
Environment Modeling:
A Usability Challenge for Verifying

Cyber-Physical Systems

Environment Modeling:
A Usability Challenge for Verifying

Cyber-Physical Systems

Sanjit A. SeshiaSanjit A. Seshia

EECS Department EECS Department
UC BerkeleyUC Berkeley

Workshop on Usable Verification

November 2010

– 2 –

Typical Verification Picture: Is it complete?!Typical Verification Picture: Is it complete?!

MODEL
CHECKER

PROGRAM

CORRECT
(satisfies property)

BUGGY
(error trace)PROPERTY

ENVIRONMENT
MODEL

– 3 –

Quantitative Analysis / VerificationQuantitative Analysis / Verification

Does the brake-by-wire software
always actuate the brakes within
1 ms?
Safety-critical embedded systems

Can this new app drain my
iPhone battery in an hour?
Consumer devices

How much energy must the sensor
node harvest for RSA encryption?
Energy-limited sensor nets,
bio-medical apps, etc.

– 4 –

Cyber-Physical Systems (CPS):
Orchestrating networked computation
with physical systems

Cyber-Physical Systems (CPS):
Orchestrating networked computation
with physical systems

Courtesy of Kuka Robotics Corp.Courtesy of Doug SchmidtCourtesy of Doug Schmidt

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic
control at
SFO)Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

[E.A.Lee]

– 5 –

Cyber-Physical Systems (CPS):
Orchestrating networked computation
with physical systems

Cyber-Physical Systems (CPS):
Orchestrating networked computation
with physical systems

Courtesy of Kuka Robotics Corp.Courtesy of Doug SchmidtCourtesy of Doug Schmidt

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic
control at
SFO)Avionics

Telecommunications

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Factory automation

– 7 –

Time is Central to Cyber-Physical SystemsTime is Central to Cyber-Physical Systems

Several timing analysis problems:Several timing analysis problems:
 WorstWorst--case execution time (case execution time (WCETWCET) estimation) estimation
 Estimating Estimating distributiondistribution of execution timesof execution times
 ThresholdThreshold property: can you produce a test case property: can you produce a test case

that causes a program to violate its deadline?that causes a program to violate its deadline?
 SoftwareSoftware--inin--thethe--loop simulationloop simulation: predict : predict

execution time of particular program pathexecution time of particular program path

– 8 –

Challenge: Environment Modeling
(Timing Analysis)
Challenge: Environment Modeling
(Timing Analysis)
 Timing properties of the Program depend heavily Timing properties of the Program depend heavily

on its environmenton its environment
 Environment =Environment =

Processor & Memory HierarchyProcessor & Memory Hierarchy
++ Operating System, other processes/threads, Operating System, other processes/threads, ……
++ NetworkNetwork
++ I/O DevicesI/O Devices
++ ……

 Modeling the full environment is hard!Modeling the full environment is hard!
 However, we need a However, we need a ‘‘reasonablyreasonably’’ precise precise

environment modelenvironment model
–– Unlike traditional software verificationUnlike traditional software verification

– 9 –

Relative Success of “Boolean” Software
Verification
Relative Success of “Boolean” Software
Verification
 From theoretical ideas to industrial practice in From theoretical ideas to industrial practice in

~ 15 yrs~ 15 yrs

Some Reasons:Some Reasons:
 Availability of open source softwareAvailability of open source software
 WellWell--defined target problems: Device drivers, defined target problems: Device drivers,

memory safety, security vulnerabilities, memory safety, security vulnerabilities,
concurrency, concurrency, ……

 Value of bug findingValue of bug finding
 Coarse abstraction of environment OK Coarse abstraction of environment OK

– 10 –

Challenge of Timing Analysis: ExampleChallenge of Timing Analysis: Example

flag==1

flag==1

flag=1;
(*x)++;

CFG unrolled
to a DAG

*x += 2;

On a processor
with a data
cache

X

Timing of an edge (basic
block) depends on:
• Program path it lies on
• Initial platform state

Challenges:
• Exponential number of
paths and platform states!
• Lack of visibility into
platform state

– 11 –

Current State-of-the-art for
Timing Analysis
Current State-of-the-art for
Timing Analysis

 Program = Sequential, Program = Sequential,
terminating programterminating program

 Runs uninterruptedRuns uninterrupted

 Platform = Platform =
Simple Pipelined Processor Simple Pipelined Processor
+ Data/Instruction Cache+ Data/Instruction Cache

Abstract
Timing Model

PROBLEM:
Can take several man-
months to construct!

