
Supplementary Note for

Static Analysis: An Abstract Interpretation Perspective

Kwangkeun Yi

The 9th Summer School on Formal Techniques, May 2019

1 Order Relations and Ordered Sets

We assume a set E is given. Intuitively, an order relation over E is a mathematical object that
specifies for which pairs x, y of elements of E we can say that x is “smaller” than y for some given
notion of “smaller”. Formally, an order relation is a binary relation � over E that is reflexive (� is
reflexive if and only if ∀x ∈ E, x � x), transitive (� is transitive if and only if ∀x, y, z ∈ E, x �
y and y � z =⇒ x � z), and anti-symmetric (� is anti-symmetric if and only if ∀x, y ∈ E, x �
y and y � x =⇒ x = y).

An order relation is total when any pair of elements can be compared (i.e., if ∀x, y ∈ E, x � y ∨
y � x).

In the following, we assume � defines an order relation over E. If there exists an element x0 ∈ E
that is smaller than any other element of E for �, we call x0 the infimum; to distinguish it, we
usually denote it by ⊥ (read “bottom”). Similarly, the supremum, if it exists, is the element that is
greater than any other element; it is usually denoted by > (read “top”).

Let x and y be two elements of E. When it exists, we call least upper bound of x and y the
element xt y that is greater than x and y and is smaller than any other element with that property.
While the existence of the least upper bound does not always hold, when it exists it is unique. In the
case of the powerset, the least upper bound is simply the set union, and the greatest lower bound is
the set intersection.

We say that an ordered set E is a lattice when it has an infimum and a supremum, and when
each pair of elements has both a least upper bound and a greatest lower bound. Moreover, when
any subset of E has both a least upper bound and a greatest lower bound, it is called a complete
lattice. As an example, the powerset of any set is a complete lattice.

Additionally, we say that E is a complete partial order (for short, CPO) if it has an infimum,
and is such that any chain of elements of E has a least upper bound in E.

Last, let us assume two ordered sets E and F (for simplicity we denote the order relations over
both sets by �) and a function f : E → F . We say that f is monotone if and only if, for all x, y ∈ E
such that x � y, we have f(x) � f(y). A stronger property is continuity : assuming that E and F
are CPOs, we say that f is continuous if and only if the image of any chain G of E by f has a least
upper bound, that is such that t{f(x) | x ∈ G} = f(tG). It is very easy to show that, when a
function is continuous, it is also monotone. We say that f is extensive if and only if, for all x ∈ E,
we have x � f(x).

2 Operators over Ordered Structures and Fixpoints

We call fixpoint of f an element x such that f(x) = x. Moreover, when it exists, the least-fixpoint
of f is the fixpoint of f that is smaller for � than any other fixpoint of f ; it is denoted by lfpf .

1

Theorem 1 (Kleene’s fixpoint theorem) If f is continuous and E is a CPO with infimum ⊥,
then f has a least fixpoint, that can be expressed as follows:

lfpf =
⋃
n∈N

fn(⊥)

Proof of Kleene’s fixpoint theorem. First, we need to justify the existence of the least upper
bound in the right hand side of the equality. As ⊥ is the infimum of E, we have ⊥ � f(⊥). Since
f is continuous, it is also monotone, thus we can prove by induction that, for all n ∈ N, we have
fn(⊥) � fn+1(⊥). Therefore {fn(⊥) | n ∈ N} forms a chain. As E is a CPO, it has a least upper
bound, that we denote by X.

Since the set of iterates of f from ⊥ is a chain, we can also apply to it the continuity of f . This
allows us to derive that {fn+1(⊥) | n ∈ N} has a least upper bound, that is equal to f(X):

f(X) = f(
⋃
n∈N

fn(⊥)) =
⋃
n∈N

fn+1(⊥) = ⊥ ∪
⋃
n∈N

fn+1(⊥) =
⋃
n∈N

fn(⊥) = X

We have proved that X is a fixpoint for f . To conclude, we simply need to prove that it is the least
one, that is any fixpoint of f is greater than it. Let us assume X ′ is another fixpoint. Then we can
prove by induction over n that fn(⊥) � X ′, which is easy: it holds at rank 0 by definition of the
infimum, and the property at rank n implies the property at rank n+ 1 thanks to the monotonicity,
and to the fact that X ′ is a fixpoint. Thus, by definition of the least upper bound:⋃

n∈N
fn(⊥) � X ′

This concludes the proof.

3 Properties of Galois-connections

Theorem 2 (Properties of Galois connection) Let (C,⊆) and (A,v) be a concrete domain and
an abstract domain with an abstraction function α and a concretization function γ that form a
Galois-connection, that is:

∀c ∈ C, ∀a ∈ A, α(c) v a ⇐⇒ c ⊆ γ(a)

Then the following properties hold:
• ∀c ∈ C, c ⊆ γ(α(c)) (or equivalently, id ⊆ γ ◦ α),
• ∀a ∈ A, α(γ(a)) v a (or equivalently, α ◦ γ v id),
• γ and α are monotone, and
• if both C and A are CPOs (any chain has a least upper bound), then α is continuous.

Proof. We assume the existence of the Galois-connection and prove items one by one:
(id v γ ◦ α) Let c be a concrete element. By the reflexivity of the order relation v, we have

α(c) v α(c). Thus, by the definition of Galois connections, c ⊆ γ(α(c)).
(α ◦ γ v id) Let a be an abstract element. By the reflexivity of the order relation ⊆, we have

γ(a) ⊆ γ(a). Thus, by the definition of Galois connections, α(γ(a)) v a.
(γ is monotone.) Let us assume c0, c1 are concrete elements such that c0 ⊆ c1. Then, because

id ⊆ γ ◦ α, c0 ⊆ c1 ⊆ γ(α(c1)). Hence, by the definition of Galois connections, α(c0) v α(c1).
(α is monotone.) Let us assume that a0, a1 are abstract elements such that a0 v a1. Then,

because α◦γ v id, α(γ(a0)) v a1 v a1. Hence, by the definition of Galois connections, γ(a0) ⊆ γ(a1).
(α is continuous.) Let S be a chain in C. Since C is a CPO, the least upper bound

⊔
c∈S exists

in C. Since α is monotone, for all element x in the chain S, we have α(x) v α(
⋃
c∈S c) and thus⊔

c∈S α(c) v α(
⋃
c∈S c).

2

The function γ ◦ α is monotone so it transforms a chain into a chain, thus {γ(α(c)) | c ∈ S} is a
chain and has its least upper bound in CPO C. Moreover, id ⊆ γ ◦ α, thus:⋃

c∈S
c ⊆

⋃
c∈S

γ(α(c))

The function γ is monotone, and for all element c in the chain S, we have α(c) v
⊔
c∈S α(c) and

thus γ(α(c)) ⊆ γ(
⊔
c∈S α(c)). Therefore:⋃

c∈S
γ(α(c)) ⊆ γ(

⊔
c∈S

α(c)),

As we compose the two above inequalities, we get:⋃
c∈S

c ⊆ γ(
⊔
c∈S

α(c)),

By the definition of Galois connections, this entails that α(
⋃
c∈S c) v

⊔
c∈S α(c). Hence, α(

⋃
c∈S c) =⊔

c∈S α(c). This concludes the proof.

4 Transitional-style Static Analysis Framework

4.1 Notations

• An element of A→ B, which is a map from A to B, is interchangeably an element in ℘(A×B).
For example, an element in L → M] of the abstract states is interchangeably an element in
℘(L×M]), a set (so called graph) of pairs of labels and abstract memories. Note that in
the above examples of this subsection we already used this graph notation to represent the
abstract state function.

• A relation f ⊆ A×B is interchangeably a function f ∈ A→ ℘(B) defined as

f(a) = {b | (a, b) ∈ f}.

For example, the concrete one-step transition relation ↪→⊆ S×S is interchangeably a function
↪→∈ S→ ℘(S).

• For function f : A→ B, we write ℘(f) for its powerset version defined as:

℘(f) : ℘(A)→ ℘(B)
℘(f)(X) = {f(x) | x ∈ X}

• For function f : A→ ℘(B), we write ℘̆(f) as a shorthand for ∪ ◦ ℘(f)

℘̆(f) : ℘(A)→ ℘(B)
℘̆(f)(X) =

⋃
{f(x) | x ∈ X}.

For example, powerset-lifted function Step : ℘(S)→ ℘(S) of relation ↪→

Step(X) = {s′ | s ↪→ s′, s ∈ X}

is equivalently, by regarding ↪→ as a function of S→ ℘(S),

Step = ℘̆(↪→).

• For functions f : A→ B and g : A′ → B′, we write (f, g) for

(f, g) : A×A′ → B ×B′
(f, g)(a, a′) = (f(a), g(a′)).

3

4.2 Framework

1. Let M to be the set of memory states that can occur during program executions. Let L be the
finite and fixed set of labels of a given program.

2. Let a concrete semantics be the lfpF where

concrete domain ℘(S) = ℘(L×M)
concrete semantic function F : ℘(S)→ ℘(S)

F (X) = I ∪ Step(X)
Step = ℘̆(↪→)
↪→ ⊆ (L×M)× (L×M)

Let ↪→ be the one-step transition relation over L×M.

3. Let its abstract domain and abstract semantic function be

abstract domain S] = L→M]

abstract semantic function F] : S] → S]

F](X]) = α(I) ∪] Step](X])

Step] = ℘(id,tM) ◦ π ◦ ℘̆(↪→])

↪→] ⊆ (L×M])× (L×M])

The ↪→] is the one-step abstract transition relation over L × M]. Function π partitions a
set ⊆ L × M] by the labels in L returning an element in L → ℘(M]) represented as a set
⊆ L× ℘(M]).

4. Let the abstract domains S] and M] be CPOs, and form a Galois-connection respectively with
℘(S) and ℘(M):

(℘(S),⊆) −−−→←−−−α
γ

(S],v) and (℘(M),⊆) −−−−→←−−−−
αM

γM
(M],vM)

where the partial order v of S] is label-wise vM :

a] v b] iff ∀l ∈ L : a](l) vM b](l).

5. Let the abstract one-step transition ↪→] and abstract union ∪] satisfy:

℘̆(↪→) ◦ γ ⊆ γ ◦ ℘̆(↪→])
∪ ◦ (γ, γ) ⊆ γ ◦ ∪]

Theorem 3 (Correct static analysis by F]) If S] is of finite-height (every chain in S] is finite)
and F] is monotone or extensive, then ⊔

i≥0

F]
i
(⊥)

is finitely computable and over-approximates lfpF :

lfpF ⊆ γ(
⊔
i≥0

F]
i
(⊥)) or equivalently α(lfpF) v

⊔
i≥0

F]
i
(⊥).

Proof. Proof structure is as follows:

the conditions =⇒ F ◦ γ ⊆ γ ◦ F] (1)

=⇒ ∀n ≥ 0 : Fn⊥ ⊆ γ(F]
n
(⊥)) (2)

=⇒ lfpF ⊆ γ(
⊔
i≥0

F]
i
(⊥)). (3)

4

First, note that
⊔
i F

]i(⊥) exists in CPO S], because that F] is monotone or extensive implies

the sequence ⊥, F]i⊥, F]2⊥, · · · is a chain.
(Proof of 1) From the condition ℘̆(↪→) ◦ γ ⊆ γ ◦ ℘̆(↪→]), follows Step ◦ γ ⊆ γ ◦ Step]. Recall

that Step = ℘̆(↪→) and Step] = (id,tM) ◦ π ◦ ℘̆(↪→]). Note that ℘̆(↪→]) v ((id,tM) ◦ π) ◦ ℘̆(↪→]),
because the partial order v is label-wise and the (id,tM) ◦ π operation partitions the result set
⊆ L×M] of ℘̆(↪→]) by the labels and returns the least upper bound (tM) of abstract memories in
each partition. Hence,

Step ◦ γ = ℘̆(↪→) ◦ γ ⊆ γ ◦ ℘̆(↪→]) by the condition of ↪→]

⊆ γ ◦ (id,tM) ◦ π ◦ ℘̆(↪→]) by the monotonicity of γ

= γ ◦ Step].

Then it follows that F ◦ γ ⊆ γ ◦ F], because

(γ ◦ F])X = γ(αI ∪] Step](X))

⊇ (γ ◦ α)I ∪ (γ ◦ Step])X by the condition of ∪]
⊇ I ∪ (Step ◦ γ)X by Step ◦ γ ⊆ γ ◦ Step] and id ⊆ γ ◦ α
= (F ◦ γ)X.

(Proof of 2) From F ◦ γ ⊆ γ ◦ F] it follows that

∀n ≥ 0 : Fn⊥ ⊆ γ(F]
n⊥)

by induction on n. Basis case n = 0 holds since F 0(⊥) = ⊥. For inductive cases, assume F k(⊥) ⊆
γ(F]

k
(⊥)). Then since F is monotone (since F is continuous),

F (F k⊥) ⊆ F (γ(F]
k⊥) by induction hypothesis

⊆ γ(F](F]
k⊥)). by F ◦ γ ⊆ γ ◦ F]

(Proof of 3) From ∀n ≥ 0 : Fn⊥ ⊆ γ(F]
n⊥), we prove the final goal⊔

i≥0

F i⊥ ⊆ γ(
⊔
i≥0

F]
i⊥).

Note that
⊔
i≥0 F

i(⊥) exists because sequence (F i(⊥))i≥0 is a chain in CPO ℘(S), and
⊔
i≥0 γ(F]

i⊥)

also exists in CPO S] becasue that (F]
i⊥)i≥0 is a chain and γ is monotone imply that (γ(F]

i⊥))i≥0
is a chain. Thus, from ∀n ≥ 0 : Fn⊥ ⊆ γ(F]

n⊥) it follows that⊔
i≥0 F

i⊥ ⊆
⊔
i≥0 γ(F]

i⊥)

⊆ γ(
⊔
i≥0 F

]i⊥). by the monotonicity of γ

This concludes the proof.

Definition 1 (Widening operator) A widening operator over an abstract domain A is a binary
operator O, such that:

1. For all abstract elements a0, a1, we have

γ(a0) ∪ γ(a1) ⊆ γ(a0 O a1)

2. For all sequence (an)n∈N of abstract elements, the sequence (a′n)n∈N defined below is ultimately
stationary: {

a′0 = a0
a′n+1 = a′n O an

Theorem 4 (Correct static analysis by F] and widening operator
`

) Let
`

be a widening
operator. Then the following chain Y0 v Y1 v · · ·

Y0 = ⊥ Yi+1 = Yi
h
F](Yi)

is finite and its last element Ylim over-approximates lfpF :

lfpF ⊆ γ(Ylim) or equivalently α(lfpF) v Ylim.

5

Proof. First, the sequence (Yi)i≥0 is a chain. The widening operator’s first condition γ(a
`
b) ⊇

γ(a) ∪ γ(b) means

a
`
b w α(γ(a) ∪ γ(b)) by Galois-connection
w α(γ(a)) t α(γ(b)) by the monotonicity of α
w a t b by id v α ◦ γ

hence a
`
b w a and a

`
b w b. Thus ∀k ≥ 0 : Yk v Yk+1 = Yk

`
F](Yk).

Second, by the second condition of the widening operator
`

, the chain (Yi)i≥0 is finitely station-
ary. Let the last element be Ylim.

We prove by induction that

∀n ≥ 0 :

n⋃
i=0

F k(⊥) ⊆ γ(Yk), (4)

which implies, because Ylim is the biggest element of (Yi)i,

∀n ≥ 0 :

n⋃
i=0

F k(⊥) ⊆ γ(Ylim),

hence ⋃
i≥0

F k(⊥) ⊆ γ(Ylim).

(Proof of 4) Base case n = 0 is obvious. For inductive cases, assume
⋃k
i=0 F

i(⊥) ⊆ γ(Yk).⋃k+1
i=0 F

i(⊥) =
⋃k
i=0 F

i(⊥) ∪ F k+1(⊥)
⊆ γ(Yk) ∪ F k+1(⊥) by induction hypothesis
= γ(Yk) ∪ F (F k(⊥))

⊆ γ(Yk) ∪ F (
⋃k
i=0 F

i(⊥)) by the monotonicity of F
⊆ γ(Yk) ∪ F (γ(Yk)) by induction hypothesis and the monotonicity of F
⊆ γ(Yk) ∪ γ(F](Yk)) by F ◦ γ ⊆ γ ◦ F]
⊆ γ(Yk

`
F](Yk)) by the definition of

`

= γ(Yk+1). by the definition of Yk+1

This concludes the proof.

4.3 Use Example of the Transitional-style Static Analysis

Theorem 5 (Soundness of ↪→]) Consider the concrete one-step transition relation and the ab-
stract transition relation of the example slides. If the semantic operators satisfy the following sound-
ness properties:

℘(evalE) ◦ γM ⊆ γV ◦ eval]E
℘(updatex) ◦ × ◦ (γM , γV) ⊆ γM ◦ update]x

℘(filterB) ◦ γM ⊆ γM ◦ filter]B
℘(filter¬B) ◦ γM ⊆ γM ◦ filter]¬B

then ℘̆(↪→) ◦ γ v γ ◦ ℘̆(↪→]). (The × is the Cartesian product operator of two sets.)

Proof. Without loss of generality, let us consider a singleton set {(l,m])} ∈ S] and prove for the
set the conclusion holds. We proceed by case analysis for the command at the l label.

6

(Case of “if B C 1 C 2”)

(℘̆(↪→) ◦ γ){(l,M])}
= ℘̆(↪→){(l,m) | m ∈ γM (M])}
= {(nextTrue(l),m1) | m1 ∈ ℘(filterB)(γM (M]))} ∪ {(nextFalse(l),m2) | m2 ∈ ℘(filter¬B)(γM (M]))}
⊆ {(nextTrue(l),m1) | m1 ∈ γM (filter]B (M]))} ∪ {(nextFalse(l),m2) | m2 ∈ γM (filter]¬B (M]))}

by the conditions of filter]B and filter]¬B
= γ{(nextTrue(l),filter]B (M])), (nextFalse(l),filter]¬B (M]))}
= (γ ◦ ℘̆(↪→])){(l,M])}.

(Case of “x := E ”)

(℘̆(↪→) ◦ γ){(l,M])}
= ℘̆(↪→){(l,m) | m ∈ γM (M])}
= {(next(l), (updatex ◦ (id, evalE))m) | m ∈ γM (M])} where notation (f, g)x = (f(x), g(x))
⊆ {(next(l),m) | m ∈ (℘(updatex) ◦ × ◦ (id, ℘(evalE)) ◦ γM)M]}
= {(next(l),m) | m ∈ (℘(updatex) ◦ × ◦ (γM , ℘(evalE) ◦ γM))M]}
⊆ {(next(l),m) | m ∈ (℘(updatex) ◦ × ◦ (γM , γV ◦ eval]E))M]} by the condition of eval]E
= {(next(l),m) | m ∈ (℘(updatex) ◦ × ◦ (γM , γV) ◦ (id, eval]E))M]}
⊆ {(next(l),m) | m ∈ (γM ◦ update]x ◦ (id, eval]E))M]} by the condition of update]x
= γ{(next(l), (update]x ◦ (id, eval]E))M])}
= γ{(next(l), update]x(M

], eval]E (M])))}
= (γ ◦ ℘̆(↪→])){(l,M])}.

Other cases similarly holds. This concludes the proof.

Comments. The underlying structure of the proof is fairly simple. Note that the ↪→ and ↪→]

functions are compositions of semantic operators, both of which are homomorphic to each other.
Only difference is the operators involved. The ↪→ uses concrete operators and the ↪→] uses their
abstract correspondents. The above proof of each case is basically a replay in a different guise of
the proof that if every pair of concrete and its abstract operators satisfies the soundness property
then a homomorphic pair of their compositions preserve the soundness property.

The soundness preservation over composition is a common property that most of the abstract
interpretations enjoy.

7

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

1 Program Analysis

Goal of the chapter: Before we dive into the way static analysis tools operate, we need
to define their scope and describe the kind of questions they can help solve. This is the
purpose of this Chapter. First, we discuss in Section 1.1 the importance of understanding
the behavior of programs by semantic reasoning, and we show applications in Section 1.2.
Section 1.3 sets up the main concepts of static analysis and shows the intrinsic limitations
of automatic program reasoning techniques that are based on semantics. Section 1.4 clas-
sifies the main approaches to semantic-based program reasoning and clarifies the position
of static analysis in this landscape.

Recommended reading: [S], [D], [U].

1.1 Understanding Software Behavior

In every engineering discipline, a fundamental question is: Will our design work in reality
as we intended? We ask and answer that question when we design mechanical machines,
electrical circuits, or chemical processes. The answer comes from analyzing our designs
using our knowledge about nature that will carry out the designs. For example, using
Newtonian mechanics, Maxwell equations, Navier-Stokes equations, or thermo-dynamic
equations, we analyze our design to predict its actual behavior. When we design a bridge,
for example, we analyze how nature runs the design, namely how various forces (gravi-
tation, wind, vibration, etc.) are applied to the bridge and whether the bridge structure is
strong enough to stand against them.

The same question applies to computer software. We want to ensure that our software
will work as intended. The intention ranges widely. For general reliability, we want to
ensure that the software will not crash with abrupt termination. If the software interacts
with the outside world, we want to ensure it will not be deceived to violate the host com-
puter’s security. For specific functionalities, we want to check if the software will realize
its functional goal. If the software is to control cars we want to ensure it will not drive
them to an accident. If the software is to learn our preference, we want to ensure it will not

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2 Chapter 1 Program Analysis

degrade as we teach more. If the software transforms the medical images of our bodies, we
want to ensure it will not introduce bogus pixels. If the software is to bookkeep the ledgers
for crypto currency, we want to ensure it will not allow double spending. If the software
translates program text, we want to ensure the source’s meaning is not lost in translation.

There is, however, one difference. For computer software, it is not nature that will carry
out the software. It is the computer itself.

The computer will carry out a software, namely execute the software according to the
meanings of the software’s source language. Software’s run-time behavior is solely defined
by the meanings of the software’s source language. The computer is just an undiscerning
tool that blindly executes the software exactly as it is written. Any execution behavior that
deviates from our intention is because the software is mistakenly written to behave that
way.

Hence, to answer the question for computer software, we need knowledge by which
we can somehow analyze the meanings of software source language. Such knowledge
corresponds to what natural sciences have accumulated about nature. We need knowledge
that computer science has accumulated about handling the meanings of software source
languages.

We call a formal definition of a software’s run-time behavior, which is determined by its
source language’s meanings, semantics:
Definition 1.1 (Semantics and Semantic Properties) The semantics of a program is a (gener-
ally formal —although we do not make it so in this chapter) description of its run-time behaviors.
We call semantic property any property about the run-time behavior (semantics) of a program.

Hence, checking if a software will run as we intended is equivalent to checking if this
software satisfies a semantic property of interest.

In the following, we call a technique that aims at checking that a program satisfies a se-
mantic property program analysis, and we refer to an implementation of program analysis
as a program analysis tool.

Figure 1.1 illustrates the correspondence between program analysis and design analysis
of other engineering disciplines.

1.2 Program Analysis Applications and Challenge

Program analysis can be applied wherever understanding program semantics is important
or beneficial. First, software developers (both humans and machines) may be the biggest
beneficiaries. Software developers can use program analysis for quality assurance, to lo-
cate errors of any kind in their software. Software maintainers can use program analysis
to understand legacy software that they maintain. System security gatekeepers can use
program analysis to proactively screen out programs whose semantics can be malicious.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

1.2 Program Analysis Applications and Challenge 3

Computing area Other engineering areas

Object software machine/building/circuit/chemical pro-
cess design

Execution subject computer runs it nature runs it

Our question will it work as intended? will it work as intended?

Our knowledge program analysis Newtonian mechanics, Maxwell
equations, Navier-Stokes equations,
thermo-dynamic equations, and so on.

Figure 1.1
Program analysis addresses a basic question common in every engineering area

Software that handles programs as data can use program analysis for their performance
improvement too. Language processors such as translators or compilers need program
analysis to translate the input programs into optimized ones. Interpreters, virtual machines,
or query processors need program analysis for optimized execution of the input programs.
Automatic program synthesizers can use program analysis to check and tune what it syn-
thesizes. Mobile operating systems need to understand application’s semantics in order
to minimize the energy consumption of the application. Automatic tutoring systems for
teaching programming can use program analysis to hint to students a direction to amend
their faulty programs.

Use of program analysis is not limited to professional software or their developers. As
programming becomes a way of living in a highly-connected digitized environment, citizen
programmers can benefit from program analysis too to sanity-check their daily program
snippets.

The target of program analysis is not limited to executable software either. Once the
object’s source language has semantics, program analysis can circumscribe its semantics
to provide useful information. For example, program analysis of high-level system config-
uration scripts can provide information about any existing conflicting requests.

Though the benefits of program analysis are obvious, building a cost-effective program
analysis is not trivial since computer programs are complex and often very large. For ex-
ample, the number of lines of smartphone applications frequently reaches over half million,
not to mention larger software such as web browsers or operating systems whose source
sizes are over ten-million lines. Semantic-wise, the situation is much worse because a
program execution is highly dynamic. Programs usually need to react to inputs from the
external, uncontrolled environments. The number of inputs, not to mention the number of
program states, that can arise in all possible use cases, is so huge that software developers
are likely to fail to handle some corner cases. The number can be easily greater than the
number of atoms in the universe, for example. The space of the inputs keep exploding as

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4 Chapter 1 Program Analysis

we want our software to do more things. Also, constraints that could keep software simple
and small quickly diminish because of the ever growing capacity of computer hardware.

