Bridging The Formal Techniques and
Model-Driven Engineering Divide

Robert France
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
france @cs.colostate.edu

October 30, 2010

1 Introduction

Model driven engineering (MDE) approaches attempt to reduce the accidental
complexities associated with labor-intensive development of large, complex soft-
ware systems, through the use of (1) models that describe complex systems at
multiple levels of abstraction and from a variety of perspectives, and (2) automated
support for transforming and analyzing models [5]. In the MDE vision of software
development, models are the primary artifacts of development and developers rely
on computer-based technologies to transform models to running systems.

To a casual observer looking out from the formal methods (FM) community it
may seem that MDE research is subsumed by research in the formal specification
and verification area. A closer examination may suggest that this is not the case.
The formal specification languages that have been developed in the FM commu-
nity thus far use languages that allow developers to describe systems from a very
small number of viewpoints. It is well known that the more expressive a modeling
language is, the more intractable the problem of developing mechanical semantic
analysis techniques becomes. It should therefore not be surprising then that formal
specification languages restrict their viewpoints. In MDE, a model of a complex
system consists of many views created using a wide variety of viewpoints. For
example, the UML provides modelers with 13 diagram types, each can be used to
richly describe a system from a different perspective.

The differences in research scopes suggest that MDE provides a context in
which formal specification and verification techniques can be applied. There is



evidence that this is already taking place (e.g., see [3, 6, 7, 8, 9]). With respect to
the UML, in the late nineties the precise UML (pUML) group helped raise aware-
ness of the need for more formal descriptions of UML semantics to enable rigor-
ous analysis of structural and functional properties of systems captured in UML
models. Over the last decade we have seen a significant number of papers on us-
ing relatively mature formal verification techniques to analyze properties described
in particular UML models (e.g., there has been significant work on using model-
checking techniques to analyze UML statemachine models, and petri net variants
to analyze activity models).

Despite the focused attempts there are very few UML-based verification tools
that can be described as usable by practitioners. In the following I discuss some of
the opportunities for applying verification techniques in MDE and discuss some of
the challenges. For the most part, the opportunities and challenges are presented in
terms of UML modeling issues, primarily because this is one of the more widely-
used (and misused) MDE languages out there, and there is a dire need for practical
UML-based verification tools.

1.1 Reaching for Lower Hanging Fruit

The UML has reached a level of maturity that now allows us to reach for some
of the lower hanging fruit (not necessarily the same as low-hanging fruit!) where
application of rigorous verification techniques are concerned. One of the frustrat-
ing experiences that a modeling student or practitioner learning a language such as
the UML goes through is determining if his/her model is, in some sense, a valid
description. In the case of students, the only feedback that they often receive is the
instructor’s grade of their work. There is a need to provide modelers, in particular,
UML modelers, with some means of checking the validity of their model.

An obvious approach is to provide some support for executing or animating
models. At Colorado State University (CSU) we developed the UMLAnT (UML
Animation and Testing) tool as a means for dynamically analyzing (testing) UML
design models. A UMLAnNT design model consists of class diagrams with op-
erations specified in a Java-like action language called JAL [4]. UMLANT is an
Eclipse plugin that provides support for (1) generating test inputs that satisfy cri-
teria based on coverage of elements in a sequence diagram that describes the sce-
narios that will be exercised in a test, (2) executing the design model using test
inputs (a test input is an operation with parameter values), and (3) showing execu-
tion progress in terms of sequence diagrams and changes to object configurations.
We are currently updating the tool to the latest version of Eclipse and making it as
robust as we can.

We are also developing lightweight scenario-based analysis techniques that al-



low developers to check whether a scenario describing a desired or undesired be-
havior is supported by a model [10]. The technique provides a less expensive way
of analyzing a system in the cases where exhaustive formal analysis is not possible
or cost-effective. In the approach we are developing, a behavior is described as a
sequence of snapshots, where a snapshot is an object configuration that conforms
to a class diagram. A class model with operations specified in the Object Con-
straint language (OCL) is transformed to a class model, called a Snapshot Model,
that characterizes all possible behaviors (sequences of snapshots). A verifier then
provides scenarios (expressed as sequence diagrams) and the analysis tool we are
developing checks whether these scenarios conform to the Snapshot Model.

One of the problems that our analysis approaches and those developed by other
researchers face is that they do not handle incomplete models well. This is one of
the challenges that we are currently tackling in our analysis work.

