Raising Level of Abstraction with Partial Models: A
Vision

Marsha Chechik Arie GurfinkeP, Sebastian Uchité] and Shoham Ben-David

! Department of Computer Science, University of Toronto
? SEl/CMU
3 University of Buenos Aires and Imperial College London

1 Introduction and Position

We support the goals of the workshop to concentrate commafidrts towards usable
verification. We believe that the keys to addressing thiblem areabstraction(i.e.,
raising the level of abstraction at which the software isglesd) andautomation(i.e.,
creating automated and scalable tools for reasoning abichtsoftware at the highest
level of abstraction possible).

Specifically, we advocate designing and constructing sofveystems by starting
with high-level “abstract” models or by synthesizing op&naal models from (declar-
ative) specifications. Then, such models can be refined bygdietail, as necessary,
while preserving the properties of interest. Such an aptroahich builds on a recent
trend in model-driven development (MDD), may allow “buiidi quality and reliabil-
ity” into the software from the very beginning of the desiga-cycle.

Our position is that in order to providesable verificationn this domain, we need
notations and techniques with the following properties:

1. Handling incompletenesslt is clear that “abstract” models are incomplete —i.e.,
some details are hidden (“abstracted”) away. An abilitygecsfy such incomplete
models and reason with them is essential. The required atimminvolves
(a) reasoning (using model-checking or theorem provingpabuch models w.r.t.

a variety of (temporal, behavioral, correctness) propsytncluding, properties
that may depend on details that are not present at a givehdeabstraction
and, therefore, may warrant an “l do not know” answer.

(b) refinement (i.e., integrating new information such aditi@hal behavior and/or
additional data objects). Refinement must preserve priegarstablished at a
higher level of abstraction (otherwise, all correctnesatdshed earlier in the
software lifecycle does not carry over to later stages).

(c) merge (combining information from multiple sources)r Example, integrat-
ing (possibly conflicting) viewpoints of different stakétiers such as the end-
users, maintainers, the database, etc.

(d) operationalization (an ability to simulate, test, aatidate a model). A repre-
sentative example is constructing a model representingadl@lacomposition
of several components described at different levels ofrattsbn and/or from
viewpoints of different stakeholders.



The motivation is to do the analysis as early as possibleardtsign lifecycle —
before the complete software is built.

2. Handling inconsistency identification and resolution.Models early in the de-
sign lifecycle, models with multiple stakeholders, or misdmming from different
sources are bound to be inconsistent. Therefore, suppddlérating (e.g., by not
trivializing the entire logical inference) and resolvirgyd., through computer-aided
negotiation) inconsistency must be provided.

3. Support for operationalization of models.

(a) Code generation. Once a model is consistent and haseufffievel of detail,
it must be converted into running code. Ideally, this stepusthinclude suffi-
cient traceability to allow for the use of the original mod&i debugging and
maintenance in downstream activities.

(b) Synthesis. We believe that more analyses are possitda miodels of software
are operationalized, e.g., expressed in the form of statdhimes. Such oper-
ational models can be produced directly by users or syrtb@srom higher-
level, declarative specifications such as temporal logimtdas and scenarios.

(c) Validation. Operational models can and should be veidaising simulation
and testing, and model-checked against properties ofeisiteideally, results
of validation should help the developer determine how taneethe models
further.

We expect that the combination of these properties allovis start with high-level op-
erational models and, though property-preserving refimepemsure that the resulting
software systems will have the desired properties.

Our vision is related to the classical refinement methodeblgke the B method [1],
to the traditional synthesis approaches like [15] and taMI¥D techniques [12]. Yet,
the vision is unique in the combination of the above threeattaristics. For example,
refinement uses partiality but does not include operatipaiEbn. Synthesis does oper-
ationalization but does not explicate partiality of theusimin. MDD techniques allow
inconsistencies but do not capture partiality explicitly.

While there are several modeling formalisms and reasomangdworks that can
support our vision, in this paper, we concentratgartial behavioral modeland some
of our recent and on-going projects.

A lot of notations and formalisms for this work have been digped with the aim
of capturing abstractions of complex software systemst iBhavhile these formalisms
omitted various details, they were available in the undegyoncrete models. In con-
trast, in our work we do not assume presence of concrete madelthus each partial
model essentially representsetof concrete models — those that can be obtained via
refinement.