Given that software is in charge of almost all infrastructures in our personal, social, and
global life, the need for a cost-effective program analysis technology has grown bigger
than ever before. We have already been experiencing a sequence of appalling accidents
whose causes are identified as mistakes in software. Such accidents have occurred in al-
most all sectors, including space, medical, military, electric power transmission, telecom-
munication, security, transportation, business, and administration. To name a few software
accidents, the large-scale Twitter outage (2016), the fMRI software error (2016) that in-
validates 15 years of brain research, the Heartbleed bug (2014) in the popular OpenSSL
cryptographic library that allows attackers to read the memory of any server that uses cer-
tain instances of OpenSSL, the stack overflow issues that we can explain the Toyota sudden
unintended acceleration (2004-2014), the Northeast blackout (2003), the explosion of the
Ariane 5, Vol 501 (1996) that took 10 years and $7 billion to build, and Missile Patriot,
Dahran (1991) that failed to intercept an incoming Scud missile.

Though building an error-free software may be far-fetched at least with a reasonable cost
for large-scale software, cost-effective ways to reduce as many errors as possible is always
in high demand.

Static analysis, which is the focus of this book, is one kind of program analysis. We
will conclude this chapter by characterizing the static analysis in comparison with other
program analysis techniques.

1.3 Concepts in Program Analysis

In the rest of this chapter, we intend to characterize static program analysis and compare it
with other program analysis techniques. Towards this goal, we provide keys to understand
how each program analysis technique operates and to assess the strengths and weaknesses
of each of them. This characterization will give basic intuitions of static analysis’ strength
and limitations.

1.3.1 What to Analyze
The first question to answer to characterize program analysis techniques is what programs
they analyze in order to determine what properties.

Target programs. An obvious characterization of the target programs to analyze is the
programming languages that the programs are written in, however it is not the only one.

• Domain-specific analyses: certain analyses are aimed at specific families of programs.
This specialization is a pragmatic way to achieve a cost-effective program analysis. It
is because each family has a particular set of characteristics (such as program idioms)
on which a program analysis can focus.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

1.3 Concepts in Program Analysis 5

For example, consider the C programming language. Though the language is widely
used to write software including operating systems, embedded controllers, and all sorts
of utilities, each family of programs has a special character. Embedded software is
often safety-critical (thus needs thorough verification) but rarely uses the most com-
plex features of the C language (such as recursion, dynamic memory allocation, non-
local jumps /), which makes analyzing such programs typically
easier than analyzing general applications. Device drivers usually rely on low-level
operations that are harder to reason about (e.g., low-level access to sophisticated data-
structures) but are often of moderate size (a few thousand lines of code).

• Non-domain-specific analyses: some analyses are designed without focus on a partic-
ular family of programs of the target language. Such analyses are usually those incor-
porated inside compilers, interpreters, or general-purpose programming environments.
Such analyses collect information (e.g., constants variables, common errors such as
buffer-overruns) about the input program in order to help compilers, interpreters, or
programmers for an optimized or safe execution of the program.
Non-domain-specific analyses risk being less precise and cost-effective than domain-
specific ones in order to have an overall acceptable performance for a wide range of
programs.

Besides the language and family of programs that are considered, the way input programs
are handled may also vary and has an impact on how the analysis works. An obvious
option is to directly handle source program just like a compiler would, but some analyses
may input different descriptions of programs instead. We can distinguish two classes of
techniques:

• Program-level analyses are run on the source code of programs (for instance written
in C or in Java) or on executable program binaries, and typically involve a frontend
similar to a compiler’s that constructs the syntax trees of programs from the program
source or compiled files;

• Model-level analyses consider a different input language that aims at modeling the
semantics of programs; then the analyses do not input a program in a language such as
C or Java, but a description that models the program to analyze. Such models either
need to be constructed manually or are computed by a separate tool. In both cases,
the construction of the model may hide either difficulties or sources of inaccuracy that
need be precisely taken into account.

Target properties. A second obvious element of characterization of a program analysis is
the set of semantic properties it aims at computing. Among the most important families of
target properties, we can cite safety properties, liveness properties, and information flow
properties.

• A safety property essentially states that a program will never exhibit a behavior ob-
servable within finite time. Such behaviors include termination, computing a particular

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

6 Chapter 1 Program Analysis

set of values, and reaching some kind of error state (such as integer overflows, buffer
overruns, uncaught exceptions or dead-locks).
Hence, a program analysis for some safety properties chases program behaviors that
are observable within the finite time.
Historically this class is called safety property because the goal of the analysis is to
prove the absence of bad behaviors and the bad behaviors are mostly those that occur
on finite executions.

• A liveness property essentially states that a program will never exhibit a behavior ob-
servable only after infinite time. Examples of such behaviors include non-termination,
live-lock, or starvation.
Hence, program analysis for liveness properties searches for an existence of program
behaviors that are observable after infinite time.

• Information flow properties define a large class of program properties stating the
absence of dependence between pairs of program behaviors (for instance, in the case
of a web service, a user should not be able to derive the credential of another user from
the information she can access). Unlike safety and liveness properties, information
flow properties require reasoning about pairs of executions.
More generally, so-called hyperproperties define a class of program properties that
are characterized by predicates over several program executions.

The techniques to reason about these classes of semantic properties are different. As ob-
served above, safety properties only require considering finite executions, whereas liveness
properties require reasoning about infinite executions. As a consequence, the program anal-
ysis techniques and algorithms dedicated to each family of semantic properties will differ
as well.

1.3.2 Static vs Dynamic
An important characteristic of a program analysis technique is when it is performed, or
more precisely, whether it operates during or before program execution.

A first solution is to make the analysis at run-time, that is during the execution of the pro-
gram. Such an approach is called dynamic, as it takes place while the program computes,
typically over several executions.
Example 1.1 (User assertions) User assertions provide a very classic case of dynamic approach
to checking whether some conditions are satisfied by all program executions. Once the assertions are
inserted, the process is purely dynamic: whenever an assertion is executed, its condition is evaluated,
and an error is returned if the result is false.

Note that some programming languages perform run-time checking of specific properties: for
instance, in Java, any array access is preceded by a dynamic bound check, which returns an exception
if the index is not valid; this mechanism is equivalent to an assertion and is also dynamic.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

1.3 Concepts in Program Analysis 7

A second solution is to make the analysis before program execution. We call such an
approach a static analysis, as it is done once and for all and independently from any exe-
cution.
Example 1.2 (Strong typing) Many programming languages require compilers to carry out some
type checking stage, which ensures that certain classes of errors will never occur during the exe-
cution of the input program. This is a perfect example of a static analysis since typing takes place
independently from any program execution, and the result is known before the program actually runs.

Static and dynamic techniques are radically different and come with distinct sets of ad-
vantages and drawbacks. While dynamic approaches are often easier to design and imple-
ment, they also often incur a performance cost at run-time, and they do not force developers
to fix issues before program execution. On the other hand, after a static analysis is done
once, the program can be run as usual, without any slow down. Also, some properties
cannot be checked dynamically: as an example, if the property of interest is termination,
dynamically detecting a non terminating execution would require constructing an infinite
program run. Dynamic and static analyses have different aftermath once they detect a prop-
erty violation. A dynamic analysis upon detecting a property violation can simply abort
the program execution or apply a non-obtrusive surgery to the program state and let the
execution continue with a risk of having behaviors unspecified in the programs. On the
other hand, when a static analysis detects a property violation, developers can still fix the
issue before their software is in use.

1.3.3 A Hard Limit: Uncomputability
Given a language of programs to analyze and a property of interest, one would wish an
ideal program analysis that always computes in a fully automated way the exact result
in finite time. For instance, let us consider the certification that a program (e.g., a piece
of safety-critical embedded software) will never crash due to a runtime error. Then we
would like to use a static program analysis that will always successfully catch any possible
runtime error, that will always say when a program is runtime error free, and that will never
require any user input.

Unfortunately, this is, in general, impossible.

The halting problem is not computable. The canonical example of a semantic property for
which no exact and fully automatic program analysis can be found is termination. Given
a programming language, we cannot have a program analysis that, for any program in that
language, correctly decides in finite time whether the program will terminate or not.

Indeed, it is well known that the halting problem is not computable. We explain more
precisely the meaning of this statement. In the following, we consider a Turing-complete
language, that is, a language that is as expressive as a Turing machine (common general-
purpose programming languages all satisfy this condition), and we denote the set of all the
programs in this language by L. Second, given a program p in L, we say that an execution

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8 Chapter 1 Program Analysis

e terminates if it reaches the end of p after finitely many computation steps. Last, we say
that a program terminates if and only if its executions terminate.
Theorem 1.1 (Halting problem) The halting problem consists in finding an algorithm halt such
that:

For every program p ∈ L, halt(p) = true if and only if p terminates.

The halting problem is not computable: there is no such algorithm halt, as proved simultaneously
by Alonso Church (?) and Alan Turing (?) in 1936.

This means that termination is beyond the reach of a fully automatic and precise program
analysis.

Interesting semantic properties are not computable. More generally, any non-trivial se-
mantic properties are also not computable. By semantic property, we mean a property that
can be completely defined with respect to the set of executions of a program (as opposed to
a syntactic property, which can be decided directly based on the program text). We call a
semantic property non-trivial when there exist programs that satisfy it and programs that do
not satisfy it. Obviously only such properties are worth the effort of designing a program
analysis for.

It is easy to see that a particular non-trivial semantic property is uncomputable (i.e.,
the property cannot have an exact decision procedure (analyzer)). Otherwise, the exact
decision procedure solves the halting problem. For example, consider a property: this
program prints 1 and finishes. Suppose there exists an analyzer that correctly decides the
property for any input program. This analyzer solves the halting problem as follows. Given
an input program P, the analyzer checks its slightly changed version “P; print 1.” That
the analyzer says “yes” means P stops, and “no” means P does not stop.

Indeed, Rice’s theorem settles the case that any non-trivial semantic property is not com-
putable:
Theorem 1.2 (Rice theorem) Let L be a Turing-complete language and P be a non-trivial se-
mantic property of programs of L. There exists no algorithm such that

For every program p ∈ L, it returns true if and only if p satisfies the semantic property P .

As a consequence, we should also give up hope of finding an ideal program analysis that
can determine fully automatically when a program satisfies any interesting property such as
the absence of runtime errors, the absence of information flows, and functional correctness.

Towards computability. However, this does not mean that no useful program analysis can
be designed. It only means that the analyses we are going to consider will all need to
suffer some kind of limitation, by giving up on automation, by targeting only a restricted
class of programs (i.e., by giving up the “For every program” in Theorem 1.2), or by not
always being able to provide an exact answer (i.e., by giving up the “if and only if ” in
Theorem 1.2). We will discuss these possible compromises in the next sections.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

1.3 Concepts in Program Analysis 9

1.3.4 Automation and Scalability
The first way around the limitation expressed in Rice’s theorem is to give up on automation
and to let program analyses require some amount of user input. In this case, the user is
asked to provide some information to the analysis, such as global or local invariants (an
invariant is a logical property that can be proved to be inductive for a given program). This
means that the analysis is partly manual since the user needs to compute part of the results
by herself.

Obviously, having to supply such information can often become quite cumbersome when
programs are large or complex, which is the main drawback of manual methods.

Worse still, this process may be error prone so that a human error may ultimately lead to
wrong results. To avoid such mistakes, program analysis tools may independently verify
the user-supplied information. Then when the user supplied information is wrong, the
analysis tool will simply reject it and produce an error message. When the analysis tool
can complete the verification and check the validity of the user supplied information, the
correctness of the final result will be guaranteed.

Even when a program analysis is automatic, it may not always produce a result within
a reasonable time. Indeed, depending on the complexity of the algorithms, a program
analysis tool may not be able to scale to large programs due to time costs or other resource
constraints (such as memory usage). Thus, scalability is another important characteristic
of a program analysis tool.

1.3.5 Approximation: Soundness and Completeness
Instead of giving up on automation, we can relax the conditions about program analysis by
letting it sometimes return inaccurate results.

It is important to note that inaccurate does not mean wrong. Indeed, if the kind of inaccu-
racy is known, the user may still draw (possibly partly) conclusive results from the analysis
output. For example, suppose we are interested in program termination. Given an input
program to verify, the program analysis may answer “yes” or “no” only when it is fully
sure about the answer. When the analysis is not sure, it will just return an undetermined
result “don’t know”. Such an analysis would be still useful if the cases where it answers
“don’t know” are not too frequent.

In the following paragraphs, we introduce two dual forms of inaccuracies (or equiva-
lently, approximations) that program analysis may make. To fix the notations, we assume
a semantic property of interest P and an analysis tool analysis, to determine whether
this property holds.

Ideally, if analysis were perfectly accurate, it would be such that

For all program p ∈ L, analysis(p) = true ⇐⇒ p satisfies P .

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10 Chapter 1 Program Analysis

This equivalence property can be decomposed into a pair of implications:

For all program p ∈ L, analysis(p) = true =⇒ p satisfies P

For all program p ∈ L, analysis(p) = true ⇐= p satisfies P

Therefore, we can weaken the equivalence by simply dropping either of these two impli-
cations. In both cases, we get a partially accurate tool, that may either return a conclusive
answer or a non conclusive one (“don’t know”).

We now discuss in detail both of these implications.

Soundness. A sound program analysis satisfies the first implication:
Definition 1.2 (Soundness) The program analyzer analysis is sound with respect to property P

whenever, for any program p ∈ L, analysis(p) = true implies that p satisfies property P .

When a sound analysis (or analyzer) claims that the program has property P , it guarantees
that the input program indeed satisfies the property. We call such an analysis sound as it
always errs on the side of caution: it will not claim a program satisfies P , unless this
property can be guaranteed. In other words, a sound analysis will reject all programs that
do not satisfy P .
Example 1.3 (Strong typing) A classic example is that of strong typing that is used in program
languages such as ML, that is based on the principle that “well-typed programs do not go wrong”:
indeed, well-typed programs will not present certain classes of errors whereas certain programs that
will never crash may still be rejected.

From a logical point of view, the soundness objective is very easy to meet since the
trivial analysis defined to always return false obviously satisfies Definition 1.2. Indeed,
this trivial analysis will simply reject any program. This analysis is not useful since it will
never produce a conclusive answer. Therefore, in practice, the design of a sound analysis
will try to give a conclusive answer as often as possible. This is in practice possible. As an
example, the case of an ML program that cannot be typed (i.e., is rejected) although there
exists no execution that crashes due to a typing error is rare in practice.

Completeness. A complete program analysis satisfies the second, opposite implication:
Definition 1.3 (Completeness) The program analyzer analysis is complete with respect to prop-
erty P whenever, for every program p ∈ L, such that p satisfies P , analysis(p) = true.

A complete program analysis will accept every program that satisfies property P . We call
such an analysis complete because it does not miss a program that has the property. In other
words, when a complete analysis rejects an input program, the completeness guarantees
that the program indeed fails to satisfy P .

Example 1.4 (User assertions) The error search technique based on user assertions is complete
in the sense of Definition 1.3. User assertions let developers improve the quality of their software
thanks to runtime checks inserted as conditions in the source code, and that are checked during
program executions. This practice can be seen as a very rudimentary form of verification for a

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

1.3 Concepts in Program Analysis 11

programs
satisfying P

programs
not satisfying P

(a) Programs

programs
satisfying P

programs
not satisfying P

true false

(b) Sound, incomplete analysis

programs
satisfying P

programs
not satisfying P

true false

(c) Unsound, complete analysis

programs that satisfy P

programs that do not satisfy P

programs for which the analysis returns true

programs for which the analysis returns false

(d) Legend

Figure 1.2
Soundness and completeness with Venn diagrams

limited class of safety properties, where a given condition should never be violated. Faults are
reported during program executions, as assertion failures. If an assertion fails, then it means that at
least one execution will produce a state where the assertion condition is violated.

As in the case of soundness, it is very easy to provide a trivial but useless complete
analysis. Indeed, if analysis always returns true, then it never rejects a program that
satisfies the property of interest; thus, it is complete, though it is of course of no use. To be
useful, a complete analyzer should often reject programs that do not satisfy the property of
interest. Building such useful complete analyses is a difficult task in general (just like it is
also difficult to build useful sound analyses).

Soundness and completeness. Soundness and completeness are two dual properties.
To better show them, we represent answers of sound and complete analyses using Venn
diagrams in Figure 1.2 and following the legend in Figure 1.2(d):

• In Figure 1.2(a), we draw the set of all programs and divide it into two subsets, namely
the programs that satisfy the semantic property P and the programs that do not satisfy
P . A sound and complete analysis would always return true exactly for the programs
that are in the left part of the diagram.

• Figure 1.2(b) depicts the answers of an analysis that is sound but incomplete: we can
see that it rejects all programs that do not satisfy the property but also rejects some that
do satisfy it; whenever it returns true, we have the guarantee that the analyzed program
satisfies P .

• Figure 1.2(c) depicts the answers of an analysis that is complete but unsound: we can
see that it accepts all programs that do satisfy the property but also accepts some that

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

12 Chapter 1 Program Analysis

do not satisfy it; whenever it returns false, we have the guarantee that the analyzed
program does not satisfy P .

Due to the computability barrier, we should not hope for a sound, complete and fully auto-
matic analysis when trying to determine which programs satisfy any non-trivial execution
property for a Turing complete language. In other words, when a program analysis is au-
tomatic, it is either unsound or incomplete. However, this does not mean it is impossible
to design a program analysis that returns very accurate (sound and complete) results on an
interested sets of input programs. However, even in that case, there will always exist input
programs for which the analysis will return inaccurate (unsound or incomplete) results.

In the previous paragraphs, we have implicitly assumed that the program analysis tool
analysis always terminates and never crashes. In general, non-termination or crashes of
analysis should be interpreted conservatively. For instance, if analysis is meant to be
sound, then its answer should be conservatively considered negative (false) whenever it
does not return true within the allocated time bounds.

1.4 Families of Program Analysis Techniques

In this section, we describe several families of approaches to program analysis. Due to
the negative result presented in Section 1.3.3, no technique can achieve a fully automatic,
sound and complete computation of a non-trivial property of programs. We will show the
characteristics of each of these techniques using the definitions of Section 1.3.

1.4.1 Testing: Checking a Set of Finite Executions
When trying to understand how a system behaves, the first idea that often comes to mind
is to observe the executions of this system. In the case of a program that may not terminate
and may have infinitely many executions, it is of course not feasible to fully observe all
executions.

Therefore, the testing approach observes only a finite set of finite program executions.
This technique is used by all programmers, from beginners to large teams designing com-
plex computer systems. In industry, many levels of testing are performed at all stages of
development such as unit testing (execution of sample runs on a basic function) and integra-
tion testing (execution of large series of tests on a completed system, including hardware
and software).

Basic testing approaches, such as random testing (?) typically provide a low coverage
of the tested code. However, more advanced techniques improve coverage. As an example
concolic testing (?) combines testing with symbolic execution (computation of exact re-
lations between input and output variables on a single control flow path) so as to improve
coverage and accuracy.

Testing has the following characteristics:

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

1.4 Families of Program Analysis Techniques 13

• It is in general easy to automate, and many techniques (such as concolic testing) have
been developed to synthesize useful sets of input data to maximize various measures
of coverage;

• In almost all cases, it is unsound, except in the cases of programs that have only a finite
number of finite executions (though it is usually prohibitively costly in that case);

• It is complete since a failed testing run will produce an execution that is incorrect with
respect to the property of interest (such a counter-example is very useful in practice
since it shows programmers exactly how the property of interest may be violated and
often gives precise information on how to fix the program).

Besides, testing is often costly, and it is hard to achieve a very high path coverage on very
large programs. On the other hand, a great advantage of testing is that it can be applied to a
program in the conditions in which it is supposed to be run: for instance, testing a program
on the target hardware, with the target operating system and drivers, may help diagnose
issues that are specific to this combination.

When the semantics of programs is non-deterministic, it may not be feasible to reproduce
an execution, which makes the exploitation of the results produced by testing problematic.
As an example, the execution of a set of concurrent tasks depends on the scheduling strat-
egy so that two runs with the same input may produce different results, if this strategy is
not fully deterministic.

Another consideration is that testing will not allow attacking certain classes of properties.
For instance, it will not allow proving that a program terminates, even over a finite set of
inputs.

1.4.2 Assisted Proof: Relying on User Supplied Invariants
A second way to avoid the limitation shown in Section 1.3.3 consists in giving up on
automation.

This is essentially the approach followed by machine assisted techniques. This means
that users may be required to supply additional information together with the program to
analyze. In most cases, the information that needs to be supplied is comprised of loop
invariants and possibly some other intermediate invariants. This often requires some level
of expertise. On the other hand, a large part of the verification can generally still be carried
out in a fully automatic way.

We can cite several kinds of program analyses based on machine assisted techniques. A
first approach is based on theorem proving tools like Coq (?), Isabelle/HOL (?) and PVS
(?), and requires the user to formalize the semantics of programs and the properties of in-
terest and to write down proof scripts, which are then checked by the prover. This approach
is adapted to the proof of sophisticated program properties. It was applied to the verified
CompCert compiler (?) from C to Power-PC assembly (the compiler is verified in the sense
that it comes with a proof that it will compile any valid C program properly). It was also

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

14 Chapter 1 Program Analysis

used for the design of the micro-kernel SEL4 verified (?). A second approach leverages a
tool infrastructure to prove a specific set of properties over programs in a specific language.
The B-method (?) toolset implements such an approach. Also, tools such as the Why C
program verification framework (?) or Dafny (?) input a program with a property to verify
and attempt to prove the property using automatic decision procedures, while relying on
the user for the main program invariants (such as loop invariants) and when the automatic
procedures fail.

Machine-assisted techniques have the following characteristics:
• They are not fully automatic and often require the most tedious logical arguments to

come from the human user;
• In practice, they are sound with respect to the model of the program semantics used

for the proof, and they are also complete up to the abilities of the proof assistant to
verify proofs (the expressiveness of the logics of the proof assistant may prevent some
programs to be proved, though this is rarely a problem in practice).

In practice, the main limitation of machine-assisted techniques is the significant resources
they require, in terms of time and expertise.

1.4.3 Model Checking: Exhaustive Exploration of Finite Systems
Another approach focuses on finite systems, that is, systems whose behaviors can be ex-
haustively enumerated, so as to determine whether all executions satisfy the property of in-
terest. This approach is called finite state model checking (???) since it will check a model
of a program using some kind of exhaustive enumeration. In practice, model checking
tools use efficient data-structures to represent program behaviors and avoid enumerating
all executions thanks to strategies that allow reducing the search space.

Note that this solution is very different from the testing approach discussed in Sec-
tion 1.4.1. Indeed, testing samples a finite set of behaviors among a generally infinite
set, whereas model checking attempts to check all executions of a finite system.

The finite model checking approach has been used both in hardware verification and in
software verification.

Model checking has the following characteristics:
• It is automatic;
• It is sound and complete with respect to the model.

An important caveat is that the verification is performed at the model level and not at the
program level. As a first consequence, this means that a model of the program needs to
be constructed, either manually or by some automatic means. In practice, most model
checking tools provide a frontend for that purpose. A second consequence is that the rela-
tion between this model and the input program should be taken into account when assess-
ing the results; indeed, if the model cannot capture exactly the behaviors of the program
(which is likely as programs are usually infinite systems since executions may be of arbi-

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

1.4 Families of Program Analysis Techniques 15

trary length), the checking of the synthesized model may be either incomplete or unsound,
with respect to the input program. Some model checking techniques are able to automati-
cally refine the model when they realize that they fail to prove a property due to a spurious
counter-example; however, the iterations of the model-checking and refinement may con-
tinue indefinitely, so some kind of mechanism is required to guarantee termination. In
practice, model-checking tools are often conservative and are thus sound and incomplete
with respect to the input program. A large number of model checking tools have been
developed for verifying different kinds of logical assertions on various models or program-
ming languages. As an example, UPPAAL (?) verifies temporal logic formulas on timed
automata.

1.4.4 Conservative Static Analysis: Automatic, Sound and Incomplete Approach.
Instead of constructing a finite model of programs, static analysis relies on other tech-
niques to compute conservative descriptions of program behaviors using finite resources.
The core idea is to finitely over-approximate the set of all program behaviors using a spe-
cific sets of properties, the computation of which can be automated (??). A (very simple)
example is the type inference present in many modern programming languages such as
variants of ML. Types (??) provide a coarse view of what a function does, but still does so
in a very effective manner, since the correctness of type systems guarantees that a function
of type int -> bool will always input an integer and return a boolean (when it terminates).
Another contrived example is the removal of array bound checks by some compilers for
optimization purposes, using numerical properties over program variables that are auto-
matically inferred at compile-time. The next chapters will generalize this intuition and
introduce many other forms of static analyses.

Besides compilers, static analysis has been very heavily used in order to design program
verifiers and program understanding tools for all sorts of programming languages. Among
many others, we can cite the ASTRÉE (?) static analyzer for proving the absence of runtime
errors in embedded C codes, the Facebook INFER (?) static analyzer for the detection of
memory issues in C/C++/Java programs, the JULIA (?) static analyzer for discovering
security issues in Java programs, the POLYSPACE (?) static analyzer for ADA/C/C++
programs and the SPARROW (?) static analyzer for the detection of memory errors in C
programs.