Another aspect that requires attention is ensuring consistency of behavioral and
structural concepts across different modeling views. This is a particularly challeng-
ing problem in the UML, and is sometimes one of the reasons practitioners limit
their use to one or two UML diagram types (typically class diagrams, sequence dia-
grams or statemachine diagrams). One of the problems that hinders research in this
area is the size of the UML language (as reflected in its metamodel) - this makes
it very difficult to determine precisely the consistency relationships that must hold
across elements in different diagrams. Furthermore, it has not been verified that the
UML metamodel is indeed a valid description that can be relied upon correctly de-
fine these relationships. A good usability challenge problem for verification tools
is finding an answer to the question ~’Is the UML metamodel correct?”.

1.2 Transformations, Semantc Variations, and Models @ Run.Time

The pevious subsection identified some obvious opportunties for applying verifi-
cation techniques in the MDE context. That was just the tip of the iceberg; there
other more challenging verification problems that should be tackled in MDE. A
challenging problem concerns verification of model transformations. In a recently
published paper on testing model transformations we highlighted some of these
challenges [1]. One of the major problems concerns generating an adequate set of
test models. Generating test inputs for programs that use inputs with simple struc-
tures is challenging in itself; when the inputs are models with complex structures
the challenges are greater.

Another problem that must be dealt with is the variety of semantics that can
be associated with languages such as the UML. In the UML some parts of the
semantics are intentionally left undefined to allow users to tailor semantics to their
needs. While formal methods purists may argue for defining a single semantics for



the UML, the practical reality is that different groups use the UML differently, and
this need must be supported. It is highly unlikely that a singe verification approach
would meet all structural, functional and behavioral analysis needs. To tackle this
problem we have started a research initiative called GeMoC (Generic Model of
Computation) with the goal of developing a verification framework that can be
used in a modeling environment that supports a variety of semantics (or models of
computation). This is a challenging task that is best tackled by collaborating teams
of researchers with expertise in MDE and verification techniqueds. The initiative
was started by Benoit Combemale from INRIA in France, and involves researchers
from France and my group at CSU.

In closing, I’'ll mention an emerging MDE research area that attempts to ex-
tend the use of model to run time management: model@run.time [2]. There has
been significant work on using models to support runtime adaptation of software.
Verifying adaptations at runtime is a particularl challenging problem that groups
working in this area are currently tackling.

References

[1] B. Baudry, T. Dinh-Trong, J.-M. Mottu, D. Simmonds, R. France, S. Ghosh,
F. Fleurey, and Y. Le Traon. Challenges for model transformation testing. In
IMDT workshop in conjunction with ECMDA’06, 2006.

[2] Gordon Blair, Nelly Bencomo, and Robert B. France. Models@ run.time.
Computer, 42:22-27, 2009.

[3] Dan Chiorean, Mihai Pasca, Adrian Crcu, Cristian Botiza, and Sorin
Moldovan. Ensuring UML Models Consistency Using the OCL Environ-
ment. Electronic Notes in Theoretical Computer Science, 102:99 — 110, 2004.
Proceedings of the Workshop, OCL 2.0 - Industry Standard or Scientific Play-
ground?

[4] T.T. Dinh-Trong, S. Ghosh, and R.B. France. A systematic approach to
generate inputs to test UML design models. Software Reliability Engineer-
ing, 2006. ISSRE ’06. 17th International Symposium on, pages 95-104, Nov.
2006.

[5] Robert France and Bernhard Rumpe. Model-driven development of complex
software: A research roadmap. In L. Briand and A. Wolf, editors, Future of
Software Engineering 2007. IEEE-CS Press, 2007.



[6] Martin Gogolla, Jrn Bohling, and Mark Richters. Validating UML and OCL
models in USE by automatic snapshot generation. Journal on Software and
System Modeling, 4:2005, 2005.

[7] Alexander Knapp. A formal semantics for UML Interactions. In Proceedings
of UML’99, Springer-Verlag LNCS 1723, pages 116—-130, 1999.

[8] Johan Lilius and Ivan Porres Paltor. Formalising UML State Machines for
Model Checking. In Proceedings of UML’99, Springer-Verlag LNCS 1723,
pages 430-445, 1999.

[9] Seyyed M. A. Shah, Kyriakos Anastasakis, and Behzad Bordbar. From UML
to Alloy and back again. In MoDeVVa ’09: Proceedings of the 6th Interna-
tional Workshop on Model-Driven Engineering, Verification and Validation,
pages 1-10, New York, NY, USA, 2009. ACM.

[10] Lijun Yu, Robert B. France, and Indrakshi Ray. Scenario-Based Static Analy-
sis of UML Class Models. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel
Bruel, Axel Uhl, and Markus Vélter, editors, MoDELS, volume 5301 of Lec-
ture Notes in Computer Science, pages 234-248. Springer, 2008.