Also:
• Limited to extreme-case analysis
• Often requires additional platform
specification from users

– 12 –

Existing Approaches: One-size-fits-all? Existing Approaches: One-size-fits-all?

 Why construct a Why construct a
SINGLE timing model SINGLE timing model
for ALL programs?for ALL programs?

 Only interested in Only interested in
analyzing a specific analyzing a specific
program.program.

 Why not Why not automatically automatically
synthesizesynthesize a a programprogram--
specificspecific timing model?timing model?

– 13 –

Promising Direction
(for timing analysis and quantitative verification in general)
Promising Direction
(for timing analysis and quantitative verification in general)

 Inductive SynthesisInductive Synthesis
–– Automatically generate environment model Automatically generate environment model

through through active learning active learning
 Active = Select behaviors from which to learnActive = Select behaviors from which to learn
 Use core verification techniques (SAT, SMT, Use core verification techniques (SAT, SMT,

model checking, model checking, ……) to generate selected) to generate selected
behaviorsbehaviors

 Example: Example: GameTimeGameTime for timing analysis of for timing analysis of
softwaresoftware

S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Systems Using Game-
Theoretic Learning”, ACM Trans. Embedded Computing Systems.

– 14 –

The GameTime Approach: OverviewThe GameTime Approach: Overview
Game-Theoretic Online Learning +

Satisfiability Solving Modulo Theories (SMT)

PROGRAM CONTROL-FLOW
GRAPH

EXTRACT BASIS PATHS

i1
i2

i3

SMT SOLVER GENERATES
TEST INPUTS

PREDICT
TIMING

PROPERTIES
(worst-case,

distribution,etc.)

LEARNING
ALGORITHM

i1
i2
i3

…

42
75
101

…

MEASURE
EXECUTION

TIMES

online

Publication: S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Systems Using
Game-Theoretic Learning”, ACM Trans. Embedded Computing Systems.

– 15 –

Estimating the Distribution of Times for Modular
Exponentiation: predictions from 9 measurements in
blue, actual 256 measurements in red

Estimating the Distribution of Times for Modular
Exponentiation: predictions from 9 measurements in
blue, actual 256 measurements in red

For StrongARM
processor

– 16 –

Potential Barriers
(from Academic Perspective)
Potential Barriers
(from Academic Perspective)

 Student SkillsStudent Skills
–– Students need crossStudents need cross--cutting skills cutting skills

(or willingness to learn)(or willingness to learn)
–– Hardware + Software + Formal Hardware + Software + Formal

Methods Methods
–– EE + CS EE + CS
–– New UG course at Berkeley on New UG course at Berkeley on

Embedded Systems (EECS 149)Embedded Systems (EECS 149)
 Lack of OpenLack of Open--Source BenchmarksSource Benchmarks

–– More challenging for More challenging for ““quantitativequantitative””
software verification! software verification!
 Heavy dependence on hardware Heavy dependence on hardware

platformplatform

– 17 –

SummarySummary

 Quantitative Verification of CyberQuantitative Verification of Cyber--Physical Physical
Software SystemsSoftware Systems

 Challenge: Challenge: Environment modelingEnvironment modeling
–– Current manual methods too tedious and errorCurrent manual methods too tedious and error--

proneprone
 Proposed Approach: Proposed Approach: Automatic model Automatic model

generation by Inductive Synthesisgeneration by Inductive Synthesis
–– Active Learning + Traditional verification Active Learning + Traditional verification

techniquestechniques (e.g., SAT/SMT)(e.g., SAT/SMT)
–– One instance: One instance: GameTimeGameTime for timing analysis for timing analysis

of softwareof software
–– Perhaps a killer app for synthesis methods?Perhaps a killer app for synthesis methods?