Static analysis approaches have the following characteristics:
• They are automatic;
• They produce sound results, as they compute a conservative description of program

behaviors, using a limited set of logical properties. Thus, they will never claim the
analyzed program satisfies the property of interest when it is not true;

• They are generally incomplete because they cannot represent all program properties
and rely on algorithms that enforce termination of the analysis even when the input

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

16 Chapter 1 Program Analysis

program may have infinite executions. As a consequence, they may fail to prove correct
some programs that satisfy the property of interest.

Static analysis tools generally input the source code of programs and do not require model-
ing the source code using an external tool. Instead, they directly compute properties taken
in a fixed set of logical formulas, using algorithms that we present throughout the following
chapters.

While a static analysis is incomplete in general, it is often possible to design a sound
static analysis that gives the best possible answer on classes of interesting input programs,
as discussed in Section 1.3.5. However, it is then always possible to craft a correct input
program for which the analysis will fail to return a conclusive result.

Last, we remark that it is entirely possible to drop soundness so as to preserve automa-
tion and completeness. This leads to a different kind of analysis that produces an under-
approximation of the programs actual behaviors, and allows to answer a very different kind
of question. Indeed such an approach may guarantee that a given subset of the executions
of the program can be observed. For instance, this may be useful to establish that this pro-
gram has at least one successful execution. On the other hand, it does not allow to prove
properties such as the absence of runtime errors.

1.4.5 Bug Finding: Error Search, Automatic, Unsound, Incomplete, Based on Heuristics
Some automatic program analysis tools sacrifice not only completeness but also soundness.
The main motivation to do so is to simplify the design and implementation of analysis tools
and to provide lighter weight verification algorithms. The techniques used in such tools are
often similar to those used in model checking or static analysis, but relax the soundness
objective. For instance, they may construct unsound finite models of programs so as to
quickly enumerate a subset of the executions of the analyzed program (e.g., by only con-
sidering what happens in the first iteration of each loop (?)), whereas a sound tool would
have to consider possibly unbounded iteration numbers. As an example, the commercial
tool COVERITY (?) applies such techniques to programs written in a wide range of lan-
guages (e.g., Java, C/C++, JavaScript, Python...). Similarly, the tool CODESONAR (?)
relies on such approaches so as to search for defects in C/C++ or Assembly programs.
The CBMC tool (C Bounded Model Checker) (?) extracts models from C/C++ or Java
programs and performs bounded model checking on them, which means that it explores
models only up to a fixed depth. It is thus a case of a model checker that gives up on
soundness in order to produce fewer alarms.

Since the main motivation of this approach is to discover bugs (and not to prove their
absence), it is often referred to as bug finding.

Such tools are usually applied to improve the quality of non-critical programs at a low
cost.

Bug-finding tools have the following characteristics:

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

1.5 Roadmap 17

automatic sound complete object when

testing yes no yes program dynamic

assisted proving no yes yes/no model static

model checking of
finite state model

yes yes yes
finite
model

static

model checking, at
program level

yes yes no program static

conservative static
analysis

yes yes no program static

bug finding yes no no program static

Figure 1.3
An overview of program analysis techniques

• They are automatic;
• They are neither sound nor complete; instead, they aim at discovering bugs rather

quickly, so as to help developers.

1.4.6 A Summary
The table shown in Figure 1.3 summarizes the techniques for program analysis that we have
introduced in this chapter and compare them based on five criteria. As we can see, due to
the computability barrier, no technique can provide fully automatic, sound and complete
analyses. Testing sacrifices the soundness. Assisted proving is not automatic (even if it is
often partly automated, the main proof arguments generally need to be human-provided).
Model-checking approaches can achieve soundness and completeness only with respect to
finite models, and they generally give up completeness when considering programs (the in-
completeness is often introduced in the modeling stage). Static analysis gives up complete-
ness (though they may be designed to be precise for large classes of interested programs).
Last, bug finding is neither sound nor complete.

As we remarked earlier, another important dimension is scalability. In practice, all ap-
proaches have limitations regarding scalability, although these limitations vary depending
on the intended applications (e.g., input programs, target properties, algorithms used).

1.5 Roadmap

From now on, we will focus on conservative static analysis, from its design methodologies
to its implementation techniques.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

18 Chapter 1 Program Analysis

Definition 1.4 (Static Analysis) Static analysis is an automatic technique for program-level anal-
ysis that approximates in a conservative manner semantic properties of programs before their exe-
cutions.

After a gentle introduction to static analysis in Chapter 2, we present a static analysis
framework based on a compositional semantics in Chapter 3, a static analysis framework
based on a transitional semantics in Chapter 4, and some advanced techniques in Chap-
ter 5. These frameworks, thanks to a semantics-based viewpoint, are general so that they
can guide the design of conservative static analyses for any programming language and for
any semantic property. In Chapter 6, we present issues and techniques regarding the use
of static analysis in practice. In Chapter 7, we discuss and demonstrate the implementation
techniques to build a static analysis tool. In Chapter 8, we present how we use the general
static analysis framework to analyze seemingly-complex features of realistic programming
languages. In Chapter 9, we discuss several important families of semantic properties of
interest and show how to cope with them using static analysis. In Chapter 10, we present
several specialized, yet high-level frameworks for specific target languages and semantic
properties. In Chapter 11, we summarize this book.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2 A Gentle Introduction to Static Analysis

Goal of this chapter. In this chapter, we provide an introduction to static analysis that
does not require any background. This introduction aims at making the core concepts of
static analysis intuitive and crisp. To this end, we define a basic programming language
that describes sequences of transformations applied to points in a two-dimensional space 1.
The notions presented here extend to realistic programming languages. We will formalize
them thoroughly in Chapter 3 in the case of a basic imperative language.

Recommended reading: [S], [D], [U].
We recommend this chapter to all readers, as it introduces the basic intuitions useful to
understand many more advanced static analysis techniques and the way static analysis
tools work. Understanding these concepts is important not only to design or implement a
static analyzer but also to use it as well as possible.

2.1 Semantics and Analysis Goal: a Reachability Problem

Syntax of a very basic language. For the sake of making our first introduction to static
analysis intuitive, we consider a very basic language with intuitive notions of states and ex-
ecutions. The language under study is inspired by drawing languages used for educational
purposes such as introducing children to programming.

A state describes the configuration of a computer running a program, observed at a given
instant. In general, this includes a description of the memory contents, the registers, and the
program counter. In this chapter, a state will simply denote a point in the two-dimensional
space, described by its real coordinates (x,y). We denote the set of such states by S .

1 This chapter has been partially inspired by graphical descriptions of the notion of abstraction such as the one pre-
sented in http://web.mit.edu/16.399/www/lecture_13-abstraction1/Cousot_MIT_2005_Course_
13_4-1.pdf, even though this chapter focuses on different aspects of static analysis, transfer functions and
abstract iterations.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

20 Chapter 2 A Gentle Introduction to Static Analysis

We let programs define combinations of basic geometric operations. Basic operations
comprise:

• initialization with a point that is non-deterministically chosen in a fixed region R (for
instance, the [0,1]× [0,1] square or any other geometrical shape specified by a set of
points);

• geometrical translations (specified by a vector);
• geometrical rotations (specified by a center and an angle in degrees).

Moreover, a program is defined either as a sequence of operations or as a non-deterministic
choice of two sequences of operations, or as a non-deterministic iteration of a sequence of
operations (the number of iterations is chosen non-deterministically). To avoid starting
from an undefined state, we assume that a program always begins with an initialization,
which fixes the set of initial states.

The syntax of programs is defined by the grammar below (note that we only consider
programs that start with an initialization statement even though this grammar does not
express that constraint):

p ::= (R) initialization, with a state in R

| (u,v) translation by vector (u,v)
| (u,v,θ) rotation defined by center (u,v) and angle θ
| p ; p sequence of operations
| {p} {p} choice (the branch taken is non-deterministic)
| {p} iteration (the number of iterations is non-deterministic)

Semantics. As observed in Chapter 1, static analysis aims at computing semantic proper-
ties of programs. Therefore, before we look into the definition of a static analysis, we need
to define the semantics of programs, which should characterize the program executions.
A common way to achieve this is to just let the semantics be the set of all the program
executions. Such a semantics is often called collecting semantics.

An execution provides a complete view of a single run of the program. Since we as-
sume that a program makes discrete computation steps at every clock tick, it is naturally
described by a sequence of states. Each of the basic program constructions in the above
grammer is quite simple so we do not formalize them fully. Intuitively, their semantics is
defined as follows:

• the initialization operation simply produces a state in a given region;
• translation and rotation transformations induce basic execution steps, which perform

the corresponding geometric transformations;
• sequences of operations yield sequences of execution steps;
• non-deterministic choices and iterations respectively select or repeat a block of code

and construct executions that can be derived from those of the subprograms.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.1 Semantics and Analysis Goal: a Reachability Problem 21

x

y

x

y

x

y

Figure 2.1
A few program executions

Example 2.1 (Semantics) To make this semantics more intuitive, we consider the program below:

([0,1]× [0,1]);
(1,0);

{
{

(1,0)
} {

(0,0,90◦)
}

}

This program starts in the [0,1]× [0,1] square, performs a translation and then performs a number
of translations or rotations that are chosen non-deterministically (i.e., an oracle decides at run-time
both the number of operations and their nature). Figure 2.1 shows three executions:

• in the first execution (shown in the left), the program starts from (0.5,0.2), performs two trans-
lations, one rotation, two translations, and then terminates;

• in the second execution (shown in the middle), the program starts at point (0.5,0.5) and repeats
the same transition forever;

• in the third execution (shown in the right), the program starts at point (0.5,0.5) and then repeats
forever the sequence made of one translation, two rotations, two translations, and one rotation.

While the first execution is finite, the other two are actually infinite (which means that the program
runs forever).

Semantic property of interest: reachability. It is now time to set the property of interest
that we are going to consider in this chapter.

We aim for a reachability property that is specified by a zone made of points that should
not be reached by any execution of the program. Intuitively, we assume that a set of
points is fixed and defines a zone that we expect program executions to never reach. In
other words, if any execution reaches this zone, we would consider it as an error. In the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

22 Chapter 2 A Gentle Introduction to Static Analysis

x

y

Figure 2.2
Region supposed to be unreachable: points with a negative x-coordinate

following, we search for a static analysis that is able to catch and reject any program
with such an erroneous execution. When a program has no such offending execution, the
analysis should, as often as possible, accept the program and issue a proof of correctness.

This semantic property is a very classic example of safety property (Section 1.3.1) (al-
though not all safety properties are of that form). Very often, programmers would like to
ensure similar properties in real programs. As an example, reaching a state where a C pro-
gram will dereference a null pointer will produce an abrupt run-time error. Similarly, if a
C program reaches a state where it writes over a dangling pointer, either the execution will
fail abruptly, or some data will be corrupted. For these reasons, C programmers are usually
interested in checking that their programs will never reach a state where they would deref-
erence an invalid, null or dangling pointer. Thus, the reachability property that we study
here is actually quite realistic, even though we are looking at a contrived language.

In the rest of this chapter, we will often use the region D defined by D= {(x,y) | x< 0}
to denote the set of states that program executions should never reach, although we will
construct a program analysis technique that would work for other regions as well. This
“error zone” is depicted in Figure 2.2. We let ¬D denote the property that we would like
to verify since it expresses that all the states a program may reach are not in D. To give
more intuition, we study a couple of programs.
Example 2.2 (Reachability and incorrect executions) First, we consider the program of Exam-
ple 2.1. Obviously, it violates the property ¬D since Figure 2.1 shows two executions that eventually
reach a point (x,y), where x< 0. As an example, Figure 2.3(a) displays an execution of the program
studied in Example 2.1, which is incorrect as it reaches the error zone after three steps.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.1 Semantics and Analysis Goal: a Reachability Problem 23

x

y

(a) An incorrect execution

x

y

(b) Correct executions

Figure 2.3
Reachability and programs

Example 2.3 (Reachability and program with only correct executions) In this example, we stu-
dy a second program:

([0,1]× [0,1]);
{
{

(1,0);
} {

(0.5,0.5);
}

}
Figure 2.3(b) displays a few executions of this program, and we observe they are all correct, in the
sense that they never enter the error zone D. In fact, we can informally show that all executions of
this program will stay in the safe zone ¬D at all times:

• they start at a point (x,y) such that 0 ≤ x≤ 1 which thus satisfies ¬D;
• during a loop iteration, x is increased by either 1 or 0.5 depending on the result of a non-

deterministic choice; thus, the coordinate x remains non-negative.

Static analysis for reachability. In the rest of this chapter, we define a static analysis
(actually, a family of static analyses) that attempts to determine whether an input program
satisfies the semantic property ¬D. The analysis should always return a sound result: if
it returns true when applied to an input program p, we expect to have the guarantee that
no execution of p will ever reach D. Therefore, a program such as that of Example 2.1
will be flagged as “possibly violating the property of interest.” Ideally, we would also like

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

24 Chapter 2 A Gentle Introduction to Static Analysis

the analysis to be precise enough so that it can conclusively report that the program of
Example 2.3 is correct.

An obvious way would be to enumerate all executions of the input program so as to
determine all reachable configurations. But this would not be feasible, as even simple
programs (such as those presented in Example 2.1 and Example 2.3) have infinitely many
executions since the set of initial states is infinite, the length of executions is infinite, and
the set of possible series of non-deterministic choices is infinite.

Therefore, we will seek other ways to determine the set of all reachable configurations.

2.2 Abstraction

Core principle of abstraction. In this section, we search for a way to reason about program
executions that will produce a superset of the reachable states and that should be rather
simple to compute.

To choose this superset, we first try to draw some intuition from the program studied in
Example 2.3. In that example, we noticed that no execution reaches the region D, and we
gave an informal proof of this fact:

• in the beginning, the x-coordinate is non-negative;
• at each step it may only grow which means that, if it is non-negative, it will remain so.

In the following, we will aim at making such reasoning steps automatic. We remark that
the steps of this proof do not use all the information present in program states:

• the value of the y-coordinate is completely ignored;
• only the sign of the x-coordinate is considered in the proof (or more precisely the fact

that the value of x may be either positive, zero, or negative).
This intuition forms the basis of abstraction (?): by retaining only rather coarse infor-

mation about program states and considering how the program runs, we can still infer
interesting information about the set of all program executions (in this case, that x ≥ 0
at all times). Such information is captured by a set of logical properties that the analysis
may manipulate, using algorithms exposed in the next section. In the above example, the
only logical properties that seem to matter in the proof are x ≥ 0 (used in the case of the
program of Example 2.3) and the property “true,” which is satisfied by any state (that is
needed to describe the states the program of Example 2.1 may reach).

There are of course many possible sets of logical properties that could be used in such
proofs. Thus, we need to make clear what logical properties the analysis may manipulate.
Definition 2.1 (Abstraction) We call abstraction a set A of logical properties of program states,
that are called abstract properties or abstract elements. A set of abstract properties is called an
abstract domain.

In this definition, the word abstract is used here as opposed to the word concrete: in the
following, we use the “concrete” qualifier to denote actual program behaviors, whereas the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.2 Abstraction 25

x

y

γ(a0)

Figure 2.4
Abstraction based on the sign of the x component

“abstract” qualifier applies to the properties used in the (automatic) proofs. As an example,
the concrete semantics is the actual semantics of programs as defined in Section 2.1. By
contrast, an abstract semantics shall define a computable over-approximation of the con-
crete semantics expressed in terms of abstract states (actually, the goal of static analysis is
precisely to compute such a sound abstract semantics).

The mathematical and computer representation of abstract elements is crucial for the
definition of all the static analysis algorithms that we are going to consider. Ideally, the
abstract properties should come with an efficient computer representation and with analysis
algorithms (the algorithms are discussed further in this chapter) since we intend to develop
a static analyzer that relies on these predicates. Thus, it is important to distinguish the
abstract elements from their meaning:
Definition 2.2 (Concretization) Given an abstract element a of A , we call concretization the set
of program states that satisfy it. We denote it by γ(a).

Example 2.4 (Abstraction by the sign of the x-coordinate) As a first example, we present the
abstraction used above in order to informally demonstrate that the program of Example 2.3 never
reaches the region D. This abstraction has two elements a0,a1, where

• a0 denotes all the states (x,y) such that x≥ 0 (γ(a0) is the infinite half-plane area that is filled
with dots in Figure 2.4);

• a1 denotes the set of all the states such that γ(a1) = S (the whole two-dimensional space).

In Figure 2.4 (and subsequent pictures that depict abstract elements), we represent the
points described by an abstract element as a zone filled with dots. This region is syntacti-
cally different from the abstract element itself: the latter is the representation of the former,
and the analysis manipulates only the representation. Even though we will often focus less
on this distinction in this chapter (and sometimes implicitly assimilate abstract elements
and the regions they denote), it will play a great role in subsequent chapters.

There exist of course many possible choices of abstractions, which are less contrived
than the one of Example 2.4. Some abstractions describe more expressive sets of logical

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

26 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concretization of [x≤ 0,y≥ 0]

x

y

(b) Concretization of [x≥ 0]

Figure 2.5
Signs abstraction

properties than others. Furthermore, some abstractions yield simpler computer representa-
tions and less costly algorithms than others. In the following paragraphs, we will present
a few other examples of abstractions, which also have a simple and intuitive graphical
representation.

Signs abstraction. The abstraction of Example 2.4 treats x and y differently and is very
specific to the property D defined in Section 2.1. It would not work if we wanted a static
analysis to prove that y never becomes negative. Similarly, it would not apply if the prop-
erty to prove was that x does not become positive. However, this abstraction generalizes
into a more expressive one, which describes a set of states using two pieces of information:
the possible values of the sign of x and the possible values of the sign of y. For each vari-
able, this abstraction records whether it may be positive, negative, non-negative, etc. The
concretizations of a few abstract elements are shown in Figure 2.5:

• the left diagram shows the concretization of the abstract element that expresses the fact
that x is negative, and y is non-negative;

• the right diagram shows the concretization of the abstract element that expresses the
fact that x is positive and this abstract element carries no information about y.

We can observe that this signs abstract domain can express any property the previous do-
main could express, but it can also describe some properties that were beyond the reach of
the previous domain.

Intervals abstraction. In practice, abstractions based on signs are often too weak to cap-
ture strong program properties, but other more precise abstractions have been proposed.

Using inequalities and range constraints over variables is a very natural approach to
reason over numerical properties. Similarly, we can use range constraints over program
variables so as to more precisely describe what values they may take. This is the principle
of the intervals abstraction (?):

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.2 Abstraction 27

x

y

(a) Concretization of a0

x

y

(b) Concretization of a1

x

y

(c) Concretization of a2

Figure 2.6
Intervals abstraction

Definition 2.3 (Intervals abstraction) The abstract elements of the interval abstraction are de-
fined by constraints of the form lx ≤ x, x≤ hx, ly ≤ y, and y≤ hy.

An abstract element is thus composed of at most four finite bound constraints. We remark
that such an abstract element may denote the empty set of points, since some sets of con-
straints cannot be satisfied, such as 1 ≤ x, x ≤ 0. We do not write down infinite bound
constraints (cases where no lower and/or upper bound is given for a given variable).

Intuitively, interval abstract domain elements correspond to rectangles in the two-dimensio-
nal space, the sides of which are parallel to the axes.

Example 2.5 (Intervals abstraction) The following three abstract elements illustrate the kind of
constraints that can be expressed by the intervals abstract domain, together with their concretiza-
tions, shown in Figure 2.6:

• a0 corresponds to numerical constraints 1 ≤ x ≤ 3 and 1 ≤ y ≤ 2 (the concretization of a0 is
shown in Figure 2.6(a));

• a1 corresponds to numerical constraints 1 ≤ x ≤ 2 (the concretization of a1 is shown in the
middle Figure 2.6(b));

• a2 corresponds to numerical constraints 1 ≤ x and 1 ≤ y (the concretization of a2 is shown in
the right Figure 2.6(c)).

Obviously, the intervals abstract domain is more expressive than the signs abstract domain.
Indeed, any abstract element of the signs abstract domain also corresponds to an element
in the intervals abstract domain.

The representation of an abstract element of the intervals domain boils down to at most
two numerical constants per variable. Thus, this domain over-approximates a set of points
in the two-dimensional space with at most four numerical constants, which take very little
space in memory during the analysis.

We can introduce at this stage the concept of best abstraction. Given any set of points
(which correspond to program states), we would like to define an abstract element in the in-

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

28 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) A concrete set

x

y

(b) Abstractions

x

y

(c) Best abstraction

Figure 2.7
Best abstraction

tervals abstract domain that over-approximates our initial set. For instance, let us consider
the set of program states defined by the disc shown in Figure 2.7(a). Then any box that en-
closes the disc is a valid over-approximation of this set: indeed, any such box describes all
the points in the disc (and more), so it provides a conservative approximation of the disc.
However, there exist many such enclosing boxes. Yet, some of these abstractions are more
desirable than others. As we mentioned earlier, the goal of abstraction is to account for
the concrete set of points using a simple description, at the cost of adding some additional
points that are not in the concrete set. Adding fewer points that are not in the concrete set
is better since it means the abstraction characterizes the set of points in a less ambiguous
and more informative way. In the case of the intervals abstract domain, we can actually
solve this problem in an elegant manner; indeed, the smallest rectangle that encloses any
non-empty set of points is well-defined, using the greatest lower bounds and least upper
bounds over both coordinates (the case of the empty set of points is trivial, as the empty
rectangle is also an element of the abstract domain). In particular, Figure 2.7(c) shows the
best approximation of the disc.

More generally, the best abstraction (?) is defined as a function that interprets any set of
concrete points into an optimal abstract element:
Definition 2.4 (Best abstraction) We say that a is the best abstraction of the concrete set S if and
only if S ⊆ γ(a) and for any a� that is an abstraction of S (i.e., S ⊆ γ(a�)): then a� is a coarser
abstraction than a. If S has a best abstraction, then the best abstraction is unique. When it is defined,
we let α denote the function that maps any concrete set of states into the best abstraction of that set
of states.

As observed above, the intervals abstract domain has a best abstraction function. While
computing a precise abstraction (if possible the best abstraction) is preferable in general,
we will often encounter useful analyses that cannot compute the best abstraction, or such
that the best abstraction cannot even be defined in the sense of Definition 2.4. The im-

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.2 Abstraction 29

possibility to define or compute the best abstraction is in no way a serious flaw for the
analysis, as it will only cause it to err on the side of caution (i.e., to return conservative but
sound results). Using an over-approximating abstract element is fine, though we prefer to
compute the most tightly encompassing one, if it exists.

Finally, we remark that interval constraints cannot capture in a precise manner any com-
plex numerical constraint over both x and y. For instance, it cannot express in an exact
manner the property that x is smaller than y. We thus call it a non-relational abstraction.
Intuitively, an abstract state characterizes each variable by an interval independently from
the other variables. On one hand, this simplifies the shape of abstract elements and their
representation; on the other hand, it limits the expressiveness of the abstraction.

Convex polyhedra abstraction. The obvious way to overcome the limitation inherent in
the non-relational abstraction is to extend the abstract domain with relational constraints.
Augmenting the abstract domain with all linear constraints allows achieving that:
Definition 2.5 (Convex polyhedra abstraction) The abstract elements of the convex polyhedra
abstract domain (?) are conjunctions of linear inequality constraints.

This abstract domain can describe precisely any concrete set that can be described by the
signs and intervals abstract domains. It can also describe many other sets of concrete points
in a much more precise way than the previous abstractions.
Example 2.6 (Convex polyhedra abstraction) Figure 2.8 displays the concretization of three con-
vex polyhedra a0, a1, and a2:

• a0 describes the conjunction of the three linear constraints below:

x − y ≥ −0.5
x ≤ 2.5
x + 4y ≥ 4.5

• a1 consists of the conjunction of six linear constraints, and is of bounded size (we do not list the
constraint representation as it would be more involved);

• a2 consists of the conjunction of four linear constraints and describes an unbounded zone (its
concretization describes points where x,y may be arbitrarily large).

There exist several representations for the abstract elements of the convex polyhedra ab-
stract domain. We have already mentioned the representation based on a conjunction of
linear inequalities. Since we also noticed that their concretization corresponds exactly to
convex polyhedra (hence the name of the abstraction), the abstract elements also have a
geometrical representation, based on their sets of vertexes and edges. Actual static anal-
ysis algorithms based on convex polyhedra exploit both representations. However, these
representations are significantly more complex and costly than in the case of the previous
abstract domains: while signs only required a couple of bits per variable, and intervals only
required at most two bounds per variable, defining a convex polyhedron typically involves

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

30 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concretization of a0

x

y

(b) Concretization of a1

x

y

(c) Concretization of a2

Figure 2.8
Convex polyhedra abstraction

a large number of coefficients or vertexes and edges (in theory there exists no upper bound
on the number of cosntraints).

Another interesting remark about the convex polyhedra abstraction is that concrete sets
of points have no best abstraction in general. A disc of diameter 1 provides an example of
a concrete set without a smallest enclosing convex polyhedron. On the other hand, some
concrete sets have a best abstraction (in particular, any set that is a convex polyhedron is
its own smallest enclosing convex polyhedron).

