termsz and (+ y 1) are equal, so argand (- z 1). L]

2.3 Extensibility

There comes a point where Z3 cannot be a host of arbitraryigseor features. Consider for example,
the theory ofobject graphawith read-only fields. It comprises of the signature

(O,null : O,value: O — Int,left: O — O ro,right : O — O rw)

whereO is the sort of objectsnull is a special constant of object sort. Tveduefield associates with
an object an integer value ateft andright retrieve the left and right children of an object. Furthereno
theleft field is read-only The intent here is that this field cannot be updated, anefilwer objects can
only have well-founded chain of left-pointers (eventuadtyding withnull). Theright field is writable,

a program can update this field and create a cyclic referefi@aloes not support the theory of object
graphs. The theory of algebraic data-types supports amtsisequalities, equality over object graphs
is not extensional, and algebraic data-types are welldedn On the other hand, co-inductive types
don’t capture the acyclic read-only fields. We can soft-codgct graphs as uninterpreted sorts and
uninterpreted functions. A trick to enforce well-foundedt Ichains is to associate an ordinal with each
node and require that the ordinal decreases with each ligftetee:

vx: O . null #x— ord(x) > ord(left(x))

Soft-coding does not allow the user to control preferencesdme models over others. A specialized
theory solver allows for full control and Z3 exposes methfmsimplementing custom theory solves.
The custom theory solver for the theory of object graphs wassentially the same as the solver for
algebraic data-types, except that it allows to disregaterestonality and it only requires acyclicity along
read-only fields:

1. It maintains a set of objects that are asserted as non-Fhdl set is updated when the SMT core
asserts a dis-equality between a term of &andnull.

2. It maintains three queues for building interpretatiohshject terms. Producing an interpretation
is the main feature of the decision procedure.

(a) The first queue contains terms that the procedure wahgit assigning taull. Terms that
are already in the set of non-nulls are inserted directly the second queue. For term that
are not already non-null and not already equailub, the procedure creates an equality literal
t ~ null and asks the solver core to assign the equalityue If the solver core is unable to
assign the atom tue, it backtracks and assigns the atonfalse

2

Z3 and the Genie in the Cloud Bjagrner

(b) The second queue contains terms that cannoubeand needs to be assigned to one of the
legal object sub-types.

(c) Once the proper object type has been fixed with an objeat, teerms from the last queue
have their object fields assigned. The fields may recursivelgbjects.

3. To enforce acyclicity of read-only fields it checks pdréissignments for occurs check violations.

The resulting theory solver can be programmed using Z3'sagh API in less than 250 lines of F#.

3 Exposing Z3

3.1 Using Z3 from LINQ

LINQ, Language Integrated Queries, has been a Patma: -« |c1%] O mauz-m « | o s tomie o
of Microsoft's C# language since C# v3.5 (November | e
2007). Its main use is making it easier to write SQL
gueries. However, it is easily re-targeted as the underly-
ing mechanism is to build expression trees and rely on g
back-end to process the expression trees. This was eX-
ploited more than a year ago by Bart De Smet during enclusien

Creating a simple LINQ te Z3 implementation isn't toc hard and r‘vc\ves just a little bit

plane trip and put up on his personal blog uUNd@razy o siurins n'tre sathroom of eiection a7 some Lse of pression t-ee visor

patterns. In future posts, we'll have a look at domain-specific heo rem solving

Sundawag |ndeed ertlng the LINQ prOVlder IS falrly techniques based on declarative expression tree rewriters, Enjoy!

Del.icio.us | Digg It | Technorati | Blinklist | Furl | reddit | DotNatKicks
straight-forward. The payoff with ease of use iN the CONz . urcer: 1o, crazy sundeve, 23, wieross azseren

text of the host language C#, however, is significant. Themmens

comment left byaL, inspired the title of this paper: writ- #re tine to z3 - theorem salving on sicroids - part 1

ing expression manipulating programs is sufficiently te- 125 e e
dious that it poses a barrier of entry. e o vear

n the red parts reflect what the user expressed, while the remainder is all generated
the domain-specific Kakuro implementation.

s0 fong for this :0 23 is like lighning in a bottle but the bottle cap is
:} i tried making a ling-to-z2 wrapper but my expression tree skills

3.2 Using Z3 with F# Quotations Figure 1. An excerpt from Bart De Smet's

The Z3 distribution comes with power utilities for the F2l0g on using Z3 from LINQ

programming language. A prolific feature of F# is the

availability of quotations Quotations have their origins

in LISP: you can quote a piece of code and treat it as data. ¥owatso quote code in F#, and access
the abstract syntax tree for it. This feature is used for éimgpformulas as F# expressions. It makes for
quite legible syntax. The scheduling constraints usingjtiaation support from the Z3 distribution can
be formulated as follows:

open Microsoft.Z3
open Microsoft.Z3.Quotations

do Solver.prove <@ Logic.declare
(fun t11 t12 t21 t22 t31 t32 —>
not
((t11 >= 0I) && (t12 >= t11 + 2I) && (t12 + 1I <= 8I) &&
(t21 >= 0I) && (t22 >= t21 + 3I) && (t32 + 1I <= 8I) &&
(t31 >= 0I) && (t32 >= t31 + 2I) && (t32 + 3I <= 8I) &&
(t11 >= t21 + 3T || t21 >= t11 + 2I) &&
(t11 >= £31 + 2T || t31 >= t11 + 2I) &&
(t21 >= 31 + 2T || t31 >= t21 + 3I) &&