The rest of this paper is organized as follows: In Section@survey related work
on partial modeling formalisms and formally define and iftate one of them — Modal
Transition Systems (MTSs). In Section 3, we summarize oceneresults on using
MTSs as the formalism for our usable verification vision.dHy in Section 4, we
describe some limitations of the MTS-based framework antivaie some of our cur-
rent/future work in this field.



login?  success? balance, login  success? balance
. ,
e‘ topup?, @ e‘ withdraw
fail? withdraw
A exit B: exit

balance,

topup?,

withdraw

fail?

success?

retainCard

recoverCard

recoverCard

retainCard

Fig. 1. Some MTSs:A andC are ATM modelsj5 is a refinement ofd; D is a merge ofA andC.
2 Partial Models

We begin with a well-known concept of Labeled Transitiont8gss.

Definition 1. (Labeled Transition Syster#) Labeled Transition Systeh.TS) is a tu-
pleL = (S, 4,4, sy), whereS is a finite set of states4 is a set of actionsA C
(S x A x S) is a transition relation between states, ande S is the initial state.

Modal Transition Systems (MTSs) [10, 14] allow explicit nedidg of what isnot
known about the behavior of a system. They extend LTSs witidaitional set of tran-
sitions that model the interactions with the environmeat the system cannot guaran-
tee to provide, but, equally, cannot guarantee to prohibit.

Definition 2. (Modal Transition System)\ Modal Transition SystenfMTS) M is a
structure (S, A, A", AP, s4), where A”™ C AP, (S, A, A", sp) is an LTS representing
requiredtransitions of the system and, A, AP, s¢) is an LTS representingossible
(but not necessarily required) transitions of the system.

MTSs specifypartial behavioral modelsvhich distinguish between required, pro-
hibited, or unknown behaviors. When depicting MTSs, we eenate states for refer-
ence and assume that states the initial state Requiredtransitions are denoted by a
solid labeled arrow. Transitions that goessible but not requireda.k.a.maybetran-
sitions) are denoted by a question mark following the labeknsitions on sets are
shorthand for a single transition on every element of the set

For example, consider a specification of software contrgli bank Automated
Teller Machine (ATM). The specification may consist of a n@mbf use cases exem-
plifying how the ATM is to be used, and some properties it ipaoted to satisfy. An



example use case is “when a user has successfully logged.irinserted a valid card
and keyed in a valid password, the user must be offered tihaniolg choices: with-
draw cash, balance slip or log out”. In addition, some ATMs/meovide an optional
feature of topping up a pay-as-you-go mobile phone. A ptéessiaifety property of an
ATM is to prohibit withdrawals, balances and top-ups if treeuis not logged in. An
operational model, in the form of an MTS that captures thevahse-case and prop-
erty, is depicted in modell in Figure 1. Here, the initial state of the model is labeled
0, the transition from state 0 dagin is allowed (but not required); all other transitions
from state 0 are prohibited. If the system has provisionsdigging in the user and the
login is successful, the user (in state 2) must be given aettoiwithdraw cash, obtain
a balance or exit. Thip-upfeature is optional, i.e., allowed but not required.

C in Figure 1 is another ATM model. Unlikd, which gives an overview of the en-
tire ATM system{ concentrates just on the possible protocols for a failethlatiempt.

It allows zero, one and two failures, and requires that itnloases there aretainCard
andrecoverCardransitions. This model specifies nothing about the opematallowed
once a successful login has been achieved.

Refinement of MTSs maintains required behaviors, does riaidace behaviors
that are prohibited, but can change unknown behaviors égaired or prohibited. For
example, modeB of Figure 1 shows one possible refinement of modlethe unknown
transition onlogin became a required transition, and the optional transitiofaib and
the self-loop ortop-upin state 2 were omitted.

MTSs are members of a large family of partial modeling forisrat including Par-
tial Labeled Transition Systems (PLTSs) [18], multi-valistate machines [8], Mixed
Transition Systems [7] and multi-valued Kripke structu#e$, 11] among others.

3 Modeling and Analysis with Modal Transition Systems

In our work [5, 10, 16, 17], we have studied MTSs as the undtgglformalism for en-
abling usable verification. Specifically, our goal was t@iptet an MTS as a concise
representation of a set of LTSs and to define refinement aviegpartiality. More-
over, we found it important to consider models with diffareacabularies, describing
different aspects from the perspectives of different dialders (and, hence, of diverse
scopes, as correspond to the elaboration of behaviorallsodgractice). For example,
modelsA andC in Figure 1 describe different aspects of the ATM model and their
vocabularies overlap but are not the same.