In the previous paragraphs, we have provided a few common examples of abstract do-
mains, but many others can be defined and are useful to capture all sorts of constraints
(simple or complex, relational or non-relational).

Abstraction of the semantics of a program. We can now refine the goal of the rest of
the chapter. We have set up the notion of abstraction of sets of program states and have
shown a few basic abstract domains, adapted to express different kinds of properties. In
the next sections, we aim at defining static analysis algorithms to compute in a fully auto-
matic way an over-approximation of the states that a program may reach. Such an over-
approximation will be described by an abstract element in one of the abstract domains that
we have sketched. It is called a conservative abstraction of the program semantics.

Example 2.7 (Abstractions of reachable states) We consider the program of Example 2.3. Fig-
ure 2.9(a) shows all the states that this program may reach: a few program executions were sketched
in Figure 2.3(b), and we consider here the set of all the states that can be reached in at least one
execution. We then show the best abstractions that can be computed for this set of states:

• using the intervals abstract domain in Figure 2.9(b);
• using the convex polyhedra abstract domain in Figure 2.9(c).

Obviously, the abstraction based on convex polyhedra is much tighter, even though it is still approx-
imate, due to convexity.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 31

x

y

(a) Reachable states

x

y

(b) Intervals abstraction

x

y

(c) Convex polyhedra abstraction

Figure 2.9
Program reachable states and abstraction

As shown in Example 2.7, not all abstractions of the semantics of the program are equiv-
alent. Abstractions that describe fewer points are more selective, since they filter out more
concrete points, and are thus more likely to help prove that the reachable states are included
into a specific set, to prove the property of interest. This means that set inclusion here is
fundamental to our study:

• for an abstract element to be a conservative abstraction of the semantics of programs,
it should include all the points that are reachable according to the semantics;

• if two abstract elements a0,a1 are such that γ(a0) is included into γ(a1), then it means
that a0 is more precise than a1 in the sense that it allows proving stronger semantic
properties.

2.3 A Computable Abstract Semantics: Compositional Style

As the notion of abstraction has been set up in Section 2.2, we now show how to derive
step-by-step an over-approximation for the states that are visited by a program.

In this section, we introduce a compositional approach to static analysis, based on the
step-by-step computation of the effect of each program command. More precisely, given
an abstraction of a set of states that denotes a pre-condition (i.e., a set of program execution
starting points), we propose to compute an abstract state, that over-approximates the set of
all the states that may be observed after running that command from the pre-condition (this
set is usually called a post-condition). To analyze a sequence of commands, this technique
composes the analyses of each sub-command, which is why it is called compositional.

Intuitively, this approach incrementally discovers an over-approximation of the set of
reachable states of the program. Thus, it also makes it possible to verify that a program
never reaches any state in the error zone. Using an accumulator, it is also possible to keep
track of an abstraction of all the reachable states of the program.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

32 Chapter 2 A Gentle Introduction to Static Analysis

x

y

Figure 2.10
Analysis of initialization

2.3.1 Abstraction of Initialization
We start with the effect of the initialization statement that appears at the beginning of
programs. At the concrete level, a program initialization statement simply asserts that the
initial state of a program execution is located in a given region R.

To produce an abstraction of the result of initialization, the static analysis simply needs
to produce an abstract element that over-approximates the region R.

When the abstract domain features a best abstraction function α and when the best ab-
straction of the region R is computable, then the abstract element α(R) provides a solu-
tion. This is the case of the intervals abstract domain and of the signs abstract domain.

When the abstract domain does not have a best abstraction function or when this best
abstraction is not computable, any abstract element a such that γ(a) includes R can be
chosen. For instance, the convex polyhedra abstract domain does not feature a best ab-
straction function; however,

• if R is a convex polyhedron, then it can be used as an over-approximation of itself;
• otherwise, an enclosing box can be found by using the intervals abstract domain ab-

straction, and this enclosing box is also an enclosing convex polyhedron, so it also
provides an admissible solution (although an imprecise one).

Example 2.8 (Initialization) We consider the program of Example 2.3. Figure 2.10 shows the best
abstraction of the initial states, both with the intervals abstract domain and with the convex polyhe-
dra abstract domain. We remark that this abstraction is exact; namely, it incurs no loss of precision.

2.3.2 Abstraction of Post-Conditions
We now discuss basic geometric transformations and try to find a systematic way to over-
approximate their output, when given an abstraction of their input. We first fix some ter-
minology:

• an abstract pre-condition is an abstraction of the states that can be observed before a
program fragment;

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 33

x

y

(a) Concrete semantics

x

y

apre

apost

(b) Intervals

x

y

apre

apost

(c) Convex polyhedra

Figure 2.11
Abstraction of the result of a translation

• an abstract post-condition is an abstraction of the states that can be observed after that
program fragment.

Effect of a translation. We assume an abstract pre-condition apre and consider program
(u,v). When the program is run in state (x,y) in γ(apre), the result is the

state (x+u,y+ v). Thus, the set of all the images of the points in γ(apost) can be obtained
very simply by translating γ(apre) by (u,v). Thus, to produce an over-approximation of the
effect of the translation, we simply need to compute an abstract element apost that contains
all the points obtained by translating a point in γ(apre).
Example 2.9 (Translation) We consider (2,1) and the computation of abstract post-
condition with a couple of example abstract domains. The effect of the program is shown in Fig-
ure 2.11(a): any execution boils down to a pair of states.

In Figure 2.11(b), we demonstrate the computation of an abstract post-condition with the abstract
domain of intervals under the assumption of a given abstract pre-condition. The element apost is
obtained directly from apre by applying translation (2,1). If we consider a translation defined by
another vector, an abstract post-condition in the intervals abstract domain can be derived from the
abstract pre-condition in a similar way.

The case of the abstract domain of convex polyhedra is similar to the case of intervals, as shown
in Figure 2.11(c).

In both cases, we note that the abstract post-condition not only contains all the points in the image
of the concretization of the pre-condition, but it also contains no other point; in this sense, the post-
condition is exact.

Effect of a rotation. We now consider a program of the form (u,v,θ). The
same reasoning towards the design of an automatic algorithm to compute abstract post-
conditions from an abstract pre-condition as for the translation still holds. We discuss this
transformation in the following example:
Example 2.10 (45◦rotation) To fix the ideas, we assume (u,v) = (0,0) and a = 45◦ (45◦rotation
around the origin). A few concrete executions are depicted in Figure 2.12(a).

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

34 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

apre

apost

(b) Intervals

x

y

apre

apost

(c) Convex polyhedra

Figure 2.12
Abstraction of the result of a 45◦rotation

First, we discuss the case of polyhedra, as it is actually simpler than the case of intervals. Fig-
ure 2.12(c) shows that the abstract post-condition can be computed exactly in the same way as for
the translation in the previous paragraph. Indeed, if the analysis computes the image of the abstract
pre-condition by the rotation, the resulting convex polyhedron contains all the images of the points in
the concretization of the pre-condition and thus provides a precise over-approximation of the points
that the program may reach after the rotation.

The case of intervals is shown in Figure 2.12(b). Intuitively, rotating the pre-condition should give
a safe over-approximation of the points that the program may produce after the rotation, but the
rotated box is not a valid element of the intervals abstract domain. Indeed, we defined the intervals
abstract domain as the set of (finite or infinite) rectangles that are parallel to the axes, and the image
of the pre-condition by the rotation is not parallel to the axes. Therefore, to produce a conservative
post-condition, that is also an element of the abstract domain, the analysis should produce a bigger
box, which is parallel to the axes, as shown in Figure 2.12(b). But this result is somewhat imprecise:
indeed, as usual, the area filled with dots describes the result of the analysis, and the part of that
zone that has a gray background corresponds to points that cannot be observed when running the
program from any point in the pre-condition, yet these points have to be included in the result of
the analysis due to the limited expressiveness of the intervals abstraction. Such imprecisions may
ultimately prevent the analysis from proving the property of interest.

Conservative abstract transfer functions. Based on the two transformations that we have
studied so far, we now summarize how the analysis should compute post-conditions in
the abstract level. In general, we call an abstract operation that accounts for the effect of a
basic program statement a transfer function. The definition below formalizes the soundness
property that all transfer functions should satisfy.
Definition 2.6 (Sound analysis by abstract interpretation (compositional style)) We consider
a static analysis function analysis that inputs a program and an abstract pre-condition and returns
an abstract post-condition. We say that analysis is sound if and only if the following condition
holds:

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 35

If

apre

(x,y) (x�,y�)

ab
st

ra
ct

io
n

run p

then

apre

(x,y) (x�,y�)

apost = analysis(p,apre)

ab
st

ra
ct

io
n

run p

ab
st

ra
ct

io
n

analyze p

Figure 2.13
Sound analysis of a program p

If an execution of p from a state (x,y) generates the state (x�,y�),
then for all abstract element a such that (x,y) ∈ γ(a),

(x�,y�) ∈ γ(analysis(p,a))
Intuitively, this property states that the analysis should cover all executions of the program:
whenever there exists an execution starting from a state that lies inside the abstract pre-
condition, the output state should also belong to the abstract post-condition. The diagram
of Figure 2.13 gives an intuitive presentation of the soundness property: when a concrete
state can be described by an abstract pre-condition (bottom to top arrow in the left diagram)
and is the starting point of an execution that reaches a final state (left to right arrow in the
left diagram), running the analysis will close the diagram and return an over-approximation
of the post state, as shown in the right diagram.

The transfer functions shown in the previous paragraphs for translations and rotations,
for both the intervals and polyhedra abstract domains, satisfy the soundness property. Fur-
thermore, we will make sure in the following that the analysis algorithms that we design
for other program constructions still preserve this property.

This technique is an instance of abstract interpretation: it lets the analysis evaluate each
program construction one by one, a bit like a standard interpreter would, albeit in the
abstract domain.

At this point, we have defined:

analysis((u,v),a) =

�
return an abstract state that contains
the translation of a

analysis((u,v,θ),a) =

�
return an abstract state that contains
the rotation of a

Definition 2.6 entails that the analysis will produce sound results in the sense of Defini-
tion 1.2 when considering the property ¬D of interest. Since the analysis over-approximates
the states the program may reach, if it claims that ¬D is not reachable, then we are sure
that the program cannot reach ¬D.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

36 Chapter 2 A Gentle Introduction to Static Analysis

On the other hand, this definition does not rule out imprecisions. Thus, it accepts analyses
that produce coarse over-approximations. In the previous paragraphs we saw both precise
analyses and imprecise analyses:

• with the convex polyhedra abstract domain, both the analysis functions for the transla-
tion and rotation are precise;

• on the other hand, with the intervals abstract domain, the analysis function for the
rotation is imprecise.

Such imprecisions entail that the analysis is not complete in the sense of Definition 1.3,
and that it may fail to prove that a given region is unreachable.

In the following, we continue the definition of the analysis function that can compute
sound abstract post-conditions for any program in our language. We will proceed by in-
duction over the syntax of programs. Indeed, we have already seen how to handle basic
operations (initialization, translations and rotations); thus, we will now consider inductive
cases.

The case of sequences of operations is trivial: to compute an abstract post-condition
for p0;p1, we start from the abstract pre-condition a, compute an abstract post-condition
analysis(p0,a) for p0, and then feed the result as the pre-condition to compute an abstract
post-condition for p1:

analysis(p0;p1,a) = analysis(p1,analysis(p0,a))

The other cases (for non-deterministic choice and iteration) are a bit more complex than
the sequence case.

2.3.3 Abstraction of Non-Deterministic Choice
We now assume that p0 and p1 are two programs that we already know how to analyze and
we propose constructing a way to over-approximate post-conditions for {p0} {p1}.

Let a be an abstract pre-condition and state (x,y) ∈ γ(a). Intuitively, we should consider
two cases:

• either p0 is executed, and the result is in γ(analysis(p0,a));
• or p1 is executed, and the result is in γ(analysis(p1,a)).

Thus, the analysis should simply produce an over-approximation of both analysis(p0,a)
and analysis(p1,a).

The computation of an over-approximation for two abstract elements can be done in a
systematic way for all the abstract domains that we have considered in Section 2.2. We
can remark that this operation computes an over-approximation for the union of two sets
of points viewed as abstract elements. Thus, we denote this abstract operation by union.
In the case of intervals, the analysis should simply compute the minimum of lower bounds
and the maximum of greatest bounds for both dimensions. In the case of convex polyhedra,

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 37

x

y

(a) Concrete semantics

apre

apost

x

y

(b) Intervals

apre

apost

x

y

(c) Convex polyhedra

Figure 2.14
Abstraction of the result of a non-deterministic choice

it should simply produce a convex hull for both abstract elements. To summarize:

analysis({p0} {p1},a) = union(analysis(p1,a),analysis(p0,a))

Example 2.11 (Analysis of non-deterministic choice) In this example, we consider the very sim-
ple program below, and we show its analysis with both intervals and convex polyhedra:

{ (2,1)} { (−2,−1)}

Figure 2.14(b) shows the computation of an abstract post-condition in the intervals abstract domain,
and Figure 2.14(c) shows the computation of an abstract post-condition in the convex polyhedra
abstract domain. These two cases are quite similar since each branch of the non-deterministic choice
boils down to a geometric translation (which induces a translation of the shape of abstract elements),
and the analysis should then return an over-approximation of the effects of both branches. In both
domains, this operation incurs a significant loss of precision due to the approximation of the convex
hull.

The above example shows another reason for the incompleteness of our analysis, as it
cannot express precise disjunctive properties. This is a common issue in static analysis,
and we present several solutions to this problem in Section 5.1.

2.3.4 Abstraction of Non-Deterministic Iteration
Non-deterministic iteration is the last construction that we have to define the analysis for.
It is also the most complex construction to analyze since it can produce executions of any
length and even infinite executions. Therefore, the analysis should compute in finite time
an over-approximation for infinitely many arbitrarily long executions. Still, we observed in
Example 2.3 that we can still derive interesting properties about such programs with rather
short informal proofs. Thus, we are now going to generalize this approach and design
analysis algorithms that compute an over-approximation for the set of output states of a
loop.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

38 Chapter 2 A Gentle Introduction to Static Analysis

Note that the abstract post-condition that is produced as the analysis result only describes
the final states of the terminating program executions. This result means that “if a concrete
execution terminates, then this abstract post-condition holds.” The result does not mean
that “the iteration will terminate with this abstract post-condition.” This is due to the fact
that the halting problem cannot be computed exactly in finite time.

In the following, we consider the following program p that consists of a loop with body
b:

p ::=

{
b

}

We can discriminate the executions of p depending on the number of iterations of the loop;
indeed, an execution of program p executes b either zero time, or one time, or two times,
or three times, and so on. Thus, p is conceptually equivalent to the following (infinite)
program:

{}
{b}
{b;b}
{b;b;b}
{b;b;b;b}

...

This program fully eliminates the loop and resorts only to the construct which can be
analyzed as observed in Section 2.3.3, though it obviously cannot be completely written
since it would be infinite. However, if we focus on the executions that spend at most k
iterations in the loop, we can easily write a program without a loop that has exactly the
same behaviors. For all integer k, we let bk denote the program that iterates b k times (b0
is {}, b1 is b, b2 is b;b...). Moreover, we write pk for {b0} {b1} . . . {bk−1} {bk}.
In short:

program p0 is {}
program p1 is {} {b}
program p2 is {} {b} {b;b}
program p3 is {} {b} {b;b} {b;b;b}

...

Then we observe the following equivalence, which relates these programs all together:

pk+1 is equivalent to pk {pk;b}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 39

Indeed, an execution of pk+1 either executes the loop at most k times (hence, it is an
execution of pk), or it runs it k + 1 times exactly (and then it is an execution of pk;b).
Conversely, one can can show that an execution of pk {pk;b} is also an exexcution of
pk+1.

Therefore, the analysis of this sequence of programs can be computed recursively as
follows:

analysis(pk+1,a) = union(analysis(pk,a),analysis(b,analysis(pk,a)))

This approach corresponds to the analysis algorithm that inputs an abstract pre-condition
a, stores it into a variable R and iterates the operation:

R← union(R,analysis(b,R))

Moreover, as shown above any execution of p can be characterized by the number of times
it iterates over the loop. Thus, any execution is ultimately covered by repeating this itera-
tive abstract computation.

The following example illustrates this approach:
Example 2.12 (Abstract iteration) We consider the program below, which starts at a point located
in a triangle and iterates a basic geometric translation a non-deterministically chosen number of
times:

({(x,y) | 0 ≤ y≤ 2x and x≤ 0.5});
{

(1,0.5)
}

We assume that the analysis uses the convex polyhedra abstract domain. Then the set of states
observed after initialization and before the statement is shown in Figure 2.15(b). We show in
Figure 2.15(c), Figure 2.15(d) and Figure 2.15(e) the first three iterations of the analysis algorithm
that was sketched above. The imprecision is inherent in the computation of over-approximations (in
gray) of abstract elements as in the previous examples.

While this process does not terminate, we note that repeating it forever would yield the result
shown in Figure 2.15(f), which also provides a sound approximation of all the possible output states
of the program.

The iterative algorithm demonstrated in Example 2.12 will actually always terminate if
using the signs abstract domain. Indeed, this abstract domain has a finite number of abstract
elements and when the iterative algorithm computes R← union(R,analysis(b,R)), the
value of R will converge after finitely many steps: whenever it updates R, the new value
is either the same as the previous one (and then so will be all the other subsequent values
since they are computed using the same formula), or the new value denotes a strictly less
precise property. Since the number of abstract properties is finite, the latter case will occur
at most finitely many times. Therefore, at some point, the value of R stabilizes, and then

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

40 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Concrete semantics

x

y

(b) Analysis of p0 (0 iteration)

x

y

(c) Analysis of p1 (up to 1 iteration)

x

y

(d) Analysis of p2 (up to 2 iterations)

x

y

(e) Analysis of p3 (up to 3 iterations)

x

y

(f) Expected result

Figure 2.15
Abstract iteration

this value over-approximates the behaviors observed after any number of iterations. As a
consequence, the termination of signs analysis is guaranteed.

However, we have not solved the issue of termination in the general case yet. The iter-
ation technique used in Example 2.12 will obviously not allow for a terminating analysis
with the convex polyhedra abstraction or with the interval abstraction.

To ensure termination of the analysis, we need to enforce the convergence of abstract
iterates, possibly at the price of a coarser result. Note that a common way to prove that
an algorithm terminates involves finding a strictly positive value that decreases strictly
over time toward a finitely reachable basis. Thus, a way to enforce the termination of the

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 41

analysis is to exhibit such a measure. Very often, non-termination is due to some loop
indexes not being incremented properly, preventing such a decreasing measure to exist.
Intuitively, this is the issue the iterative analysis algorithm we sketched above suffers from,
as shown in Example 2.12.

Another interesting observation is that abstract elements are made of finite sets of con-
straints. Therefore, another way to over-approximate abstract elements that arise in the
abstract iteration would consist in forcing this number of constraints to decrease (possibly
down to zero) until it stabilizes, hereby recovering termination.

Given the current constraint a0, suppose that analyzing one more iteration generates a1.
To have an approximate constraint that subsumes both, we can let the analysis:

• keep all constraints of a0 that are also satisfied in a1;
• discard all constraints of a0 that are not satisfied in a1 (hence to subsume a1).

Applying this method to abstract iterates will produce a sequence of abstract elements with
a positive, decreasing number of constraints until the sequence stabilizes. This method is
an instance of a general technique called widening, which enforces the convergence of
abstract iterates. We denote this operator by widen:

operator widen

�
over-approximates unions
enforces convergence

Stabilization holds when the concretization of the next iterate is included into that of
the previous one. For all the abstract domains considered in this chapter, this inclusion
can be decided in the abstract level simply by checking geometric inclusion. We thus let
inclusion denote a function that inputs two abstract elements a0,a1 and returns true only
when it can prove that γ(a0)⊆ γ(a1).

operator inclusion returns true only when it succeeds checking inclusion

As a conclusion, the following algorithm computes an abstract post-condition for the
loop construction:

analysis({p},a) =

R← a;
repeat

T← R;
R← widen(R,analysis(p,R));

until inclusion(R,T)
return T;

This iteration technique will produce a sound result since it over-approximates the abstract
elements produced by the sequence of iterates without widening, and its limit (reached

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

42 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Iteration 0

x

y

(b) Iteration 1

x

y

(c) Iteration 2 and limit

Figure 2.16
Abstract iteration with widening

after finitely many iterates) also over-approximates all the abstract elements produced by
the sequence of iterates without widening and, thus, the states that the program may reach.

The following example illustrates its use in practice:
Example 2.13 (Abstract iteration with widening) We consider the same program as in Exam-
ple 2.12. Figure 2.15 shows the sequence of abstract iterates using the widening technique. This
sequence converges after only two iterations and produces a (rather coarse) over-approximation of
the reachable states of the program (shown in Figure 2.15(a)). The most interesting point is the com-
putation of the abstract element shown in Figure 2.16(b) from the two triangles obtained in the first
two iterations:

• the constraints 0 ≤ y and y≤ 2x are stable as they are satisfied in the translated triangle; thus,
they are preserved;

• the constraint x≤ 0.5 is not preserved; thus, it is discarded.

The result obtained in the example clearly shows that widening is another source of im-
precision and, thus, of potential incompleteness. Indeed, to ensure convergence in finite
time, the analysis weakens the abstract elements more aggressively, adding many points
that cannot be observed in any real program execution, as we can see in Figure 2.16(b).

Fortunately, there exist many techniques to make the analysis of loops more precise. The
example below demonstrates a classic such technique on the same code.
Example 2.14 (Loop unrolling) We note that we can rewrite a program with a loop in different
ways than the one used so far in this section. In particular, the program of Example 2.12 is equivalent
to the following program:

({(x,y) | 0 ≤ y≤ 2x and x≤ 0.5});
{} {

(1,0.5)
}

{
(1,0.5)

}

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.3 A Computable Abstract Semantics: Compositional Style 43

x

y

(a) Iteration 0

x

y

(b) Iteration 1, union

x

y

(c) Iteration 2, widen, limit

Figure 2.17
Abstract iteration with widening and unrolling

In essence, analyzing this second version instead has the following effect on the analysis: for the
first iteration, the union operator will be used, and for all subsequent iterations, widen will be
used instead. When computing widening at iteration 2, all constraints are stable but the constraint
x≤ 1.5. This produces the result shown in Figure 2.17(c). Thus, both the result of the first iteration
(shown in Figure 2.16(b)) and the widening output (shown in Figure 2.17(c)) are a lot more precise
than with the standard widening iteration technique presented in Example 2.13.

2.3.5 Verification of the Property of Interest
The analysis function that we have designed allows verifying the reachability property of
interest that we introduced in Section 2.1.

While the analysis function that we have shown so far only returns an over-approximation
of the output states (and not of all the intermediate reachable states), it actually com-
putes as intermediate results over-approximations for all the reachable states of the in-
put program. Let us consider the case of a sequence p0;p1. The analysis then returns
analysis(p1,analysis(p0,apre)). We observe that after analyzing p0 and before analyz-
ing p1, the analysis holds an over-approximation of all the states that can be observed after
executing p0 and before executing p1 (the abstract element analysis(p0,apre)). The same
holds for each kind of instruction of our language.

As a consequence, the analysis can attempt at verifying the property of interest by check-
ing that the abstract elements computed at each step have an empty intersection with D,
or equivalently, are included in ¬D. This inclusion can be fully verified in the abstract
level, using the same inclusion test as we have used for checking the termination of the
sequences of abstract iterates.

We assume the analysis uses the abstract domain of convex polyhedra and illustrate suc-
cessful and unsuccessful analyses in the two examples below:
Example 2.15 (Successful verification) Figure 2.18(a) shows the over-approximation computed
for the set of all the reachable states of the program of Example 2.3. In this case, the over-approxima-

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

44 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(a) Program of Example 2.3

x

y

(b) Program of Example 2.1

Figure 2.18
Abstractions of reachable states

tion does not intersect D: thus, the analysis proves the program correct. Again, this result is in line
with the conclusion of Example 2.7 that this program is correct.

Example 2.16 (Unsuccessful verification) Figure 2.18(b) shows the over-approximation com-
puted for the set of all the reachable states of the program of Example 2.1 (region filled with dots).
Since this zone corresponds to the whole field and intersects the error zone D, the analysis cannot
prove the property of interest for this program. This was to be expected. Example 2.2 has shown
executions of this program that enter D. While the analysis rightfully flags this program as “poten-
tially wrong,” it does not produce a proof that the program is definitely wrong (though we will see in
Section 5.5 that there exist static analysis techniques to achieve this proof in certain cases).

2.4 A Computable Abstract Semantics: Transitional Style

In Section 2.3, the analysis function has no explicit machinery to collect all intermediate,
reachable states. In other words, it is extensionally defined, analogous to the denotational
(or compositional) approach to the semantics. Its inductive definition over the syntactic
structure of the program returns just a post-state of the input program from a pre-state.
No collection of intermediate states is manifest in the definition. As we discussed in Sec-
tion 2.3.5 though, a simple monitoring mechanism on top of analysis can collect all
occurring intermediate states.

In this section, we introduce a different style of the analysis function. The new analysis
function computes, from the outset, all occurring intermediate states. This formulation is
analogous to an operational approach to the semantics.