Z3 and the Genie in the Cloud Bjagrner

(t12 >= £22 + 1T || t22 >= t12 + 1I) &&
(t12 >= 32 + 3I || t32 >= t12 + 1I) &&
(t22 >= t32 + 3I || t32 >= t22 + 1I)
)
)
@>

Let us explain some of the features used in the example:

e Solver.prove cOnsumes an expression of tyfepr<bool>, a quoted expression of typeol.
It checks for validity of the formula that results from coiipg the expression. Since, we are
interested irsatisfiability of the scheduling constraints we check for validity of theggation.

e Logic.declare is a function that takes an arbitrary curried lambda expoassnd creates fresh
constants for the variables that are bound by the lambda&ssion. In this case, it creates constants
fort11 t12 t21 t22 t31 t32. The F# type inference will infer that these variables hgpet
BigInteger. Z3 represents these as plain integers.

e The notationbig integerliterals in F# is to suffix numbers with ah for examplelI and8I. For
“normal” integers, such asand8g, Z3's quotation compiler uses fixed-size bit-vectors.

Z3 and the Genie in the Cloud Bjagrner

3.3 Discover RiSE4fun.com

An important component of usability is also discover-aaili [g5 = T

What are the capabilities of a given tool? It is much easier tg Preious Nec | (] 0r

make such discoveries interactively by using the toolsctliye moer Code Contracts] Concurrent Revisions|
) (0 G [([e

tDc‘t oaa:eﬂ/ts:)e

Tool installation poses an additional obstacle that canuie q
inhibiting. Tools exposed over the web removes this baofe
entry.

; This example illustrates basic arithmetic
and
; uninterpreted functions
(declare-funs ((x Int) (y Int) (z Int)))
(assert (>= (* 2 x) (+ vy z)))

Thehttp://rise4fun.com web site sports a number of | (decizrezune (£ 2at 20 (g znx zac 20
tools developed at Microsoft's RiISE (Research in Software E| 52257 0 ¢ @==n
gineering) group, including Z3 and several tools using Z3 um & "

(assert (= x y))
C check-sat
pep

ac‘_mi t

m Is this formula satisfiable? Ask Z3!

der the hood; Bek, Boogie, Dafny, Pex, Rex, Spec#, and
The interaction with Z3 is so far quite simple: a user pose
formula in the SMT-LIB2 format and gets back and answ
which can be a simpleat/unsat answer or it can be a model
or unsatisfiable core, or it can be a proof object.

The interaction with Pex is significantly richer. Here a user’?ii 5
can enter a C#, F# or Visual Basic program, even aided byj|i |r11 A
tellisense (for C#), and obtain the unit test results of nign
dynamic symbolic execution. A different interaction mqdel!
known ascode duelsallows the user to learn a hidden spec- —
ification by having Pex provide counter-example input/atitp
pairs. This seems to be by far the most popular feature. The Figyre 2: hitp://rise4fun.com
Rex tool likewise exposes a duel feature.

[an

4 Conclusion

There are two parts to usability of SMT solvers: (1) the poaredt adaptability of the core set of features
exposed by the solver; and (2) the ease of use. This posiipargiscussed what is done in the context
of Z3 to address these two challenges.

References

[1] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Pemgming System: An Overview. IGASSIS
2004 LNCS 3362, pages 49-69. Springer, 2005.

[2] Nikolaj Bjgrner. Linear Quantifier-Elimination as an siipact Decision Procedure. I3CAR 2010.

[3] L. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In R. Ramakrishnan and J. Rehof, editors,
TACAS 08volume 4963 ot ecture Notes in Computer Scien&pringer, 2008.

[4] P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, 8¢hulte, N. Tillmann, and M. Y. Levin. Automating
Software Testing Using Program AnalysiEEE Software25(5):30-37, 2008.

[5] http://research.microsoft.com/en us/um/cambrigggécts/slayer/.

[6] Ethan K. Jackson, Dirk Seifert, Markus Dahlweid, Thonsesten, Nikolaj Bjgrner, and Wolfram Schulte.
Specifying and composing non-functional requirements odet-based development. In Alexandre Bergel
and Johan Fabry, editorSpftware Compositignvolume 5634 ol ecture Notes in Computer Scienpages
72-89. Springer, 2009.

http://rise4fun.com

	Introduction
	Core Technologies
	What makes an SMT solver good for usable verification?
	Special features
	Extensibility

	Exposing Z3
	Using Z3 from LINQ
	Using Z3 with F# Quotations
	Discover RiSE4fun.com

	Conclusion

