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Abstract. Symbolic (Java) PathFinder (SPF) is a symbolic execution
tool that is used for the automated generation of test cases that satisfy
various coverage criteria, such as condition, path and MC/DC coverage.
The tool has been used at NASA, in academia, and in industry, most
notably at Fujitsu. We describe our experience with using SPF and we
identify some of the challenges for making the tool more usable. While
our discussion focuses on SPF, we believe that the challenges described
here apply to other advanced verification tools as well.

1 Introduction

Modern software involves programming multi-core processors, cloud-based sys-
tems, and cyber-physical systems. Such software needs to be highly reliable and
secure. Techniques for ensuring reliability and security of software include testing
and formal analysis, such as theorem proving, model checking, symbolic execu-
tion, static analysis, etc. Despite the advances in formal techniques, testing is
still the most widely used method for error detection at NASA, as well as else-
where. However, while formal techniques can provide exhaustive analysis with
strong guarantees of reliability and safety, testing may miss important errors,
since it can only analyze some of the program executions. In our work, we aim to
use the strengths of automated formal techniques to make testing more effective.

2 Symbolic PathFinder

Towards this end, we have developed Symbolic PathFinder (SPF), a tool that
integrates symbolic execution, with model checking and constraint solving to
perform automated generation of test cases, while checking properties of code
during test case generation. SPF uses the analysis engine of Java PathFinder
(JPF) [1] - a software model checking tool developed at NASA Ames. We have
found that generating test cases is potentially the easiest path towards the infu-
sion of advanced technologies, such as model checking and symbolic execution.

In SPF, programs are executed on symbolic inputs that represent all possible
concrete inputs. Values of variables are represented as numeric (mixed integer
and real) constraints, encoding the conditions from the code. These constraints
are then solved to generate test inputs guaranteed to exercise the analyzed code.



SPF relies on off-the-shelf constraint solvers to solve the symbolic constraints.
SPF handles pre-conditions, recursive input data structures as inputs and con-
currency. The user can customize SPF: (i) to specify the testing coverage criteria
(e.g. path, condition, MC/DC, user-defined), (ii) to pick different search strate-
gies (breadth-first search, depth-first search, heuristic search), and (iii) to output
the test cases in different formats, such as HTML, JUnit tests and a format ac-
cepted by NASAs Antares simulator.

Symbolic PathFinder is built on top of JPF and naturally analyzes Java
bytecode. However, through a project at Ames, it now applies to different kinds of
models as well [5]: e.g. Simulink/Stateflow, Standard UML, Rhapsody UML, etc.
thus increasing SPF’s usability. We have built translators from these models into
a common Java environment, to make them amenable for test case generation
with SPF. In our ”polyglot” framework one can translate a state machine in Java
and then plug-in different semantics, e.g. use a Stateflow interpreter or a UML
interpreter, to study inter-operability, i.e. if a model created with one tool, e.g.
Mathworks’Stateflow, can run and satisfy the same properties with a different
tool, e.g. Rhapsody.

3 Experience

SPF has been applied successfully at NASA, in academia and in industry, most
notably at Fujitsu, where it was used for testing web applications.

In one application [4], SPF was used to generate test cases for a flight soft-
ware component, the On-board Abort Executive developed at NASA JSC. The
executives role is to monitor a set of flight rules aboard a spacecraft. When the
flight rules are violated, a mission abort is issued. For this application, SPF was
customized to generate test cases in the form of Antares scripts, so that to be
used directly by the developers in their testing environment. Furthermore, the
search strategy to be used was customized to satisfy some specific requests from
the developer, i.e. to consider only one flight rule violation at the time. While
manual testing took one week and could not achieve adequate coverage, and
guided random testing achieved poor coverage, SPF generated test cases that
achieved complete coverage (all possible flight rule and abort combinations) in
less than a minute. During test case generation, SPF also reported some property
violations (e.g. a flight rule as broken but no abort was picked). Furthermore
the generated test suite was used in regression testing for a new version of the
executive, which helped discover a major bug that led to the re-design of the
executive component and also of other components that interacted with it.

While performing this case study, we found some interesting issues related
to the application of SPF for automated test case generation. For the on-board
abort executive, the input data is constrained by the environment or physical
laws. For example we generated test inputs, where inertial velocity is 24000 ft/s
when the geodetic altitude is 0 ft. This is physically impossible. To avoid gener-
ation of such test cases, one would need to encode these constraints explicitly as
pre-conditions, which would require non-trivial human input. Our solution was



to use machine learning techniques on the system level simulation runs to infer
such constraints automatically [2].

In conclusion, it is not enough to generate test cases that achieve full coverage;
the test cases also need to make sense to the software developers. Furthermore,
the assumptions about the environment of the components under analysis (i.e.
the physical preconditions in our case) need to be made explicit (using inputs
from the user and also automated inference techniques). This is true not only
for SPF but for many other advanced tools that apply to software components
(since the entire system under analysis is seldom available or amenable to formal
verification).

4 Usability Challenges

Based on our experience with SPF and similar tools, we have identified the
following (incomplete list of) challenges.

4.1 Tool Usability

– the tool should be easy to set-up (this is not true for JPF, and SPF) and
portable for multiple architectures

– the tool should provide animation and/or graphical display of results, in-
cluding intermediate results (e.g. coverage, nodes, transitions, etc); this is
particularly important for tools that do not give ”instant” responses, such
as SPF

– the tool should provide informative counterexamples/explanations of errors;
– the tool documentation should be easily accessible on-line (the JPF project

uses wiki pages)
– the tool should be integrated with other tools that are used by developers

for writing and/or testing their code (e.g. JPF provides an Eclipse plug-in;
SPF outputs test cases in the form of JUnit tests or Antares scripts)

– the tool should provide clear display of different options (this is not true for
JPF/SPF that have many different options that are often confusing)

– the tool should be highly available – e.g. the JPF is open source

4.2 Research Challenges

– analysis should be as efficient as possible; symbolic execution techniques are
still very slow/costly in terms of number of paths to explore and number of
constraints to be solved; parallelization, compositional techniques and fast
constraint solvers will provide solutions to this challenge

– powerful constraint solvers and decision procedures are needed; applications
from NASA domain require solving complex, non-linear mathematical con-
straints that are undecidable or very hard to solve; new heuristic techniques
are necessary to solve such problems; test case generation for web applica-
tions and security problems requires solving over string constraints and com-
binations of numeric and string constraints(a very active area of research)



– automatic discovery of interfaces is needed, perhaps with (minimal) inputs
from the users; as mentioned the environment assumptions for the compo-
nents under analysis need to be made explicit; automata and machine learn-
ing techniques [3] and their combinations, can be used to infer the calling
context of the components

4.3 Domain Specific Knowledge

Finally we believe that for the successful adoption of advanced software analysis
tools in industry, one would need to provide for easy integration of domain
specific knowledge in the analysis and easy adaptation of the tool to the users
specific needs. For example, NASA uses many different models (for model based
development, for robot planning and execution, for integrated system health
management, etc.) Therefore we adapted SPF to work from code to models.
Also we customized the search strategies and output format of the tool based
on the user’s needs. Of course, there may be many other ways of incorporating
the user’s domain specific demands into an advanced analysis.

5 Conclusion

In this paper we discussed the Symbolic PathFiner tool, our experience with
using it, and some lessons learned. We also outlined some of the challenges for
adopting the tool in industry. Although we made our presentation in the context
of a particular tool, we believe that our discussion is relevant for other advanced
verification tools.
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