This transitional style provides us with another convenient perspective that sheds a new
light over static analysis. In subsequent chapters, we will observe that the compositional
style is better suited for some problems, whereas the transitional style is a better fit for

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.4 A Computable Abstract Semantics: Transitional Style 45

others. Therefore, understanding both styles is beneficial to better grasp static analysis
techniques in general.

2.4.1 Semantics as State Transitions
In the transitional style, we view an execution of a program as a sequence of transitions
between states. This transition sequence exposes all the states that occur during the execu-
tion.

Let us consider the example language (Section 2.1) of this chapter. In this language, a
program execution moves a point in the two-dimensional space. In this case, a state can be
defined as a pair of a statement label l and a point p in the two-dimensional space.

A single transition
(l, p) �→ (l�, p�)

between states represents that the program at statement label l transforms the point p to p�

and passes it to the next statement label l� for continuation.
One proper transition corresponds to a “single-step” execution of a basic statement. For

a compound statement that consists of other statements, its execution consists of the tran-
sitions of its sub-statements.

An example of transition sequences for an example program will be shown shortly in the
next section, after we define how we represent programs and what we mean by “statement
labels.”

State transitions and the collection of all states. Let our analysis goal be to collect all the
states occurring in all possible transition sequences of the input program. Given such a set
of all reachable states, we can check, for example, whether every reachable state remains
in a safe zone of our interest.

Figure 2.19 illustrates transition sequences and the collection of states occurring in the
sequences. Each node si is a state (l, p): a pair of a statement label and a point set in
the two-dimensional space that is to be transformed by the statement at the label. Here,
we schematically show the transition sequences and occurring states. We will show in
Example 2.17 concrete examples of transition sequences.

Statement labels and execution order We view a program just as a collection of state-
ments with a well-defined execution order. We assign a unique label to each statement of
the program. This label can be understood as the so called program counter or program
point. The execution order, between statements, so called control flow, is specified by a
relation between the labels (from current program points to next program points).

Since our language has a non-deterministic choice and non-deterministic iterations, the
execution order is non-deterministic too. Entering the or-statement {p} {p�}, the next
statement to execute is either p or p�. Entering the iteration statement {p}, the next

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

46 Chapter 2 A Gentle Introduction to Static Analysis

s1 �→ s2 �→ s5 �→ s3 �→ s8 �→ · · ·
s6 �→ s7 �→ s8 �→ s3 �→ s4

s9 �→ s10 �→ s8 �→ s11 �→ s8 �→ s11 �→ s13

s12 �→ s7 �→ s2 �→ s3 �→ s4 �→ s14

States s1,s6,s9, and s12 are initial states.

s1 s2

s3 s4 s5 s6

s7 s8 s9 s10

s11 s12 s13 s14

. . .

Figure 2.19
Transition sequences and the set of occurring states

statement to execute is either the loop body p or the next statement after the exit of the
loop. The next statement of the loop body is again the iteration statement.

For example, consider an example program in Figure 2.20. Each statement has a unique
label. Figure 2.20(a) shows the program text with statement labels in circles. The statement
corresponding to a label is circumscribed by a dotted box. Figure 2.20(b) shows a graphical
representation of the program with its execution order as directed edges. Rectangular nodes
are either basic statements or heads of compound statements. Numbered circle nodes are
statement labels.

The non-deterministic function (or relation) for the execution order is defined as follows
(as visible in the graph view of Figure 2.20(b)).

next(0) = 1
next(1) = 2 next(1) = 5
next(2) = 3 next(2) = 4
next(3) = 1 next(4) = 1

Note that, in general, for most modern languages the execution order (control flow) is not
syntactically obvious. For example, when a language has a dynamic jump construct such as
dynamic goto label, dynamic method dispatch, higher-order function call, or the raise of an
exception whose target is computed only during execution, the exact execution order is not
available before the static analysis. For such languages, determining the execution order
should be a part of the static analysis under design or needs to be computed beforehand by
another separate static analysis.

In Chapter 4, we will present a formal framework that covers such dynamic control-flow
cases. Our example language in this chapter is one whose control-flow is obvious from the
syntax.

Example 2.17 (Transition sequences) For the example program in Figure 2.20, two examples of
state transition (�→) sequences starting from statement 0 are as follows: recall that a state (l, p) is
a pair of a statement label (l) and a point (p) right before being transformed by the correspond-
ing statement. The left sequence is a transition sequence when the program terminates after two

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.4 A Computable Abstract Semantics: Transitional Style 47

0

1

2

3

4

5

([0,1]× [0,1]);

{

{

(1,0);

} {

(0.5,0.5);

}

}

(a) Text view, with labels

([0,1]× [0,1])

(1,0) (0.5,0.5)

0

1

2

3 4

5

(b) Graph view, with labels

Figure 2.20
Example program with statement labels

iterations; the right one is when the same program terminates after one iteration.

(0, p0) �→ (1, p1) (0, p0) �→ (1, p1)

�→ (2, p1) �→ (2, p1)

�→ (3, p1) �→ (4, p1)

�→ (1, p2) �→ (1, p3)

�→ (2, p2) �→ (5, p3)

�→ (4, p2)

�→ (1, p4)

�→ (5, p4)

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

48 Chapter 2 A Gentle Introduction to Static Analysis

where

p1 ∈

x

y

p2 ∈

x

y

p3 ∈

x

y

p4 ∈

x

y

Figure 2.21 shows, on top of the graph view of the program, the right transition sequence.

2.4.2 Abstraction of States
Collecting the exact set of all the states that can occur during program executions (transition
sequences) is in general either too costly or impossible in finite time. Indeed, due to loops,
program executions may be arbitrarily long. Moreover, the set of initial states is also
potentially infinite. The situation is worse for other conventional languages that receive
inputs from outside. The number of possible inputs is usually combinatorially explosive or
even infinite. That is, the number of transition sequences can be infinite too.

Hence, as discussed in Section 2.3, the static computation of the set of all possible states
cannot be exact in general. Our static computation may only be an approximation in an
abstract world.

Now the question is what abstract world we are going to use. As an illustration among
many candidates, let us use the following statement-wise abstract world:

For each statement (program point), an abstract element approximates the set of points that
can occur at that program point during executions. The abstract elements for point sets are
convex hull pre-conditions as used in Section 2.3. In other words, an abstract state is a set of
pairs of statement labels and abstract pre-conditions.

Figure 2.22 schematically shows the state abstraction that we are using on top of the
graphic view of a program. The areas in the two-dimensional plane depict the set of points
that can occur during executions.

2.4.3 Abstraction of State Transitions
The abstract state transition is defined over the abstract states of the preceding section.
Note that an abstract state is a set of pairs of statement labels and abstract pre-conditions.
An abstract transition transforms an abstract state into another abstract state.

Let Step� be such an abstract state transition function. Given an abstract state X , Step�(X)
returns an abstract post-state. The Step� function is defined by the one-step abstract transi-
tion operator �→�, lifted for a set (for an abstract state):

Step�(X) = {x� | x ∈ X ,x�→�x�}.

The one-step abstract transition x�→�x� is the same as the post-condition computations in
Section 2.3 except that the proper transition happens only for non-compound basic state-

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.4 A Computable Abstract Semantics: Transitional Style 49

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(a) State (1, p1)

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(b) State (2, p1)

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(c) State (4, p1)

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(d) State (1, p3)

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(e) State (5, p3)

Each point pi belongs to the rectangular area of the corresponding two-dimensional plane.

Figure 2.21
States on top of the graph view of the program

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

50 Chapter 2 A Gentle Introduction to Static Analysis

Collection of all states

l

x

y

x

y

x

y

Statement-wise collection:

l

x

y

x

y

x

y

Statement-wise abstraction:

l

x

y

Figure 2.22
Statement-wise abstraction of all the possible states for statement label l

ments, and we reference the next function for the next label:

(l ,apre) �→� (next(l),apre) for an statement at l
(Figure 2.23(a))

(l ,apre) �→� (next(l),apre) for an statement at l
(Figure 2.23(b))

(pl ,apre) �→� (next(l),analysis(pl ,apre)) else, for a basic statement pl at l
(Figure 2.23(c))

Note that the above Step� function is sound because the analysis function (Section 2.3)
is sound for basic statements (Figure 2.13).

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.4 A Computable Abstract Semantics: Transitional Style 51

l

l� l��

(a) statement

l

l�l��

(b) statement

, ,or

l

l�

(c) basic statement

Figure 2.23
Next labels, depending on the statement of l, both l� and l��, or l� only.

2.4.4 Analysis by Global Iterations
The static analysis for collecting all abstract states should be sound. The soundness means
that the set of concrete states implied by the analysis result over-approximates the reality.

Definition 2.7 (Sound analysis by abstract interpretation in transitional style) Let analysisT
be a static analysis function in transitional style that inputs a program and returns a set of abstract
states. We say that analysisT is sound if and only if the following condition holds:

If S is the set of states occurring in a transition sequence of p from initial state s0,
then for any abstract element a such that s0 ∈ γ(a),

S ⊆ γ(analysisT (p,a))

For the input program p and an abstract state I that over-approximates all the possible
initial states, the analysis result analysisT (p, I) is a set of pairs (l,apre) of statement label
l and abstract pre-condition apre. The soundness ensures that the abstract pre-conditions at
label l over-approximate all the points that may occur at statement l during execution.

Such a sound analysis function analysisT (p, I) is composed of the sound abstract tran-
sition function Step� in Section 2.4.3 as follows: letting Step�i

(I) denote the abstract post-
states after i consecutive abstract transitions from I,

Step�0
(I) = I

Step�i+1
(I) = Step�(Step�i

(I)).

This abstract state Step�i
(I) is sound: it subsumes all the states after i transitions from an

initial state implied by I. This soundness of i consecutive applications of Step� is clear
because each step by Step� over-approximates the results of a single-step transition. For
our example language, the set I is {(0, true)}, where the label 0 lies at the initial statement
and its abstract pre-condition true implies all the points in the two-dimensional plane.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

52 Chapter 2 A Gentle Introduction to Static Analysis

Then the analysis accumulates all the abstract states occurring at each step of the abstract
transition from the initial abstract state I:

Step�
0
(I)∪Step�

1
(I)∪Step�

2
(I)∪ · · · .

Now, a natural question is how to devise an algorithm that accumulates the above sequence.
Please note that the above sequence is equivalent to what we illustrated in Section 2.3.4
when we devised the analysis function for the statement, whose body is now Step�.

The analysis algorithm is to compute the “limit” (limi→∞ Ci) of the following sequence
Ci:

Ci = Step�
0
(I)∪Step�

1
(I)∪ · · ·∪Step�

i
(I).

Because the following equivalence holds

Ck+1 is equivalent to Ck ∪Step�(Ck),

the analysis algorithm can be defined such that from I, stores it into a variable C and iterates
the operation

C← C∪Step�(C)

until stable.
Hence, the analysis algorithm for the input program p is a monolithic global iteration:

analysisT (p, I) =

C← {I}
repeat

R← C

C← unionT (C,Step�(C))
until inclusionT (C,R)

return R

The i-th iteration of the algorithm covers all states observed up-to i execution steps of the
input program.

The unionT and inclusionT operators do the same as the union and inclusion oper-
ators (Section 2.3.4), respectively, except that they are label-wise. That is, the inclusionT (C,R)
returns true only when at every statement label the local point-set implied from C is in-
cluded in that from R. Similarly, the unionT summarizes for each statement label its local
set of collected pre-conditions. The summarization is done by applying the union operator

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.4 A Computable Abstract Semantics: Transitional Style 53

to reduce each local set of pre-conditions into a single pre-condition:

unionT (C,C�) =

X← {}
for each label l in C∪C�

Sl ← {a | (l,a) ∈ C}
S�l ← {a | (l,a) ∈ C�}
Tl ← union(Sl ∪S�l)

X← X∪{(l,Tl)}
return X

Example 2.18 (Abstract transitions) Consider the example program in Figure 2.20. Suppose we
use the convex-polyhedra abstractions for point sets. The above analysis algorithm analysisT
stores the following Ci iterates into the variable C after i iterations. Remember that Ci covers up-to i
transitions of the input program:

after 0 iteration, C0
let
= {I}

after 1 iteration, C1
let
= unionT (C0,{(1,a1)})

after 2 iterations, C2
let
= unionT (C1,{(2,a1),(5,a1)})

after 3 iterations, C3
let
= unionT (C2,{(3,a1),(4,a1)})

after 4 iterations, C4
let
= unionT (C3,{(1,a2),(1,a3)})

...
...

where

a1 =

x

y

a2 =

x

y

a3 =

x

y

Figure 2.24 shows the snapshots of computing the iterates Ci on top of the graph view of the
program:

• Figure 2.24(a), Figure 2.24(b), and Figure 2.24(c), show the pre-condition a1 at statement labels
1, 2, 3, 4, and 5 until C3.

• Figure 2.24(d), Figure 2.24(e), and Figure 2.24(f) are snapshots of computing C4 from C3.
• Figure 2.24(d) shows two new pre-conditions of statement 1 (post-conditions after statement 3

and 4) resulting from Step�(C3). They will be “unioned” with other pre-conditions at statement
1.

• Figure 2.24(e) shows the result of unioning a2 and a3 during union{a1,a2,a3} at statement 1.
• Figure 2.24(f) shows the final result of union{a1,a2,a3}, union of the above and a1.

Analysis algorithm with the termination guarantee. Now, note that the previous analysisT
algorithm does not guarantee termination. If a program has a loop, the analysis may iterate

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

54 Chapter 2 A Gentle Introduction to Static Analysis

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(a) State (1,a1)

x

y

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(b) States (2,a1) & (5,a1)

x

y

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(c) States (3,a1) & (4,a1)

x

y

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(d) States (1,a2) & (1,a3)

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(e) State (1,union({a2,a3)})

x

y

(. . .)

(. . .) (. . .)

0

1

2

3 4

5

(f) State (1,union({a1,a2,a3)})

Figure 2.24
Abstract transition snapshots in the graph view of the program

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.4 A Computable Abstract Semantics: Transitional Style 55

forever collecting ever new abstract pre-conditions. In order to guarantee the termination,
we need to use the widening idea that we introduced to analyze the iteration statement in
Section 2.3.4.

A terminating analysis analysisT should use a widening operation in place of the
unionT operation:

analysisT (p, I) =

C← {I}
repeat

R← C

C← widenT (C,Step�(C))
until inclusionT (C,R)

return R

The widenT operator ensures the termination of the sequence of iterations. It makes sure
the number of collected constraints for abstract pre-conditions will always decrease.

The widenT function is identical to the unionT operation except that at the state-
ments, we use the widen operator in place of the union operator. It is because the
statement is the only place where iteration happens during program execution. At other
statements, we use the union operator as before:

widenT (C,C�) =

X← {}
for each label l in C∪C�

Sl ← {a | (l,a) ∈ C}
S�l ← {a | (l,a) ∈ C�}
Tl ← if the statement at l is

then widen(union(Sl),union(S�l))

else union(Sl ∪S�l)

X← X∪{(l,Tl)}
return X

Note that, as opposed to the union operator, the widen operator is sensitive to the order
of its arguments. The widen(a,a�) extrapolates a by a� as defined in Section 2.3.4. When
either argument is false (the abstract pre-condition for the empty set of points in the two-
dimensional plane), the widen operation simply returns the other argument.

Example 2.19 (Abstract transitions with widening) Consider again the example program in Fig-
ure 2.20 and suppose we use the convex-polyhedra abstractions for sets of points. The above widen-
ing analysis algorithm analysisT stores the following iterates Ci in the variable C after i iterations

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

56 Chapter 2 A Gentle Introduction to Static Analysis

as before but using widenT in place of unionT :

after 0 iteration, C0
let
= {I}

after 1 iteration, C1
let
= widenT (C0,{(1,a1)})

after 2 iterations, C2
let
= widenT (C1,{(2,a1),(5,a1)})

after 3 iterations, C3
let
= widenT (C2,{(3,a1),(4,a1)})

after 4 iterations, C4
let
= widenT (C3,{(1,a2),(1,a3)})

...
...

where

a1 =

x

y

a2 =

x

y

a3 =

x

y

The widening operation becomes effective at iteration 4 (C4), when the algorithm brings the effect
of the loop body back to the loop head (statement label 1). Figure 2.24(e) shows the abstract state
produced when the two results from the statement in the loop body are unioned (union({a2,a3})).
The algorithm brings this result to the loop head and widens it with the old pre-condition (a1). In the
algorithm, this widening operation

widen(a1,union({a2,a3}))

at the loop head happens during the computation of C4 at iteration 4:

widenT (C3,{(1,a2),(1,a3)}).

The result corresponds to all the points such that x ≥ 0 and y ≥ 0, as shown in Figure 2.25(b). It
is a rather coarse over-approximation of the actual results, which is shown in Figure 2.25(a).

The analysis accuracy can be improved by the “loop-unrolling” technique discussed in Exam-
ple 2.14 (Section 2.3.4). This technique rewrites a loop “ {b}” into “{} {b}; {b}”
before the analysis. The analysis of the unrolled, first iteration (“{} {b}”) will bring the unioned
result to the subsequent loop head. For our example program the analysis result right after the un-
rolled first iteration is shown in Figure 2.24(f). Widening it at the subsequent loop head with the
analysis result of the loop body will generate the result shown in Figure 2.25(c). This result is still
an over-approximation of the reality, yet it is more accurate than the result shown in Figure 2.25(b).

2.5 Core Principles of a Static Analysis

The previous sections sketched the design of static analyses in the context of a simplistic
graphical language. First, in Section 2.1, we selected semantic properties of interest and
formalized the semantics of programs, with respect to which these properties should be
proved. Then in Section 2.2, we showed how to define abstractions of the standard se-

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

2.5 Core Principles of a Static Analysis 57

x

y

(a) Actual reachable set

x

y

(b) A first approximation

x

y

(c) Better approximation

Figure 2.25
Static analysis results

mantics of programs. Last, Section 2.3 and Section 2.4 presented two static analyses for
this graphical language. In fact, both analyses were derived from a presentation of the
semantics of programs (one in compositional style and one in transitional style).

This three-stage approach is actually general and has many fundamental and practical
advantages, both for designing and for using static analysis tools.

Indeed, let us first recall the role of each stage:
1. Selection of the semantics and properties of interest:

This stage is critical as it fixes the goal of the analysis. It describes the behaviors of
programs and the properties that need to be verified. This description is often formal,
even though we did it with prose in this chapter.

2. Choice of the abstraction:
The abstraction describes the properties that are supposed to be manipulated by the
analysis. These properties should be strong enough to express the properties of interest
and all the invariants that are required to infer these properties.

3. Derivation of the analysis algorithms from the semantics and from the abstrac-
tion:
The analysis algorithms follow from the choices made in the first two phases for the
semantics and for the abstraction. In the two analyses presented in this chapter, we
have observed that the analysis closely follows the semantics: for instance, the com-
positional analysis (Section 2.3) follows similar steps as a basic program interpreter, in
the same order, but using abstract domain predicates instead of regular states.

From the static analysis point of view, this approach puts the choice of the reference
semantics and property of interest at the forefront of the design process, as it should be,
since this semantics and property define the actual goal of the analysis. It also addresses the
selection of the predicates to use before the design of the algorithms to compute these pred-
icates, although it does not preclude from revising these choices after testing the analysis,
as discussed at the end of this section.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

58 Chapter 2 A Gentle Introduction to Static Analysis

As observed in Section 2.3 and Section 2.4, most of the choices related to the analysis
algorithms are dictated by the abstraction and by the way programs get evaluated according
to the concrete semantics. Therefore, this construction also allows justifying the soundness
of the analysis step by step: indeed, whenever we defined the way a program construction
should be handled by the analysis, we ensured that the analysis does not forget any program
behavior, according to the abstraction. Thus, the mathematical proof of soundness follows
the design of the analysis closely. We will discuss this more in Chapter 3.

Similarly, this approach also allows tying the analysis and the “standard” semantics of
programs. It is actually possible to follow the same process when implementing a static
analyzer, as we will show in Chapter 7.

Lastly, this methodology also simplifies the troubleshooting of the analysis when it falls
short, either in terms of precision (ability to compute strong invariants and achieve the
proof of the property of interest) or in terms of scalability (ability to cope with input pro-
grams that are large enough). In particular, let us consider the case where the analysis fails
to prove the property of interest. Then after investigating the analysis results, the user can
diagnose which step “went wrong”:

• the first point to check is that the base semantics allows expressing all the steps needed
to prove the property of interest and that the abstraction preserves them; indeed, if
the abstraction throws important information away, there is no hope that the analysis
algorithms will infer predicates that the abstraction cannot capture and will recover
from the loss of precision;

• when the semantics and abstraction are strong enough, the imprecisions stem from
the analysis algorithms, and one needs to identify which abstract operation (for in-
stance, the computation of the abstract post-condition for some basic operations in the
language or the computation of an over-approximation for union) discards important
information away, which causes the analysis to fail.

When the analysis tool can be parameterized, the user can often remedy such issues by
choosing settings carefully. We will discuss this point in more depth in Chapter 6.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4 A General Static Analysis Framework Based on a Transitional
Semantics

Goal of chapter. In this chapter, we provide a formal introduction to static analysis by ab-
stract interpretation in the transitional style. This framework is general and can be instanti-
ated for different languages and different abstractions. We shows a step-by-step recipe for
constructing a sound static analysis in this framework. Following the recipe will result in a
sound static analysis. This soundness guarantee is summarized in theorems whose proofs
are in appendix. We assume that the readers are already familiar with key concepts of static
analysis in abstract interpretation. The intuition conveyed in Chapter 2 supports most of the
contents of this framework. Understanding the concept of abstraction and being familiar
with its formal notions of Section 3.2.1 are necessary.

Recommended reading: [S], [D], [U].
We recommend this chapter to all readers since it defines the core concepts of static analysis
and is fundamental to the understanding of most of the following chapters in the book.
Readers less interested in the foundations may skip some parts of the analysis design,
whereas readers who would like to fully understand how static analyses achieve sound
results may want to read the proofs supplied in Appendix. Moreover, readers interested in
implementation may also combine the reading of this chapter with that of Chapter 7.

Chapter outline: recipe for the construction of an abstract interpreter in a transitional-
style semantics. We present a general framework of designing a sound static analysis
by abstract interpretation in transitional style. The presentation of this framework is not
bound to a particular programming language. We present the framework solely in the
semantic level, without referring to the syntax of a specific target programming language.
A transition-style semantics allows this parameterization.
1. in Section 4.1, we define semantics as state transitions and show such semantics for

an example program snippet. We then present a recipe for defining the concrete state-
transition semantics.

2. in Section 4.2, we present a recipe for defining an abstract state-transition semantics
that is a sound upper-approximation of a concrete semantics as defined in Section 4.1.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

96 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

3. in Section 4.3, we presents analysis algorithms that compute abstract state-transition
semantics as defined in Section 4.2.

4. in Section 4.4, we fix a simple imperative language and illustrate a use of the recipes
of Section 4.1 and Section 4.2 in defining a correct analysis.

4.1 Semantics as State Transitions

We use a transitional style approach in order to define semantics. In this style we define
concrete and abstract semantics in the small-step operational semantics.

This style of semantics is handy for languages whose compositional semantics (also
known as denotational semantics) is not obvious. For example, if the target programming
language has dynamic jumps (such as function calls, local gotos, jump labels as values,
non-local gotos, function pointers, functions as values, dynamic method dispatches, or
exception raises) then defining its compositional semantics becomes a burden. With gotos,
program may loop with an arbitrary portion of the program, not tamed to a particular
construct such as the while-loop. Defining the compositional semantics for such language
feature needs an advanced knowledge in programming language semantics. Transitional
semantics (one style of operational semantics) on the other hand is free from the need to be
compositional and is relatively easy to define, once we understand how programs operate.

The transitional style is also a good fit for the proof of the reachability property. For this
property, the static analysis goal is to over-approximate the set of reachable states of the
input program. This set is obvious in the transitional style because the semantics explicitly
exposes all the intermediate states of program executions.

4.1.1 Concrete Semantics
We start from the concrete semantics. The concrete semantics of a programming language
defines the run-time behaviors of its programs. Informally, the concrete semantics of a
language is what programmers have in mind about the run-time behaviors of their programs
when they program.

The transitional-style semantics of a program is defined as the set of all possible se-
quences of state transitions from the initial states. We write a concrete state transition
as

s �→ s�

A sequence
s0 �→ s1 �→ s2 �→ · · ·

of state transitions is the chain that links the transitions

s0 �→ s1, s1 �→ s2, · · · .

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.1 Semantics as State Transitions 97

A state s ∈ S of the program is a pair (l,m) of a program label l and the machine state m
at that program label during execution. The program label denotes the part of the program
that is to be executed next. The machine state is usually the memory state that contains the
effect of the program’s hitherto execution and a data for the program’s continuation. For the
example language of Chapter 2, a machine state is a point in the two-dimensional space
because program’s execution step transforms a point to another point. For conventional
imperative languages with local blocks and function calls, the machine state would consist
of a memory (a table from locations to storable values), an environment (a table from
program variables to locations), and a continuation (a stack of return contexts – a return
context is a program label and an environment to resume at the return of a function).

One step of the state transition relation

(l,m) �→ (l�,m�)

is defined by the language construct of the program part pointed to by l. The next memory
state m� is the result of executing the program part at l by one step.

For simple languages, the next label l� of the program (called control flow) is determined
by the program syntax. In case the control flow is not determined solely by the syntax
but is determined by the program execution (such as goto target as values, function point-
ers, functions as values, or dynamic method dispatches) the next program label l� is an
evaluation result from the current program label l and the current machine state m.