In our study of MTSs, we concentrated on defining operationgddSs: refinement,
merge (defined as the least common refinement of two modelsgjstency checking
(defined as absence of the merge of two models), synthes@|gb@omposition and
model-checking of MTSs [10, 16]. These operations were émgnted in MTSA — a
tool for specifying, animating and reasoning about MTS ne@&. A screenshot of
MTSA is shown in Figure 2. We have not explored code generatio

We discuss some of MTS operations below. Merge is perhapadie unusual one.
Its goal is to combine information coming from various s@s.cDefined as the least
common refinement of two models, it preserves all requirdthbiers of the models.
It also preserves all prohibited behaviors (i.e., if naitmdel was allowed to have a



MTSA - webMail. Its
File Edt Check Buld M5 Window Help Options

D fBE o o B8 |l B | AFcpetiesandscenaic Jetce 44

Edit | Qutput | Draw

Scenario logoutMsg?

AIIProierties | enahle?
I AllPropertiesAndScenario

authenticate? logouthisg

e X 3

enahle

Fig. 2. MTSA screenshot — Draw View.

particular behavior then neither would their merge). Hoeveif a particular behavior
is possible but not required in one model and is requiredhijpited) in the other, then
it is required (prohibited) in the merge. For example, mddéh Figure 1 is the merge
of A andC. Note that thdogin transition from state 0 is possible but not requirecdin
but is required irC; thus, it is required in the merge.

We showed that our refinement operator preserves propesrpessed in Fluent
LTL [13], whether they are true or false in the less refined elo0f course, properties
which are “unknown” in the less refined model might become tufalse in the more
refined one, or remain unknown. For example, consider tlegyspfoperty for the ATM
which states that if the user is not logged in, withdrawals balance checks are pro-
hibited. It is expressed in Fluent LTL &(LoggedOut=- (—balanceA —withdraw)),
whereLoggedOuis afluent(i.e., a state description) indicating that the user eittaer
not executed #ogin or hasexited from the system. This property holds for the model
A shown in Figure 1 and thus is preserved in its refinem@nt,

Since merge is based on refinement, a property which is taleeffin two models
is also true (false) in their merge.

To operationalize partial descriptions of behavior of elifint aspects of software,
we have developed synthesis algorithms. These compute NMoBssafety proper-
ties described in temporal logic (they give the “upper bdumidthe MTS behavior,
specifying prohibited behavior), and from scenarios esged as Message Sequence
Charts [16] (they give the “lower bound” of the MTS behavispecifying required
behavior).



4

Challenges

In this section, we discuss some challenges in using MTShkeagpdrtial behavioral
models to support our Usable Verification position.

1. While MTSs can be used to detect inconsistency (and evemtialy help with

negotiation), they do not allow analysis in the presenceodmnsistency. We have
looked at other partial formalisms that allow such reasgrimost notably, multi-

valued Kripke structures [6] and built a model-checkingiaaghat can determine
whether a (CTL) property evaluates to “inconsistent”, idigidn to true, false and

unknown. However, it is unclear how to combine multi-valu&tdbke structures

with labeled transition-like approaches such as MTSs, ke talvantage of other
operations defined over them.

. The main drawback of MTSs and similar operational paniatieling formalisms

is that the complexity of many key operations associatel thiem is EXPTIME-
complete [2, 3]. This restricts the use of MTSs to only molgleszed programs.
Yet, our experience using MTSs for specification and modadin(relatively com-
plex) software systems indicates that most of their usenigdd either to capturing
particular traces or, at most, linear behavior with somadhang parts.

We are now working on defining a new formalism for which mafagions of
partial models can be achieved relatively inexpensiveth@tit compromising too
much on expressive power. A first attempt is to descréfggliredandpossiblebe-
havioral traces as regular expressions (RES). These caplesented as automata,
and manipulated in linear time. However, regular expressere less expressive
than other modeling formalisms: for example, they cannptess triggered scenar-
ios: if a prefix of a behavior trace appears, some suffix bemaaust be possible
(e.g., absence of deadlocks). Instead, we are looking torelimear temporal logic
with trigger abilities, to identify a “sweet spot”: a langyewith sufficient expres-
sive power and yet with low-complexity of analysis for thdte@re-engineering
tasks outlined in Section 1.