Example 4.1 (Concrete transition sequence) Consider the following program

(x);
(x≤ 99)
{x := x+1}

The labeled representations of this program in text and graph are respectively:

0

1

2

3

input(x)

while (x≤ 99)

x := x+1

input(x)

while (x≤ 99)

x := x+1

0

1

2

3

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

98 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

Let the initial state be the empty memory /0. Transition sequences for some integer inputs are:

For input 100: (0, /0) �→ (1,x �→ 100) �→ (3,x �→ 100).
For input 99: (0, /0) �→ (1,x �→ 99) �→ (2,x �→ 99) �→ (1,x �→ 100) �→ (3,x �→ 100).
For input 0: (0, /0) �→ (1,x �→ 0) �→ (2,x �→ 0) �→ (1,x �→ 1) �→ · · · �→ (3,x �→ 100).

A transition sequence for a program can be infinitely long if the program has non-
terminating executions. The number of transition sequences can be infinite too if the initial
states can be infinitely many.

Set of reachable states. We restrict our analysis interest to computing the set of reachable
states, the set of all states that can occur in the transition sequences of the input program.

Example 4.2 (Reachable states) For the program in Example 4.1, let us assume that the possible
inputs are only 0, 99, and 100. Then the set of all reachable states are the set of states occurring in
the three transition sequences:

{(0, /0),(1,x �→ 100),(3,x �→ 100)}
∪ {(0, /0),(1,x �→ 99),(2,x �→ 99),(1,x �→ 100),(3,x �→ 100)
∪ {(0, /0),(1,x �→ 0),(2,x �→ 0),(1,x �→ 1), · · · ,(2,x �→ 99),(1,x �→ 100),(3,x �→ 100)}
= {(0, /0),(1,x �→ 0), · · · ,(1,x �→ 100),(2,x �→ 0), · · · ,(2,x �→ 99),(3,x �→ 100)}

Given a program, the set of all its reachable states is intuitive in the operational sense.
Starting from the set of all initial states of the program, we keep adding next states to the
set. The next states are those produced by the application of the single-step transition �→ to
each state in the current set. We keep adding next states until no more addition is possible.
The final set is the set of all reachable states.

We will define this set of reachable states in mathematical terms. This mathematical
formalization is a necessary step in our framework because it will later be a reference in
proving the soundness of a designed static analysis. We will see that the mathematical
concept called the least fixpoint of a monotonic function exactly defines the reachable set.

Given a program, let I be the set of its initial states and Step be the powerset-lifted version
of �→:

Step :℘(S)→℘(S)

Step(X) = {s� | s �→ s�,s ∈ X}

Note that the set of states that can occur right after i transitions from the set I of initial
states is

Stepi(I)

where
Step0(X) = X

Stepi+1(X) = Step(Stepi(X)).

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.1 Semantics as State Transitions 99

Example 4.3 (Stepi operation) For the program in Example 4.1, assuming the set I = {(0, /0)} of
initial states, and that the possible inputs are 0, 99, and 100,

Step0(I) = I
Step1(I) = {(1,x �→ 100),(1,x �→ 99),(1,x �→ 0)}
Step2(I) = {(3,x �→ 100),(2,x �→ 99),(2,x �→ 0)}
Step3(I) = {(1,x �→ 100),(1,x �→ 1)}
Step4(I) = {(3,x �→ 100),(2,x �→ 1)}
Step5(I) = {(1,x �→ 2)}
Step6(I) = {(2,x �→ 2)}
Step7(I) = {(1,x �→ 3)}

...

Thus, the accumulated set of all reachable states of a program is the collection of Stepi(I)
for all i ≥ 0:

I ∪ Step1(I) ∪ Step2(I) ∪ · · · . (4.1)

We can define this set inductively as follows. Let Ci be the accumulated set I ∪Step1(I)∪
· · ·∪ Stepi(I) of reachable states in 0-to-i transition steps. Then Ci can be inductively
defined as:

C0 = I
Ci+1 = I ∪ Step(Ci)

The base C0 is the initial set I. As of the inductive case, note that Step(Ci) generates states
occurring after one more step from Ci, that is, in 1-to-(i+1) steps of transitions. Hence the
set Ci+1 of states in 0-to-(i+1) steps of transitions is I ∪Step(Ci).

The accumulated set (4.1) of all reachable states is the limit of the sequence (Ci)i∈N, a
set C such that accumulating further by I ∪ Step(C) remains the same as C. That is, the
limit is the least solution of the following equation:

X = I ∪ Step(X).

Such limit corresponds, in mathematics, to the one called the least fixpoint of the continu-
ous monotonic function F

F :℘(S)→℘(S)

F(X) = I ∪ Step(X)

written as
lfpF.

The least fixpoint lfpF of F is constructive as follows:

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

100 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

Theorem 4.1 (Least fixpoint) The least fixpoint lfpF of F(X) = I ∪Step(X) is
�

i≥0
Fi(/0)

where F0(X) = X and Fn+1(X) = F(Fn(X)).

The above theorem, which is a version of the Kleene fixpoint theorem (Theorem A.1),
holds because the function F : ℘(S) →℘(S) is continuous over the powerset ℘(S) with
the set-inclusion order. (The readers may refer to Appendix A.5 for the definition of con-
tinuous functions. Intuitively, any function that can be exactly implemented as a computer
program is continuous.)

Definition 4.1 (Concrete semantics, the set of reachable states) Given a program, let S be the
set of states and �→ be the one-step transition relation from a state to a state. Let I be the set of its
initial states and Step be the powerset-lifted version of �→: one-step transition relation over states:

Step :℘(S)→℘(S)

Step(X) = {s� | s �→ s�,s ∈ X}.

Let
F(X) = I ∪Step(X).

Then the concrete semantics of the program, the set of all reachable states from I, is defined as the
least fixpoint lfpF of F.

4.1.2 Recipe for Defining a Concrete Transitional Semantics
When building a static analysis for programs written in a programming language L, the
first step is to define its concrete semantics. The concrete semantics is the basis for later
steps towards a static analysis.

1. For the target programming language, define the set of states between which a single-
step transition relation �→ is to be defined. Let us name this set S.

2. Define the s �→ s� relation between states s and s� ∈ S and let Step be its natural
powerset-lifted version

Step :℘(S)→℘(S)

Step(X) = {s� | s �→ s�,s ∈ X}.

3. Given a program of the language with its set I ⊆ S of initial states, let

F :℘(S)→℘(S)

F(X) = I ∪Step(X)

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.2 Abstract Semantics as Abstract State Transitions 101

The concrete semantics, defined as the set of all the reachable states of the program, is
the least fixpoint of the continuous function F :

lfpF =
�

i≥0
Fi(/0).

The concrete semantics is not what we implement as a static analyzer. Implementing this
concrete semantics is rather equivalent to implementing an interpreter that actually runs
the programs of the target language.

The next steps towards a static analysis consist of defining an abstract version of the
concrete semantics and checking its soundness. These steps will reference the concrete
semantics.

The concrete semantics as a mathematical object (as the least fixpoint) provides the foun-
dation upon which static analysis design and its soundness check are conveniently formal-
ized and proven. We will see that our intuition as sketched in Chapter 2 about sound static
analysis and its algorithm have correspondences in mathematics.

Before we continue we add two definitions:
Definition 4.2 (Semantic domain and semantic function) We assume the concrete semantics of
a program by the least fixpoint of a function F : ℘(S) →℘(S). Then we call the function F con-
crete semantic function and the space ℘(S) over this semantic function is defined concrete semantic
domain or simply concrete domain whose partial order is the subset order.

4.2 Abstract Semantics as Abstract State Transitions

Given a concrete semantics, we now focus on the design of an abstract version that is
finitely computable.

An abstract semantic functions F� will have the same structure as the concrete semantic
function F :

F :℘(S)→℘(S) F� : S� → S
�

F(X) = I ∪Step(X) F�(X �) = I� ∪� Step�(X �)

where I�, ∪�, and Step� are the abstract versions of, respectively, I, ∪, and Step. The
concrete semantics of the target language consists of two parts: a semantic domain ℘(S)
and a semantic function over the domain F : ℘(S) →℘(S). An abstract semantics also
consists of two parts, an abstract domain S

� and an abstract semantic function F� : S� → S
�

over it. The whole purpose of this abstract version is to derive a finitely computable, yet
sound semantics for any program of the target language.

The forthcoming framework will guide us towards the definition of such an abstract
domain S

� and the abstract semantic function F� such that the abstract semantics of the
input program is always finitely computable and is an upper-approximation of the concrete
semantics lfpF .

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

102 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

4.2.1 Abstraction of the Semantic Domain
A concrete semantic domain D is the powerset of concrete states

D = ℘(S)

S = L×M

The set S of concrete states is defined as the Cartesian product (set of pairs) of L (program
labels) and M (machine states). The concrete semantics of a program, the set of all the
reachable states of the program, is an element of the concrete domain D. Given a program,
the L set is defined to be its finite and fixed set of labels.

Program-label-wise reachability. In this chapter we will consider a class of abstractions
that come from one particular analysis goal: program-label-wise reachability. We are in-
terested in the reachable set for each program label. For each program label we want to
know the set of memories that can occur at that label during executions. Such analysis is
sometimes called flow-sensitive, because program labels are in this case assigned along the
control flow of programs.

In this case, we can view the abstraction goes in two steps (Figure 4.1). We first partition
the set of states by the program labels of the states

from collection of all states to label-wise collection
℘(L×M)

abstraction−→ L→℘(M)

then we abstract the local set of memories collected at each label into a single abstract
memory

from label-wise collection to label-wise abstraction
L→℘(M)

abstraction−→ L→M
�.

An element of this abstract domain is a table from each program label to an abstract mem-
ory.

The program labels are usually syntactic elements, such as those assigned to every state-
ment and/or expression of the program (as in Example 4.1 or Section 2.4). For any input
program we thus assume that its label set L is finite and fixed before the analysis.

For this class of abstractions, what remains is to design the space M
� of abstract mem-

ories. The M
� is an abstraction of the powerset ℘(M). This abstraction is the parameter

and can be defined in many ways depending on the target properties to compute by static
analysis.

Abstract domain by Galois connection. We first design an abstract domain, a space over
which the abstract semantics of programs can be finitely computable.

In this chapter, an abstract domain is a partial order that has a least element called bottom
(written ⊥) and such that each totally-ordered subset (such a subset is called a chain) has a

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.2 Abstract Semantics as Abstract State Transitions 103

℘(L×M) �
collection of

all states

(0,m0),(0,m�
0), · · · , at 0

(1,m1),(1,m�
1), · · · , at 1

...
(n,mn),(n,m�

n), · · · . at n

L→℘(M) �
label-wise
collection

(0,{m0,m�
0, · · ·})

(1,{m1,m�
1, · · ·})

...
(n,{mn,m�

n, · · ·})

L→M
� �

label-wise
abstraction

(0,M�
0)

(1,M�
1)

...
(n,M�

n)

where each M�
l over-approximates the set {ml ,m�

l , · · ·} of memories collected at label l.
Figure 4.1
Label-wise abstraction of states

least-upper bound. Such structure is called CPO (complete partial order) (Appendix A.5).

Note that different structures other than CPO can also be used. As in Chapter 3, abstract
domains as �-semilattices also work. The generality of CPO and that of �-semilattice are
not comparable.

An abstract domain needs to preserve the partial order of the concrete domain in the
sense that the partial order in the abstract domain has a corresponding partial order in
the concrete domain. This concept is captured by the Galois-connection between the two
domains. Please note that other solutions rather than the Galois-connection would work
too (for example, Section 3.3). In this Chapter we choose to use the Galois-connection
approach.

We design an abstract domain as a CPO that is Galois-connected (Definition 3.5 in Sec-
tion 3.2.1) with the concrete domain:

(℘(L×M),⊆) −→←−
α

γ
(L→M

�,�).

The abstraction function α defines how each element (a set of states) in the concrete do-
main is abstracted into an element in the abstract domain. The adjoined concretization
function γ defines the set of concrete states that is implied by each abstract state. The

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

104 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

partial order � is the label-wise order:

a� � b� iff ∀l ∈ L : a�(l)�M b�(l)

where �M is the partial order of M�.
The above Galois connection (abstraction) can be understood as the composition of two

Galois connections:

(℘(L×M),⊆)

−→←−
α0

γ0
(L→℘(M),�) (� is the label-wise ⊆)

−→←−
α1

γ1
(L→M

�,�) (� is the label-wise �M)

The first abstraction α0 partitions the set of states by the labels of each state and collects
the memories for each label:

α0

(0,m0),(0,m�
0), · · · ,

(1,m1),(1,m�
1), · · · ,

...
(n,mn),(n,m�

n), · · ·

=

(0,{m0,m�
0, · · ·}),

(1,{m1,m�
1, · · ·}),

...
(n,{mn,m�

n, · · ·})

This partitioning is a Galois connection.
What remains is to find a Galois connection pair α1 and γ1 for the second abstraction,

which is a label-wise abstraction of the collected memory sets:

α1

(0,{m0,m�
0, · · ·}),

(1,{m1,m�
1, · · ·}),

...
(n,{mn,m�

n, · · ·})

=

(0,M�
0),

(1,M�
1),

...
(n,M�

n)

Thus, defining this second Galois connection pair boils down to defining a Galois connec-
tion pair between the powerset of memories and an abstract memory domain:

(℘(M),⊆) −→←−
αM

γM
(M�,�M).

Notations. Before we continue let us first brief notations to use in the rest of this chapter.
• An element of A → B, which is a map from A to B, is interchangeably an element in

℘(A×B). For example, an element in L→M
� of the abstract states is interchangeably

an element in ℘(L×M
�), a set (so called graph) of pairs of labels and abstract mem-

ories. Note that in the above examples of this subsection we already used this graph
notation to represent the abstract state function.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.2 Abstract Semantics as Abstract State Transitions 105

• A relation f ⊆ A×B is interchangeably a function f ∈ A →℘(B) defined as

f (a) = {b | (a,b) ∈ f}.

For example, the concrete one-step transition relation �→⊆ S×S is interchangeably a
function �→∈ S→℘(S).

• For function f : A → B, we write ℘(f) for its powerset version defined as:

℘(f) :℘(A)→℘(B)
℘(f)(X) = { f (x) | x ∈ X}

• For function f : A →℘(B), we write ℘̆(f) as a shorthand for ∪◦℘(f)

℘̆(f) :℘(A)→℘(B)
℘̆(f)(X) =

�
{ f (x) | x ∈ X}.

For example, powerset-lifted function Step :℘(S)→℘(S) of relation �→

Step(X) = {s� | s �→ s�,s ∈ X}

is equivalently, by regarding �→ as a function of S→℘(S),

Step =℘̆(�→).

• For functions f : A → B and g : A� → B�, we write (f ,g) for

(f ,g) : A×A� → B×B�

(f ,g)(a,a�) = (f (a),g(a�)).

4.2.2 Abstraction of Semantic Functions
The abstract semantic function F� over the abstract state is defined as follows.

Given a concrete semantic function F

S= L×M

F :℘(S)→℘(S)

F(X) = I ∪Step(X)

where
Step = ℘̆(�→) (relation �→ as a function)
�→ ⊆ (L×M)× (L×M),

its abstract version is defined to be

S
� = L→M

�

F� : S� → S
�

F�(X �) = α(I)∪� Step�(X �)

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

106 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

where

Step� = ℘(id,�M)◦π ◦℘̆(�→�) (relation �→� as a function) (4.2)

�→� ⊆ (L×M
�)× (L×M

�).

The Step� function is the one-step transition function over the abstract states L → M
�.

The reason for its definition (4.2) is as follows:

• ℘̆(�→�): to an abstract state in L→M
� as a set ⊆ L×M

� it applies the abstract transi-
tion function �→� to each element and collect the results, returning a set ⊆ L×M

�.
• π ◦℘̆(�→�): the operator π partitions the result ⊆ L×M of ℘̆(�→�) by the labels in L,

returning a set ⊆ L×℘(M�) where each label has only one pair, a set representation
of an element in L→℘(M�).

• ℘(id,�M)◦π ◦℘̆(�→�): to the result ⊆ L×℘(M�) of π ◦℘̆(�→�) applying ℘(id,�M)
returns a set ⊆ L×M

�, in effect an abstract state ∈ L→M
�, so that each label is to be

paired with a single abstract memory. This single abstract memory is the least-upper-
bound �M of the set of abstract memories at each label.

Example 4.4 Suppose the program has two labels l1 and l2. That is, L= {l1, l2}. Given an abstract
state {(l1,M�

1),(l2,M
�
2)}, Step� first applies ℘̆(�→�) to it:

�→�(l1,M
�
1)∪ �→�(l2,M

�
2).

Suppose �→�(l1,M
�
1) returns {(l1,M��

1),(l2,M
���

1)} and �→�(l2,M
�
2) returns {(l1,M��

2)}. Then the
result is

{(l1,M��
1),(l2,M

���
1),(l1,M

��
2)}.

The subsequent application of the operator π partitions the result by labels into

{(l1,{M��
1,M

��
2}),(l2,{M���

1})}.

The final organization operation ℘(id,�M) returns the post abstract state ∈ L→M
�:

{(l1,M��
1 �M M��

2),(l2,M
���

1)}.

Conditions for sound �→� and ∪�. The abstract one-step transition relation �→� must
satisfy, as a function,

℘̆(�→)◦ γ ⊆ γ ◦℘̆(�→�).

Figure 4.2 depicts the above condition in a diagram. The condition is natural: the abstract
one-step transition relation �→� must cover the cases of the corresponding concrete one-step
relation �→ in the concrete semantics. Note that abstract state X � ∈ L→M

� is considered
a set ∈ L×M

� as the argument for ℘̆(�→�).
In the same vein, the condition for ∪� to be sound is

∪◦ (γ,γ) ⊆ γ ◦∪�.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.2 Abstract Semantics as Abstract State Transitions 107

X Y

X � Y �

⊆

γ

℘̆(�→)

℘̆(�→�)

γ

Figure 4.2
Sound one-step abstract transition �→�

All the above postulates (concrete semantic domains, concrete semantic function F ,
Galois-connected abstract domains, abstract semantic function F�, sound �→�, and sound
∪�) contributes to the correctness of the resulting abstract semantics.

4.2.3 Recipe for Defining an Abstract Transition Semantics
In summary, the recipe of achieving a sound static analysis based on the transitional se-
mantics is as follows. Such static analysis over-approximates the concrete semantics of the
input programs.

1. Define M to be the set of memory states that can occur during program executions. Let
L be the finite and fixed set of labels of a given program.

2. Define a concrete semantics as the lfpF where

concrete domain ℘(S) = ℘(L×M)

concrete semantic function F :℘(S)→℘(S)

F(X) = I ∪Step(X)

Step = ℘̆(�→)

�→ ⊆ (L×M)× (L×M)

The �→ is the one-step transition relation over L×M.
3. Define its abstract domain and abstract semantic function as

abstract domain S
� = L→M

�

abstract semantic function F� : S� → S
�

F�(X �) = α(I)∪� Step�(X �)

Step� = ℘(id,�M)◦π ◦℘̆(�→�)

�→� ⊆ (L×M
�)× (L×M

�)

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

108 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

The �→� is the one-step abstract transition relation over L×M
�. Function π partitions

a set ⊆ L×M
� by the labels in L returning an element in L→℘(M�) represented as a

set ⊆ L×℘(M�).
4. Check the abstract domains S

� and M
� are CPOs, and forms a Galois-connection re-

spectively with ℘(S) and ℘(M):

(℘(S),⊆) −→←−
α

γ
(S�,�) and (℘(M),⊆) −→←−

αM

γM
(M�,�M)

where the partial order � of S
� is label-wise �M:

a� � b� iff ∀l ∈ L : a�(l)�M b�(l).

5. Check the abstract one-step transition �→� and abstract union ∪� satisfy:

℘̆(�→)◦ γ ⊆ γ ◦℘̆(�→�)

∪◦ (γ,γ) ⊆ γ ◦∪�

6. Then sound static analysis can be defined as follows:

(a) (Theorem 4.2) In case S
� is of finite-height (every its chain is finite) and F� is

monotone or extensive, then �

i≥0
F�i

(⊥)

is finitely computable and over-approximates the concrete semantics lfpF .

(b) (Theorem 4.3) Otherwise, find a widening operator
�

(Definition 3.11), then the
following chain X0 � X1 � · · ·

X0 =⊥ Xi+1 = Xi
�

F�(Xi)

is finite and its last element over-approximates the concrete semantics lfpF .

Theorem 4.2 (Sound static analysis by F�) Given a program, let F and F� be defined as in Sec-
tion 4.2.3. If S� is of finite-height (every chain S

� is finite) and F� is monotone or extensive, then
�

i≥0
F�i

(⊥)

is finitely computable and over-approximates lfpF:

lfpF ⊆ γ(
�

i≥0
F�i

(⊥)) or equivalently α(lfpF) �
�

i≥0
F�i

(⊥).

The proof of the above theorem is in Appendix B.3.1.
In case the abstract domain may have an infinite chain or the abstract semantic function

F� can be neither monotone nor extensive, by means of a special operator called widening
operator we can still finitely compute an upper approximation of the concrete semantics
of programs:

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.3 Analysis Algorithms Based on Global Iterations 109

Theorem 4.3 (Sound static analysis by F� and widening operator
�

) Given a program, let F
and F� be defined as in Section 4.2.3. Let

�
be a widening operator as defined in Definition 3.11

(page 87).
Then the following chain Y0 � Y1 � · · ·

Y0 =⊥ Yi+1 = Yi
�

F�(Yi)

is finite and its last element Ylim over-approximates lfpF:

lfpF ⊆ γ(Ylim) or equivalently α(lfpF)� Ylim.

The proof of the above theorem is in Appendix B.3.2.
Note that if a widening operator is used with a monotone or extensive F�, the second

condition for a widening operator in Definition 3.11 can be relaxed from “for all sequence
(an)n∈N” to “for all chain a0 � a1 � · · ·”.

Using the results of the analysis. Like Theorem 3.6 (page 90) for compositional-style ab-
stract semantics, the above two soundness theorems formalize what the analysis achieves:
the analysis computes an over-approximation of all the states that the program may reach
during its executions.

The same discussion we had after Theorem 3.6 regarding the use of a sound analysis
in practice applies here too. If the over-approximate reachable set does not intersect with
the set of error states, then we are sure that the program will not generate an error state.
Otherwise, we cannot conclude anything. A non-empty intersection may be due to an
imprecision of the analysis, or to the fact that the program can indeed generate an error
state. Upon this unsettled case, the analysis has to generate alarms so that users should
inspect the analysis results so as to decide whether the alarms are true or not. This so-
called triage process is discussed in details in Section 6.3.

4.3 Analysis Algorithms Based on Global Iterations

4.3.1 Basic Algorithms
Once we have designed an abstract semantics function F� as in the recipe (Section 4.2.3),
the analysis implementation is straightforward from Theorem 4.2 and Theorem 4.3.

Algorithm from Theorem 4.2. If the abstract domain S
� is of finite-height and F� is mono-

tone or extensive, the increasing chain

⊥� (F�)
1
(⊥)� (F�)

2
(⊥)� · · ·

is finite and its biggest element is equal to
�

i≥0
F�i

(⊥).

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

110 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

���������������

C←⊥
repeat

R← C

C← F�(C)

until C� R

return R

Figure 4.3
Algorithm without widening

Hence, the analysis algorithm is a simple loop, shown in Figure 4.3.
As a side note, the algorithms in the gentle introduction Section 2.4.4 are based on the

following algorithm that computes an upper bound of
�

i≥0 F�i
(⊥).

C←⊥
repeat

R← C

C← C�F�(C)

until C� R

return R

Note that this algorithm computes a chain

Y0 =⊥ Yi+1 = Yi �F�(Yi)

such that every element Yi is an upper bound of its corresponding element Xi of the first
algorithm

X0 =⊥ Xi+1 = F�(Xi).

Algorithm from Theorem 4.3. If the abstract domain S
� is of infinite-height or F� is neither

monotonic nor extensive, we have to use a widening operator
�

. Even when the abstract
domain S

� is of finite-height, we can accelerate the analysis steps by using the widening
operator.

Given a program, the analysis algorithm with
�

is shown in Figure 4.4. The algorithm
computes a finite increasing chain as ensured in Theorem 4.3.

4.3.2 Worklist Algorithm
The basic iteration algorithms of Section 4.3.1 have a room for speedup. Let us re-consider
the widening version with the operation F�(C) being inlined in order to expose its perfor-

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.3 Analysis Algorithms Based on Global Iterations 111

���������������

C←⊥
repeat

R← C

C← C
�

F�(C)

until C� R

return R

Figure 4.4
Algorithm with

�

mance bottleneck:
C←⊥
repeat

R← C

C← C
�
(℘(id,�)◦π ◦℘̆(�→�))� �� �

F�

(C)

until C� R

return R

Note that at each iteration, computing

℘̆(�→�)(C)

applies the abstract transition operation �→� to the state at every label in the program. The
table C has as many entries as the number of labels in the program. When every statement
of the program is uniquely labeled, one million-statement program has one million labels.

We can speedup the performance by reducing the program labels to visit at each iteration.
We keep a worklist, a set of labels for which the transition needs to be applied because its
input memories were changed. For each iteration, the transition is applied only for those
labels in the worklist. The worklist for the next iteration becomes to consist of the labels
whose input memories are changed in the previous iteration.

This worklist version is in Figure 4.5. As of notation, for the table C from all labels in
the program to their abstract memories, C|WorkList is the same as the C table but restricted
only for labels in WorkList.

This worklist algorithm calls for improvements regarding two specific points:

• Note that collecting the new worklist for next iteration

WorkList← {l | C(l) �� R(l), l ∈ L}

re-scans all the labels of the program.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

112 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

�������������������������������

C : L→M
�

F� : (L→M
�)→ (L→M

�)

WorkList :℘(L)

WorkList← L

C←⊥
repeat

R← C

C← C
�

F�(C|WorkList) (* only for WorkList *)
WorkList← {l | C(l) �� R(l), l ∈ L} (* next WorkList *)

until WorkList= /0
return R

Figure 4.5
Analysis algorithm with worklist and widening

We can avoid this scanning of all the labels. Right after each application �→� to (l,C(l)),
if the result state (l�,M�) is changed (M� �� C(l�)), we add l� to the new worklist.

• Generally, the widening operator deteriorates the precision of resulting abstract ele-
ments, thus, they should be applied only at necessity. Naive implementation of the
widening operation C

�
F�(C|WorkList) would be a squandering, label-wise widening:

for every (l,M�) ∈ F�(C|WorkList) we widen C(l) by M�.

The precision would be better if we apply the widening operation only when the l is
the target of a cycling control flow (for example, the l-labeled statement is a
statement or a target statement of a cycling)(?). For other labels, we apply the
least-upper-bound operation ∪� instead.

4.4 Use Example of the Framework

4.4.1 Simple Imperative Language
We consider a simple imperative language (Figure 4.6) that is almost identical to the one in
the previous chapter on the compositional style framework. One difference, in order to ex-
pose the merit of the transitional style, is the goto statement whose target label is not fixed
in the program text but to be computed during execution by its argument expression. La-
bels in a program are integers that are uniquely assigned to every statement of the pgoram;
we assume that the programmers know the labels for each statement of their programs. The

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.4 Use Example of the Framework 113

x ∈ X program variables
C ::= statements

| nop statement
| C ; C sequence of statements
| x := E assignment
| (x) read an integer input
| (B){C } {C } condition statement
| (B){C } loop statement
| E goto with dynamically computed label

E ::= expression
| n integer
| x variable
| E +E addition

B ::= boolean expression
| |
| E < E comparison
| E = E equality

P ::= C program

Figure 4.6
Syntax of a simple imperative language

expressions compute values without mutating the memory. An expression E computes an
integer or a program label. A boolean expression B computes a boolean value.

Program labels and execution order. Given a program, each of its statements has a unique
label as a natural number. For example, Figure 4.7 shows an example program where a
unique label is associated to each statement.

Except for E , the execution order (or control flow) between the statements in a
program is clear from the program syntax. The function ��C , l��� defined below collects all
the execution orders available from syntax between the statement labels in C . The label l�

is the next label to continue after executing C . Thus, given a program p and label lend for
the end label of the program, ��p, lend�� collects the function graphs of next, nextTrue, and
nextFalse. We write label(C) for the label of statement C.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

114 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

0

1

2

3

4

5

C 0

(B)

C 1

;

C 2

next(0) = 1
nextTrue(1) = 2 next(2) = 3
nextFalse(1) = 5 next(3) = 4
next(4) = 1

Figure 4.7
Example program with statement labels and execution order. All labels are statically known.

��C , l���= case C of (* let l be label(C) *)
: {next(l) = l�}

x := E : {next(l) = l�}
(x) : {next(l) = l�}

C 1;C 2 : {next(l) = label(C 1)} ∪ ��C 1,label(C 2)�� ∪ ��C 2, l���
(B){C 1} {C 2} : {nextTrue(l) = label(C 1),nextFalse(l) = label(C 2)}

∪ ��C 1, l��� ∪ ��C 2, l���
(B){C } : {nextTrue(l) = label(C),nextFalse(1) = l�} ∪ ��C , l��

E : {} (* to be determined at run-time by evaluating E *)

4.4.2 Concrete State Transition Semantics
Given a program p, let X be the finite set of its variables. Each statement of the program is
uniquely labeled and we assume that the next, nextTrue, and nextFalse functions are
syntactically computed beforehand by ��p, lend��, except for the goto case.

Then the concrete semantics of the program, for the set I of input states, is the least
fixpoint

lfpF

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.4 Use Example of the Framework 115

of the continuous function
F :℘(S)→℘(S)

F(X) = I ∪Step(X)

Step(X) =℘̆(�→).

The set of states is the set of label-and-memory pairs

S= L×M

where
memories M = X→ V

values V = Z ∪ L.

The state transition relation (l,m) �→ (l�,m�) is defined as follows. The transition relation
is defined by case analysis on statement labeled by l:

: (l,m) �→ (next(l), m)

(x) : (l,m) �→ (next(l), updatex(m,z)) for an input integer z
x := E : (l,m) �→ (next(l), updatex(m,evalE (m)))

C 1;C 2 : (l,m) �→ (next(l), m)

(B){C 1} {C 2} : (l,m) �→ (nextTrue(l), filterB (m))

: (l,m) �→ (nextFalse(l), filter¬B (m))

(B){C } : (l,m) �→ (nextTrue(l), filterB (m))

: (l,m) �→ (nextFalse(l), filter¬B (m))

E : (l,m) �→ (evalE (m), m)

The memory update operation updatex(m,v) returns a new memory that is the same as
m except that its image for x is v. The expression-evaluation operation evalE (m) returns a
value of expression E given memory m. The filterB (m) (respectively, filter¬B (m)) operation
returns m if the value of boolean expression E for m is true (respectively, false). Otherwise,
no corresponding transition relation happens.

4.4.3 Abstract State
An abstract domain M

� is a CPO such that

(℘(M),⊆) −→←−
αM

γM
(M�,�M).

We define an abstract memory M� for a set of memories as a single map from program
variables to abstract values:

M� ∈M
� = X→ V

�

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

116 Chapter 4 A General Static Analysis Framework Based on a Transitional Semantics

where V
� is an abstract domain that is a CPO such that

(℘(V),⊆) −→←−
αV

γV
(V�,�V).

We design V
� as

V
� = Z

�×L
�

where Z
� is a CPO that is Galois connected with ℘(Z), and L

� is the powerset ℘(L) of
labels.

All abstract domains are Galois-connected CPOs. Because Z� and L
� are Galois-connected

CPOs, so are the compound domains built from them: V
� the component-wise-ordered

pairs of Z� and L
�, M� the point-wise-ordered vectors of V�, and S

� the point-wise-ordered
vectors of M�.

4.4.4 Abstract State Transition Semantics
For an abstract memory M�, we define the abstract state transition relation (l,M�) �→� (l�,M��)
as follows.

Case the l-labeled statement of
: (l,M�) �→� (next(l),M�)

(x) : (l,M�) �→� (next(l),update�x(M�,α(Z)))

x := E : (l,M�) �→� (next(l),update�x(M�,eval�E (M�)))

C 1;C 2 : (l,M�) �→� (next(l),M�)

(B){C 1} {C 2} : (l,M�) �→� (nextTrue(l),filter�B (M�))

: (l,M�) �→� (nextFalse(l),filter�¬B (M�))

(B){C } : (l,M�) �→� (nextTrue(l),filter�B (M�))

: (l,M�) �→� (nextFalse(l),filter�¬B (M�))

E : (l,M�) �→� (l�,M�) for l� ∈ L of (z�,L) = eval�E (M�)

Let F� be defined as the framework:

F� : S� → S
�

F�(S�) = α(I)∪� Step�(S�)
Step� =℘(id,�M)◦π ◦℘̆(�→�).

If the Step� and ∪� are sound abstractions of, respectively, Step and ∪, as required by the
framework:

℘̆(�→)◦ γ ⊆ γ ◦℘̆(�→�)

∪◦ (γ,γ) ⊆ γ ◦∪�

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

4.4 Use Example of the Framework 117

then we can use F� to soundly approximates the concrete semantics lfpF (Theorem 4.2
and Theorem 4.3) and is finitely computable as in the algorithms in Section 4.3.

Defining sound �→�. Note that the abstract transition relation �→� is the same as �→ except
that it uses the abstract correspondents for semantic operators: operator eval�E for evalE ,
update�x for updatex, filter�B for filterB , and filter�¬B for filter¬B .

If each of the abstract semantic operators is a sound abstraction of its concrete corre-
spondent, then �→� is a sound abstraction of �→:

Theorem 4.4 (Soundness of �→�) Consider the concrete one-step transition relation of Section 4.4.2
and the abstract transition relation of Section 4.4.4. If the semantic operators satisfy the following
soundness properties:

℘(evalE)◦ γM ⊆ γV ◦ eval�E
℘(updatex)◦×◦ (γM ,γV) ⊆ γM ◦update�x

℘(filterB)◦ γM ⊆ γM ◦filter�B
℘(filter¬B)◦ γM ⊆ γM ◦filter�¬B

then ℘̆(�→)◦ γ � γ ◦℘̆(�→�). (The × is the Cartesian product operator of two sets.)

The proof is included in Appendix B.3.

Defining sound ∪�. As of a sound ∪�, one candidate is the least upper bound operator �
if S� is closed by �, because

(γ ◦�)(a�,b�) = γ(a��b�) � γ(a�)∪ γ(b�) by the monotonicity of γ
= (∪◦ (γ,γ))(a�,b�).

Adapting the analysis for a different abstraction. The above soundness theorem Theo-
rem 4.4 also suggests a way to adapt the analysis for a different abstraction. We are to
follow the recipe of Section 4.2.3, and for a different analysis we need to use different ab-
stract domains and semantic operators. The new analysis is sound if the abstract transition
relation �→� is the same as (“homomorphic to”) �→ except that it uses the abstract corre-
spondents for semantic operators, and that each abstract semantic operator f � : A� → B�

satisfies the pattern ℘(f)◦ γA ⊆ γB ◦ f �.
In fact, many static analysis tools are parametric in the choice of the abstract domains

and semantic operators. The practical consideration related to the parameter setting of the
analysis are discussed in Section 6.2.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8 Static Analysis for Advanced Programming Features

Goal of the chapter. This chapter discusses the analysis of more realistic programming
languages than those considered so far. Indeed, previous chapters focus on the foundations
of static analysis, hence opt for a somewhat contrived language. We now aim at considering
full-featured languages.

Real-world programming languages feature arrays, pointers, dynamic memory alloca-
tion, functions and other constructions than the basic arithmetic and boolean operators
considered so far. This chapter provides a high level view of the static analysis techniques
for such programming languages features. As the range of these features is quasi infi-
nite (for example, exceptions, multi-staged meta programming, parameterized modules,
dynamic dispatches, and etc.), and the academic literature on their analysis is also very
wide and thorough, we do not aim for an exhaustive coverage. Instead, we consider a few
common and representative constructions, and present the most significant techniques that
cope with it. For each construction, we summarize the concrete semantics at a high level,
discuss the salient properties related to static analysis and present the main abstractions.
We do not provide in-depth discussion of the analysis algorithms (though, we give the un-
derlying intuitions), as it would go beyond the scope of this introductory books (instead,
we provide references). We stress the link between the properties of interest and the ab-
stractions that are required to cope with them. Note that our approach benefits from the
advantages of the abstract interpretation methodology as presented in previous chapters:
indeed, we rely on the fact that the concrete semantics serves as a basis for the analysis
design, and that the analysis algorithms derive from the abstraction, so that the choice of
the semantics and of the abstraction is key.

Recommended reading: [S] (Master), [D] and [U] (2nd reading, depending on need).
Engineers and students can skip this chapter in a first reading and revisit it when dealing
with the analysis of software relying on more advanced programming features. Teachers
will find here examples that can be used to illustrate classes and practical sessions.

Chapter outline. .
Section 8.1 and Section 8.2 first discusses the step-by-step design of abstract interpreters

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

196 Chapter 8 Static Analysis for Advanced Programming Features

E ::= · · · expression, as before (Figure 4.6, page 113)
| x location of a variable
| location of a newly allocated memory
| ∗E dereference of a memory location

C ::= · · · statement, as before (Figure 4.6, page 113)
| ∗E := E indirect assignment

P ::= C program

Figure 8.1
Syntax of an example language with pointers and dynamic memory allocations

in the framework of Chapter 4 for two common dynamic programming features, namely
pointers and functions. While doing so, we demonstrate the convenience of the semantics-
based approach to static analysis. Indeed, the design of an analysis is driven by the concrete
semantics and the abstraction. Therefore, the presence of pointers and procedures does not
require fundamentally different frameworks to formalize, and prove the analysis correct,
even though novel abstractions need to be used.

Subsequently, Section 8.3 and Section 8.4 focus more on the abstractions required to
cope with complex programming languages. Section 8.3 and Section 8.4 describe a few
common programming languages features, and corresponding basic abstractions. Features
are treated separately, and abstractions are mostly presented at a high level, for the sake of
concision. Section 8.3 focuses on features related to memory states, whereas Section 8.4
studies features related to control states.

8.1 For a Language with Pointers and Dynamic Memory Allocations

8.1.1 Language and Concrete Semantics
Let us consider an imperative language that admits memory locations as values. The syntax
of this example language is shown in Figure 8.1. We extend the imperative language of
Section 4.4 (Figure 4.6) with the constructs that generate and use memory locations.

A expression allocates an isolated fresh memory and returns its address. We let
the allocated size be always a unit size that can store integers, labels, or addresses. (A more
realistic construct for the dynamic memory allocation will be considered in Section 8.3.4.)
Dereference expression ∗E computes a location value from E then returns the value stored
at this location. Indirect assignment ∗E 1 := E 2 computes a location from E 1 and stores the
value of E 2 into the location.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8.1 For a Language with Pointers and Dynamic Memory Allocations 197

Example 8.1 Consider the following program.

x := ;
y := x;
∗x := 5;
∗y := ∗x

After the first statement “x := ”, the memory is {x �→ a} where the a is the address of a fresh
memory location. After the second statement “y := x”, the memory becomes {x �→ a,y �→ x}. Then
the assignment “∗x := 5” assigns integer 5 to the address stored in x, hence the memory becomes
{x �→ a,y �→ x,a �→ 5}. Then the last assignment “∗y := ∗x” dereferences the address (a) stored in
x, gets 5, and stores it to the address (x) stored in y. Hence, the memory in the end is

{x �→ 5,y �→ x,a �→ 5}.

This concrete semantics is formalized in the followings.

Concrete transitional semantics. Given a program, its initial states I, and the set L of the
labels for its statements, the transitional-style semantics (Chapter 4) is the least fixpoint of
the following semantic function F :

S= L×M

F :℘(S)→℘(S)

F(X) = I ∪Step(X)

where
Step =℘̆(�→).

Before we define the transition relation �→ ⊆ S× S between concrete states, we have
to define the semantic domains. The memories are as before, maps from locations to
values, yet the location (address) domain A is extended to include dynamically allocated
memory addresses as well as program variables. Since such locations can also be values
of expressions, the value domain V contains such locations as well as integers (for integer
expressions) and labels (for goto-target expressions):

M = A→ V memories
A = X∪H addresses (locations)
V = Z∪L∪A values
X set of variables
H set of allocated heap addresses
L set of statement labels

The H set denotes the locations generated by the expressions. Given a program,
every expression is assumed to have a unique number µ , writing µ . Let

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

198 Chapter 8 Static Analysis for Advanced Programming Features

the set of these malloc-site numbers be Nsite. Then we can model the domain of memory
addresses as

H= Nsite ×N.

Thus, the addresses of fresh locations from a µ are (µ,0),(µ,1), · · ·.
Now we define the transition relation �→ for the indirect assignment, which is the only

new statement added to the imperative language of Section 4.4 (Figure 4.6, page 113). If
label l is an indirect assignment statement, then its transition is:

∗E 1 := E 2 : (l,m) �→ (next(l),update(m,evalE 1(m),evalE 2(m)))

where the update(m,v1,v2) returns the same memory as m except that location v1 has
value v2. For example, for assignment statement “∗x := 3” the evaluation of x will return
a location, a stored value in x, into which integer 3 is stored.

The evalE (m) computes the value of expression E given memory m. For expressions,
there are new constructs that generate or dereference locations. The evaluation function
eval for these three pointer expressions, together with the reminder of the variable expres-
sion case, are:

evalx(m) = fetch(m,x) stored value in a variable x
eval x(m) = x variable as a location x

eval µ (m) = (µ,z) new number z for malloc site µ , as a fresh location
eval∗E (m) = fetch(m,evalE (m)) dereference of a location

where fetch(m,v) returns the value of m at location v.
In summary, the types of the above semantic operations are

evalE : M→ V

update : M×V×V→M

fetch : M×V→ V

Though the programs in the above language may easily have two expressions point to
the same location (alias), when we design a a static analysis we do not need a separate
concern about how to handle the alias behavior. This is because all behaviors of programs
are defined within the semantics, and the alias behavior is one of the phenomenas that
appear from the semantics. Thus, in designing a static analysis it is sufficient to focus
on the semantics. This is the power and convenience of semantics-based static analysis
framework (Chapter 3 and Chapter 4).

Now, designing a sound static analysis boils down to designing a sound abstract seman-
tics.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8.1 For a Language with Pointers and Dynamic Memory Allocations 199

8.1.2 An Abstract Semantics
Following the framework of Chapter 4, we define an abstract semantics as

abstract domain S
� = L→M

�

abstract semantic function F� : S� → S
�

F�(X �) = α(I)∪� Step�(X �)

Step� = ℘(id,�M)◦π ◦℘̆(�→�)

where �→� is the one-step abstract transition relation ⊆ S
�×S

�.
At this level, all things remain the same as being prescribed in Chapter 4. The func-

tion π partitions a subset of L×M
� by the labels, returning an element in L →℘(M�).

The abstract state domain S
� and the abstract transition relation �→� needs to satisfy the

framework’s required conditions:

• We design the set L → M
� of abstract states as a CPO that is Galois-connected with

℘(L×M):
℘(L×M) −→←−

α

γ
L→M

�.

We design the abstract memory M
� as a CPO that is Galois-connected with ℘(M):

℘(M) −→←−
αM

γM
M

�.

• We need to check that the abstract transition relation �→� as a function satisfies the
soundness condition: ℘̆(�→)◦ γ ⊆ ℘̆(γ)◦ �→�.

• We need to check that the abstract union operator ∪� satisfies the soundness condition:
∪◦ (γ,γ) ⊆ γ ◦∪�.

Then for any input program, the algorithms of Section 4.3 soundly approximates the con-
crete semantics of the program.

Abstract domains. The abstract domains S�, M�, V�, and A
� are all CPOs that are Galois-

connected with the corresponding concrete domains.

℘(L×M) −→←−
α

γ
L→M

� ℘(M) −→←−
αM

γM
M

�

where
α(S) = {l �→ αM({m | (l,m) ∈ S}) | l ∈ L}
γ(s�) = {(l,m) | m ∈ γM(s�(l)), l ∈ L}.

Now, the abstract domain M
� is the parameter.

Example 8.2 (A memory abstract domain) An example of such a domain M
� is

M
� = (X∪Nsite)→ V

�

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

200 Chapter 8 Static Analysis for Advanced Programming Features

given V
� being a Galois-connected CPO. The X and Nsite are finite sets of, respectively, the variables

and the allocation sites in the input program.
The abstraction and concretization functions are:

αM(M)(x) = αV ({m(x) | m ∈ M}) if x ∈ X

αM(M)(µ) = αV ({m(µ,n) | m ∈ M,n ∈ N}) if µ ∈ Nsite

γM(M�) = {m ∈M | ∀x ∈ X : m(x) ∈ γV (M�(x)),

∀µ ∈ Nsite,∀n ∈ N : m(µ,n) ∈ γV (M�(µ))}

Example 8.3 (An abstract value domain) An example abstract value domain V
�, a CPO that is

Galois-connected
℘(V) −→←−

αV

γV
V
�,

is achieved by abstracting kind-wise a set of values (integers, labels, and/or locations). We abstract
its set of integers into an abstract integer, its set of labels into an abstract label, and a set of locations
into an abstract location:

℘(Z ∪ L ∪ A) −→←−
αV

γV
Z
�×L

�×A
�

where
αV (V) = (αZ(V ∩Z),αL(V ∩L),αA(V ∩A))

γV (z�, l�,a�) = γZ(z�) ∪ γL(l�) ∪ γA(a�).
The abstract integers, abstract labels, and abstract locations need to be Galois-connected CPOs:

℘(Z) −→←−
αZ

γZ
Z
� ℘(L) −→←−

αL

γL
L
�

℘(A= X∪Nsite ×N) −→←−
αA

γA
A
� =℘(X∪Nsite).

Note that the set of variables X and sites Nsite are finite for a program; thus, the powersets
of those sets can be used as finite abstract domains.

Abstract transition �→�. Given the above abstract domains, we define the abstract transi-
tion relation �→� as follows.

∗E 1 := E 2 : (l,M�) �→� (next(l),update�(M�,eval�E 1
(M�),eval�E 2

(M�)))

Note that the abstract transition is identical to the concrete one except that they used ab-
stract versions for the semantic operators (e.g., update� for update).

The types of the semantic operators are:

eval�E : M
� → V

�

update� : M
�×V

�×V
� →M

�

fetch� : M
�×V

� → V
�.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8.1 For a Language with Pointers and Dynamic Memory Allocations 201

The abstract evaluation operator eval� can be defined as

eval�x(M�) = fetch�(M�,x)

eval�x(M�) = {x}
eval� µ (M

�) = {µ}
eval�∗E (M�) = fetch�(M�,eval�E (M�)).

Safe memory operations. If we use the abstract domains of Example 8.2 and Example 8.3,
sound memory read or write operations are as follows.

• The memory read operation fetch�(M�,v�) looks up the abstract memory entry at the
abstract location l� ∈℘(X∪Nsite) of v�. Since the abstract location is a set of variables
and sites, the result is the join of all the entries:

�

a∈l�
M�(a).

• The memory write operation update�(M�,v�1,v
�
2) overwrites the memory entry (called

strong update) when the abstract target location l� of v�1 means a single concrete loca-
tion. Otherwise, the update cannot overwrite the memory. Every entry in the abstract
memory that constitutes the target abstract location l� ∈℘(X∪Nsite) must be joined
with the value v�2 to store (called weak update):

�

a∈l�
M�[a �→ M�(a)� v�2].

Example 8.4 Consider the program in Figure 8.2 that repeatedly allocates a new memory and over-
write integers to it. The columns named “early”, “intermittent”, and “stable” show the snapshots
of some entries of the abstract memory at each program point during the analysis. The “stable”
column show the final result of the analysis.

We assume that the integer values are abstracted into the integer-interval domain.
First, see the “early” column that captures the abstract memory entries right after the first itera-

tion. The variable has the abstract address µ for all the fresh memories allocated at the
expression. Note the abstract value stored at the µ address. The assignment to the abstract address
µ must be the weak update because µ denotes multiple locations. At line 6, µ contains [0,2] not
[2,2] as the assigning [2,2] to µ must be the join with the old value [0,0].

In the “intermittent” column, see the abstract values at µ at lines 4 and 6. The assignments
does not overwrite but join the new value with the old one. The abstract values stored at µ keeps
expanding.

The “stable” column shows the abstract memory entries in the end. The expanding upper bounds
of the values at and µ are widened to +∞ and become stable there.

Theorem 8.1 (Safety of �→� for the pointer language) Consider the concrete one-step transition
of Section 8.1.1 and the abstract transition relation of Section 8.1.2. If the semantic operators satisfy

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

202 Chapter 8 Static Analysis for Advanced Programming Features

early intermittent stable (= early
�

intermittent)
:= ;

1 : �→ [0,0] �→ [0,1] �→ [0,+∞]

(){
2 : �→ [0,0] �→ [0,1] �→ [0,+∞]

:= µ ;
3 : x �→ µ x �→ µ x �→ µ

:= ;
4 : µ �→ [0,0] µ �→ [0,2] µ �→ [0,+∞]

:= ;
5 : �→ [1,1] �→ [1,2] �→ [1,+∞]

:=
6 : } µ �→ [0,2] µ �→ [0,3] µ �→ [0,+∞]

Figure 8.2
Analysis snapshots of a pointer program

the following soundness properties:

℘(evalE)◦ γM ⊆ γV ◦ eval�E
℘(update)◦×◦ (γM ,γV ,γV) ⊆ γM ◦update�

℘(fetch)◦×◦ (γM ,γV) ⊆ γV ◦ fetch�

℘(filterB)◦ γM ⊆ γM ◦filter�B
℘(filter¬B)◦ γM ⊆ γM ◦filter�¬B

then ℘̆(�→)◦ γ � ℘̆(γ)◦ �→�. (The × is the Cartesian product operator of multiple sets.)

The proof is similarly done as the proof (Appendix B.3) of Theorem 4.4. Note that the
definition of �→� is homomorphic to that of �→, that is, the structures of the two definitions
are the same except that �→� uses the abstract versions for the semantic operators. Thus,
the soundness of �→� follows rather straightforwardly from the soundness properties of the
abstract semantic operators.