. Finally, our proposal is best categorized as “green fieddkarch. While having

many desirable characteristics, it is unclear how to comlmiar approach with
more traditional methods for software development.

References

1.

2.

J.-R. Abrial. The B-Book: Assigning Programs to MeaningSambridge University Press,
1996.

A. Antonik, M. Huth, K. Guldstrand L., U. Nyman, and A. Wagski. “EXPTIME-complete
Decision Problems for Modal and Mixed Specification€&lectronic Notes in Theoretical
Computer Scienc®42(1):19-33, 2009.

. N. Benes, J. Kretnsky, K. Larsen, and J. Srba. “Checkingrdigh Refinement on Modal

Transition Systems is EXPTIME-complete”. Rroceedings of ICTAC'Q9ages 112-126,
2009.

. G. Bruns and P. Godefroid. “Model Checking Partial Statac®s with 3-Valued Temporal

Logics”. In Proceedings of Proceedings of 11th International Confeeean Computer-
Aided Verification (CAV’'99)volume 1633 of NCS pages 274-287. Springer, 1999.



10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Chechik, G. Brunet, D. Fischbein, and S. Uchitel. “RéuBehavioural Models for Re-
quirements and Early Design”. Methods for Modelling Software Systems (MMQ®&8in-
ber 06351 in Dagstuhl Seminar Proceedings, pages 1-10, 2007

. M. Chechik, B. Devereux, S. Easterbrook, and A. GurfinkéMulti-Valued Symbolic

Model-Checking”.ACM Transactions on Software Engineering and Methodql®gy4):1—
38, October 2003.

. D. Dams.Abstract Interpretation and Partition Refinement for Mo@élecking PhD thesis,

Eindhoven University of Technology, The Netherlands, 11996.

. R. Diaz-Redondo, J. Pazos-Arias, and A. Fernandez-ViReusing Verification Informa-

tion of Incomplete Specifications”. Rroceedings of the 5th Workshop on Component-Based
Software Engineering2002.

. N. D’Ippolito, D. Fishbein, M. Chechik, and S. Uchitel. A: The Modal Transition

System Analyzer”. IrProceedings of International Conference on Automated\soét En-
gineering (ASE’08)pages 475-476, September 2008.

D. Fischbein, G. Brunet, N. D’Ippolito, M. Chechik, andi&hitel. “Weak Alphabet Merg-
ing of Partial Behaviour Models’ACM Transactions on Software Engineering and Method-
ology (TOSEM)pages 1-49, 2010.

M. Fitting. “Many-Valued Modal Logics”. Fundamenta Informaticael5(3-4):335-350,
1991.

D. S. Frankel.Model Driven Architecture: Applying MDA to Enterprise Comtipg. John
Wiley & Sons, 2003.

D. Giannakopoulou and J. Magee. “Fluent Model Checkindg=vent-Based Systems”. In
Proceedings of the 9th joint meeting of the European Soéwagineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Egige(ESEC/FSE’'03)
pages 257-266. ACM Press, September 2003.

K. Larsen and B. Thomsen. “A Modal Process Logic”.Piioceedings of 3rd Annual Sym-
posium on Logic in Computer Science (LICS'88ges 203-210. IEEE Computer Society
Press, 1988.

A. Pnueli and R. Rosner. “On the Synthesis of a Reactivdlié3. In Proceedings of 16th
ACM Symposium on Principles of Programming Languadasuary 1989.

S. Uchitel, G. Brunet, and M. Chechik. “Synthesis of RhBehaviour Models from Prop-
erties and ScenariostTEEE Transactions on Software Engineer;ii3§35):384—406, 2009.

S. Uchitel and M. Chechik. “Merging Partial Behaviouvidels”. InProceedings of 12th
ACM SIGSOFT International Symposium on Foundations of/&oét Engineering pages
43-52, November 2004.

S. Uchitel, J. Kramer, and J. Magee. “Behaviour ModebBiation using Partial Labelled
Transition Systems”. IProceedings of the 9th joint meeting of the European Soétwar
Engineering Conference and ACM SIGSOFT Symposium on thed&tians of Software
Engineering (ESEC/FSE’03pages 19-27, 2003.