8.2 For a Language with Functions and Recursive Calls

8.2.1 Language and Concrete Semantics
Let us consider an imperative language that allows functions. We extend the imperative
language in Chapter 4 (Figure 4.6) with function definitions and recursive calls. See Fig-
ure 8.3.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8.2 For a Language with Functions and Recursive Calls 203

E ::= · · · expression, as before (Figure 4.6, page 113)
| f function name

C ::= · · · statement, as before (Figure 4.6, page 113)
| E (E) function call
| return from call

F ::= f(x) = C function definition
P ::= F +C program, list of function defs followed by a statement

Figure 8.3
Syntax of an example language with functions

The language has only flat function definitions (no nested function definitions) as in
the C language. Hence, variables other than function parameters are all global variables.
Returning a value from a function is to be simulated by an assignment to a global variable.
The function to call is determined at run-time. The function names are first-class values:
programmers can store function names in program variables or pass them as parameters
to other functions. Hence, like function pointers in C, functions are not necessarily called
by their defined names. The function part of the call statement can thus be any expression
that evaluates to a function name. We assume the names in a program for the functions and
their parameters are all distinct and that every function has one parameter.

Example 8.5 Consider the following program.

sum(x) = (x= 0) {z := 0; } {sum(x−1); z := z+x; }
sum(2)

The sum function is recursive whose result is stored in the z variable. After two recursive calls sum(1)
and sum(0)), the result 3 of sum(2) is stored in z.

The following diagram shows the memory snapshots during the execution. The down-arrows are
for calls and up-arrows for returns. Each horizontal line shows a part of the program to evaluate
by each call to sum. Line 2 shows the function body after the initial call sum(2), line 3 the function
body after the first recursive call sum(1), and so on.

The memory entries for the x and z variables are shown inside boxes at the program points. Note
that the parameter x needs to keep maximum three instances alive simultaneously in the memory (to

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

204 Chapter 8 Static Analysis for Advanced Programming Features

store 2, 1, and 0) during the recursive calls:

1 : sum(2) z �→ 3� �

2 : x �→ 2 sum(1); x �→ 2 z := z+x z �→ 3� �

3 : x �→ 1 sum(0); x �→ 1 z := z+x z �→ 1� �

4 : x �→ 0 z := 0 z �→ 0

Semantic domains. Because of recursive calls, the parameter of a recursive function may
have multiple instances alive in the memory at any time during execution. At each recursive
call, a new instance of the parameter of the function is allocated in the memory. The
function body then uses this new instance as its parameter. The previous instance must be
alive and be back to use after the return of the recursive call.

Thus, when defining the semantics of the above language, we need a semantic entity that
determines the current instance of function parameters. In semantic jargon, such entity is
a table called environment. The current environment determines which memory instances
of parameters to use.

Also, at function call, the return context must be remembered in order to be recovered
on the function return. Each return context consists of the return label (the next label after
the function call) and the environment at the function call. Because of recursive calls, we
need a stack of remembered contexts, with the most recent context being on the stack top.
In semantic jargon, this stack of remembered contexts is called continuation.

Thus, we need four components in the state, in addition to the program labels: memory,
environment, continuation, and a kind of global counter that we reference to generate fresh
instances. The definitions of the semantic domains are shown in Figure 8.4.

Given a program, the sets X, L, and F are respectively finite sets of variables, labels
assigned to each statement, and function names.

An instance φ ∈ I is a time stamp, a kind of global counter that is used to differentiate the
instances of formal parameters. We use the global counter φ as the instance of the formal
parameter at each function call. Since a new instance of a formal parameter is always
needed at function calls, the global instance counter ticks at each function call.

Control flow is dynamic. Note that the control flow in the presence of function calls is
dynamic; the return from a function call is determined at run-time to flow back to its most-
recent call site. Furthermore, a function is not always called by its defined name. Function
to call is not syntactically explicit in the program text when the name of a function to call
is a value that is stored in a variable or passed as a parameter.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8.2 For a Language with Functions and Recursive Calls 205

�l,m,σ ,κ,φ� ∈ S = L×M×E×K× I

m ∈ M = A→ V memories
σ ∈ E = X→ I environments
κ ∈ K = (L×E)∗ continuations (stacks of return contexts)
φ ∈ I instances
a ∈ A = X× I addresses
v ∈ V = Z∪L∪F values

X set of variables and parameters
L set of statement labels
F set of function names

Figure 8.4
Semantic domains for concrete semantics of

Other than the dynamically determined control flow, we let the portion of the control flow
that is known beforehand from the program syntax be prepared in next(l), nextTrue(l),
and nextFalse(l). They determine the next statement to execute upon completing the
execution of each l-labeled statement. Every statement of a given program is uniquely
labeled.

Concrete transitional semantics. Concrete semantics of a program for a set I of input
states is the least fixpoint

lfpF

of monotonic function
F :℘(S)→℘(S)

F(X) = I ∪℘(�→)(X).

The state transition relation �l,m,σ ,κ,φ� �→ �l�,m�,σ �,κ �,φ �� is defined in Figure 8.5.
The transitions from an l-labeled statement are defined by case analysis over the corre-
sponding statement. For each function f, let body(f) be the label of its body statement and
param(f) be its formal parameter name.

The expression evaluation function evalE , the memory update function updatex, and the
filter functions filterB and filter¬B are the same as before except that the location of a vari-
able to read or write is the instance of the variable determined by the current environment,
hence they need the current environment σ :

evalE : M×E→ V

updatex : M×V×E→M

filterB : M×E→M

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

206 Chapter 8 Static Analysis for Advanced Programming Features

E 0(E 1) : �l,m,σ ,κ,φ� �→ �body(f),
bindx(m,φ �,v), parameter binding
new-envx(σ ,φ �), new environment
push-context(κ,next(l),σ), new continuation
φ ��
where f= evalE 0(m,σ)

x= param(f)

v = evalE 1(m,σ)

φ � = tick(φ)
: �l,m,σ ,κ,φ� �→ �l�,m,σ �,κ �,φ�

where �l�,σ �,κ ��= pop-context(κ)
: �l,m,σ ,κ,φ� �→ �next(l),m,σ ,κ,φ�

(x) : �l,m,σ ,κ,φ� �→ �next(l),updatex(m,z,σ),σ ,κ,φ� for an input int z
x := E : �l,m,σ ,κ,φ� �→ �next(l),updatex(m,evalE (m,σ),σ),σ ,κ,φ�
C 1;C 2 : �l,m,σ ,κ,φ� �→ �next(l),m,σ ,κ,φ�
(B) {C 1} {C 2} : �l,m,σ ,κ,φ� �→ �nextTrue(l),filterB (m,σ),σ ,κ,φ�

: �l,m,σ ,κ,φ� �→ �nextFalse(l),filter¬B (m,σ),σ ,κ,φ�
(B) {C } : �l,m,σ ,κ,φ� �→ �nextTrue(l),filterB (m,σ),σ ,κ,φ�

: �l,m,σ ,κ,φ� �→ �nextFalse(l),filter¬B (m,σ),σ ,κ,φ�
Figure 8.5
Concrete transition relation �→

Note that a function name f is a constant expression. The evaluation evalf(m,σ) is the
function name f itself.

The other semantic operations are defined as usual. See Figure 8.6.

8.2.2 An Abstract Semantics
Following the framework of Chapter 4, we define an abstract semantics as

abstract domain S
� = L→M

�×E
�×K

�× I
�

abstract semantic function F� : S� → S
�

F�(X �) = I� ∪� Step�(X �)

Step� = ℘(id,�R)◦π ◦℘̆(�→�)

where �→� is the one-step abstract transition relation ⊆ S
�×S

�. The function π partitions
a set ⊆ L×M

�×E
�×K

�× I
� by the labels, returning a set ⊆ L×℘(M�×E

�×K
�× I

�).

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8.2 For a Language with Functions and Recursive Calls 207

body : F→ L

bindx : M× I×V→M

new-envx : E× I→ E

push-context : K×L×E→K

pop-context : K→ L×E×K

tick : I→ I

where

bindx(m,φ ,v) = m[�x,φ� �→ v]
new-envx(σ ,φ) = σ [x �→ φ]

push-context(κ, l,σ) = �l,σ�.κ (stack top �l,σ� and the rest κ)
pop-context(�l,σ�.κ) = �l,σ ,κ�

tick(φ) = φ � (new φ �)

Figure 8.6
Other semantic operators

The �R is the least upper bound operator of M�×E
�×K

�× I
�. The state abstract domain

S
� and the abstract transition relation �→� is required to satisfy the framework conditions:

• The abstract state S
� is to be a CPO, Galois-connected with ℘(S)

℘(L×M×E×K× I)

−→←−
α

γ
L→M

�×E
�×K

�× I
�.

where the abstract component domains are also Galois-connected CPOs:

℘(M) −→←−
αM

γM
M

� ℘(E) −→←−
αE

γE
E
�

℘(K) −→←−
αK

γK
K

� ℘(I) −→←−
αI

γI
I
�

• The abstract one-step transition relation �→� as a function is required to satisfy:

℘̆(�→)◦ γ � ℘̆(γ)◦ �→�.

• The abstract ∪� in S
� is required to satisfy: ∪◦ (γ,γ)⊆ γ ◦∪�.

Then for any input program, the algorithms (Section 4.3) based on such F� compute a
sound approximation of the concrete semantics of the program.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

208 Chapter 8 Static Analysis for Advanced Programming Features

Memory and environment abstract domains. An example of a memory abstract domain
M

� is a Galois-connected CPO
℘(M) −→←−

αM

γM
M

�.

Example 8.6 (A memory abstract domain) An example of such a M
� domain is

M
� = (X× I

�)→ V
�

given V
� being a Galois-connected CPO. The set X is the finite set of variables and parameters in

the input program to analyze.

An example of environment abstract domain E
� is a Galois-connected CPO

℘(E) −→←−
αE

γE
E
�.

Example 8.7 (An abstract environment domain) An example of such E
� domain is

E
� = X→ I

�.

An example value abstract domain V
� is a Galois-connected CPO:

℘(V) −→←−
αV

γV
V
�

Example 8.8 (An abstract value domain) An example V� domain is achieved by abstracting kind-
wise a set of values (integers, labels, and/or function names). We abstract its set of integers into an
abstract integer, its set of labels into an abstract label, and a set of function names into an abstract
function name:

℘(Z∪L∪F) −→←−
αV

γV
Z
�×L

�×F
�

where the abstract integers, labels, and locations are Galois-connected CPOs:

℘(Z) −→←−
αZ

γZ
Z
� ℘(L) −→←−

αT

γT
L
� ℘(F) −→←−

αF

γF
F

Note that the variables X and the function names F are finite sets for a program; thus, the powersets
of those sets are already finite, eligible for being used as abstract domains in static analysis.

Abstract Transition �→�. The abstract state transition relation for the function call and
return statements are in Figure 8.7. Basically, the definition of �→� is the same as that of
�→ except that �→� uses abstract semantic operators for their concrete correspondents.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8.2 For a Language with Functions and Recursive Calls 209

E 0(E 1) : �l,M�,σ �,κ�,φ �� �→� �body(f),
bind�

x(M�,φ ��,v�), parameter binding
new-env�x(σ �,φ ��), new environment
push-context�(κ�,next(l),σ �), new continuation
φ ���

where f ∈ eval�E 0
(M�,σ �)

x= param(f)

v� = eval�E 1
(M�,σ �)

φ �� = tick�(φ �)

: �l,M�,σ �,κ�,φ �� �→� �l�,M�,σ ��,κ ��,φ ��
where �l�,σ ��,κ ���= pop-context�(κ�) and l� ∈ l�

Figure 8.7
Abstract transition relation �→� for function call and return

The abstract semantic operators are homomorphic to their concrete correspondent except
that they are defined over abstract domains:

bind�
x : M

�× I
�×V

� →M
�

new-env�x : E
�× I

� → E
�

push-context� : K
�×L

�×E
� →K

�

pop-context� : K
� → L

�×E
�×K

�

tick� : I
� → I

�

eval�E : M
�×E

� → V
�

updatex
� : M

�×V
�×E

� →M
�

filter�B : M
�×E

� →M
�

Theorem 8.2 (Safety of �→� for the language with functions) Consider the concrete one-step
transition of Section 8.2.1 and the abstract transition of Section 8.2.2. If the semantic operators

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

210 Chapter 8 Static Analysis for Advanced Programming Features

satisfy the following soundness properties:

℘(bindx)◦×◦ (γM ,γI ,γV) ⊆ γM ◦bind�x
℘(new-envx)◦×◦ (γE ,γI) ⊆ γE ◦new-env�x

℘(push-context)◦×◦ (γK ,γL,γE) ⊆ γK ◦push-context�

℘(pop-context)◦ γK ⊆ ×◦ (γL,γE ,γK)◦pop-context�

℘(tick)◦ γI ⊆ γI ◦ tick�

℘(evalE)◦×◦ (γM ,γE) ⊆ γV ◦ eval�E
℘(updatex)◦×◦ (γM ,γV ,γE) ⊆ γM ◦update�x

℘(filterB)◦×◦ (γM ,γE) ⊆ γM ◦filter�B

then ℘̆(�→)◦ γ � ℘̆(γ)◦ �→�. (The × is the Cartesian product operator of multiple sets.)

The proof is done similarly as the proof (Appendix B.3) of Theorem 4.4. Since the
definition of �→� has the same structure as that of �→ except that it uses abstract versions
for concrete semantic operators, the soundness of �→� naturally follows from the soundness
of the abstract semantic operators.

Varying the Context Sensitivity. In a concrete execution, every call to a function may
happen in a unique machine state. The global variables may have unique values at each
call time, and in case of recursive calls the stacked instances of the formal parameter may
be different at each call.

If the static analysis abstracts, for each function, all the machine states at the function’s
multiple calls into a single abstract state, then the analysis is called context-insensitive.
If the static analysis abstracts the multiple call contexts into a multiple abstract contexts
in order to distinguish some differences of the call contexts, then the analysis is called
context-sensitive.

The context-sensitivity boils down to how we abstract the instance domain I:

℘(I) −→←−
αI

γI
I
�

If I� is a singleton set (that is, if we do not differentiate the parameter instances in abstract
semantics), then follows the context-insensitivity.

On the other hand, by using multiple elements for I� some kind of context-sensitivity
emerges. For example, suppose I� uses the set Csite of every call sites of the input program:

I
� =℘(Csite)

Then multiple abstract instances of each parameter, each of which corresponds to each call
site, emerges.

A more elaborate context-sensitivity is possible if we use, say, abstract call strings(?) for
I
�. A call string is an ordered sequence of function names that abstracts the continuation

at the moment of a call. The larger the maximum length of the abstract call strings in

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

8.2 For a Language with Functions and Recursive Calls 211

(a) Example program:

sum(x) = (x= 0) {z := 0; } {sum(x−1); z := z+x; }
sum(2)

(b) Context-insenstive analysis:�������������������

sum(2) z �→ [0,4]
� �

x �→ [2,2] sum(1); x �→ [0,2] z := z+x z �→ [0,4]
� �

x �→ [1,2] sum(0); x �→ [0,2] z := z+x z �→ [0,2]
� �

x �→ [0,2] z := 0 z �→ [0,0]
(c) Context-sensitive analysis:�������������������

sum(2) z �→ [0,3]
� �

x0 �→ [2,2] sum(1); x0 �→ [2,2] z := z+x z �→ [0,3]
� �

x1 �→ [1,1] sum(0); x1 �→ [0,1] z := z+x z �→ [0,1]
� �

x1 �→ [0,1] z := 0 z �→ [0,0]

Figure 8.8
Context-insensitive & -senstive analyses of an example program

I
�, the more varied abstract instances are used for a single parameter, hence follows a

more elaborate context-sensitive analysis. The precision improvement from the context
sensitivity comes with a cost. We can selectively apply the context-sensitivity only to
those calls that eventually contribute to the improvement of the analysis precision(?).

Example 8.9 See Figure 8.8. The example program is the same as in Example 8.5 (page 203).
Suppose we use the integer-intervals for abstract integers.

Figure 8.8 (b) and (c) show the abstract memory entries at each program point during analysis.
The down-arrows are for calls and up-arrows for returns. Each horizontal line shows a part of the
program to analyze by each call to sum.

• Figure 8.8 (b) shows the abstract memory entries at each program point during the context-
insensitive analysis.

Recall that the context-insensitivity means that we use a single abstract location for all the
instances of each function’s parameter. That is, the abstract instance domain I

� is a singleton
set.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

212 Chapter 8 Static Analysis for Advanced Programming Features

In this abstraction, the abstract value [0,2] of the abstract location x at the beginning of the
function body subsumes all the values passed to x. The z variable at the end of the function body
also has [0,4] that covers all the values stored there.

• Figure 8.8 (c) shows the abstract memory entries at each program point during a context-
sensitive analysis. Recall that the context-sensitivity boils down to using multiple abstract lo-
cations for the instances of each parameter. Suppose we abstract the instances by the call sites.
Thus, for the example program we have two abstract instances of x: one x0 for the initial call of
sum(2) and the other x1 for the recursive calls of sum(1) and sum(0).
Note that the first instance x0 of x for the initial call to sum has [2,2]. The second instance x1 has
[0,1] that covers all the values bound to x by the two recursive calls. These two call-site-sensitive
abstract locations for x results in a precise analysis for the final abstract value of z in the end.
At the finish of the two recursive calls, z contains [0,1], not [0,2] as in the context-insensitive
case, because it involves only x1. At the finish of the initial call, z contains [0,3] having the
(weak-update) effect of the assignment of the sum of [0,1] (z) and [2,2] (the value of x0).

8.3 Abstractions for Data-Structures

The previous sections presented a general approach to the design of static analysis for
programming languages with pointers and with functions. This section and the next one
take a complementary step, and study abstractions that are specific to families of data-
structures, and functions. Their purpose is to provide readers with a good intuition of what
kind of abstraction should be used in any given practical case. On the other hand, they
provide a higher level view of the analysis algorithms.

In this section, we study abstractions for data-structures:
• arrays (Section 8.3.1);
• buffers and strings (Section 8.3.2);
• statically allocated pointer structures (Section 8.3.3), and dynamically allocated pointer

structures (Section 8.3.4).

8.3.1 Arrays
Arrays are one of the most common data-structures. An array reserves a contiguous mem-
ory region of fixed size, an element of which can be accessed using an integer index.
Therefore, vectors and matrices are naturally represented as arrays. Similarly, arrays are
very adapted to the storage of tables of data. For instance, we encounter such structures
in all sorts of applications ranging from user level data-bases (each entry corresponds to
one array cell) to Operating System internal states (each process corresponds to a cell in
a process table array). There are even some programming languages designed around the
notion of arrays, like spreadsheet environments (Excel and similar) or array programming
languages (APL, Fortran and similar).

Extension of the language syntax and semantics. To illustrate the issues inherent in the
abstraction of arrays, we consider a minimal extension of the language of Chapter 3 with

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10 Specialized Static Analysis Frameworks

Goal of the chapter: We discuss three specialized frameworks that are less general but
simpler than abstract interpretation.

Specialized frameworks are analogous to domain-specific programming languages as
opposed to general-purpose ones. For a limited set of target languages and properties,
these specialized frameworks are simple to use yet powerful enough. They can be practical
alternatives to the general abstract interpretation framework when the target languages and
properties are good fits for them. The burden of soundness proof can be reduced and the
special algorithms can outperform the general worklist-based fixpoint iteration algorithms.

Recommended reading: [S], [D]
This chapter is targeted at students and developers, who would like to explore specialized
static analysis techniques that can be simple yet powerful enough for specific cases in hand.
This chapter is also a reminder to the readers who are already familiar with the specialized
static analysis techniques of, if any, limitations and how these techniques can be seen from
the general abstract interpretation point of view. This chapter is intended more as a survey
of the specialized frameworks than as their in-depth coverages.

10.1 Static Analysis by Equations

From the equations point of view, static analysis comprises equations set-up and equations
resolution. For an input program, a set of equations captures all the executions of the
program. A solution of this set of equations is the analysis result.

Capturing the dynamics of a program by a set of equations is indeed implicit in the
general frameworks of Chapter 3 and Chapter 4. There, the concrete semantics of a pro-
gram (and usually, its finitely computable abstract version) is defined as a fixpoint of the
program’s semantic function. Note that a function f ’s fixpoint, c such that c = f (c), is
nothing but a solution of the equation x = f (x).

However, the general frameworks of Chapter 3 and Chapter 4 are sometimes overkills.
When the target programming language is simple enough, it is rather straightforward to

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

258 Chapter 10 Specialized Static Analysis Frameworks

set up correct equations for programs without formally defining an abstract semantics that
soundly approximates the concrete semantics of the target language (?).

10.1.1 Data-flow Analysis
When is the target programming language simple enough to be suitable for this approach
to static analysis? It is when the execution order (control flow) of a program is fixed
and explicit from the program text before the execution and when the execution of each
construct is simple.

The input programs of such languages are represented by control-flow graphs, and the
analysis focuses on the flow of data over the fixed control-flow graphs. By this reason, this
approach to static analysis is called data-flow analysis.

Program as a graph. Suppose a simple imperative language with assignment, sequence,
if-branch, while-loop, and with no pointers and no function calls. The control flows of
programs are always fixed and clear from the program source code. The control flow
of a program is represented as a directed control-flow graph. The nodes are the atomic
statements or conditions of the program. The directed edges determines the execution
order (control flow) between the statements. An if-branch statement has two branches in
the graph: one with the condition expression node followed by the true branch statements
and the other with the node for the negation of the condition expression followed by the
false branch statements. Similarly for the while-loop statement.

Equations. The equations are about the states that flow at each edge of the graph. For
each node of the form (without loss of generality, we consider two incoming and outgoing
edges, respectively):

f

x1 x2

y1 y2

The edges describe the control flow, and each node f is a state transformation function
for the corresponding statement of the program. The function f simulates the statement’s
semantics: it transforms the incoming machine state (pre-state) into the resulting machine
state (post-state). The xi’s are two incoming pre-states and yi’s are the post-states that flow
out along the outgoing edges. Then the equations are set up as

y1 = f (x1 � x2)

y2 = f (x1 � x2)

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10.1 Static Analysis by Equations 259

input x

x <= 99

x++

x > 99

2

1

3 0 1

4

Figure 10.1
An example control flow graph

x0 = [−∞,+∞]

x1 = x0 � x3

x2 = x1 � [−∞,99]

x3 = x2 ⊕ 1

x4 = x1 � [100,+∞]

Figure 10.2
A set of equations for the program in Figure 10.1

The value space that the unknowns (xi’s & yi’s) range over is a lattice whose partial order
corresponds to the information subsumption: a � b means that the set implied by a is also
implied by b. An expression of the form a� b denotes the least upper bound of a and b,
the least element that subsumes both a and b. The function f is a monotonic function that
describes the operation (semantics) of the node’s statement over the lattice of values.

Example 10.1 Consider the following program.

input (x);

while (x <= 99)

{ x := x+1 }

The control flow graph of this program is shown in Figure 10.1. The edges are numbered. The
empty node that does nothing corresponds to the identity transformation function.

Suppose we are interested in the value range of variable x on each edge. Suppose we represent
value ranges as integer intervals. A set of equations for the values xi of x at each program label i
would be, for example, as in Figure 10.2:

• The equation for x0
x0 = [−∞,+∞]

describes that x at edge 0 may be any integer because the input is unknown.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

260 Chapter 10 Specialized Static Analysis Frameworks

• The equation for x1
x1 = x0 � x3

describes the value of x at edge 1 has x’s value at 0 or 3 (because of the while-loop iterations).
• The equation for x2

x2 = x1 � [−∞,99]

says the value of x at edge 2 has the value at edge 1 but in case of it less than or equal to 99.
• The equation for x3

x3 = x2 ⊕ 1

says the value of x at edge 3 has the value incremented by 1 to the value at edge 2.
• The equation for x4

x4 = x1 � [100,+∞]

says the value of x at line 4 has the value at edge 1 in case of it greater than 99.
The definitions of the operators (�,�,⊕) in the equations are as follows. The soundness of these
definitions are easy to see:

[a,b]� [a�,b�] = [min(a,a�),max(b,b�)]
[a,b]� [a�,b�] = if max(a,a�)> min(b,b�) then [] else [max(a,a�),min(b,b�)]

[a,b]⊕ c = [a+ c,b+ c]

It is obvious that the equations in Figure 10.2 with above definitions of the operators capture all
the execution cases of the program. Formally proving this correctness is a much ado for the obvious.

Computing a solution of the equations can be done by the general fixpoint iterations such as those
in Section 4.3 because all operators are monotonic over the lattice space of the intervals. For finite-
height lattice, this naive iterations can reach a fixpoint in finite time.

When the lattice is of infinite-height, as is the interval lattice, the naive fixpoint iterations cannot
terminate for some programs. In this case we can use the sound finite computation technique such as
the widening operator in Chapter 3 and Chapter 4 to guarantee the termination and the soundness
(over-approximation) of the result.

Limitation. Though the above equations are simple so that their correctness is obvious,
we cannot rely on the approach for arbitrary languages. First, the dichotomy of control
being fixed and data being dynamic does not hold in modern languages. If the target
language allows the control-flow as values (for example, jump targets as values, functions
as values, or exceptions as values), the control flow graph a priori is not possible. The
control flow can generally not be represented as a static finite graph. Edges are introduced
during program execution. The control flows emerge only during static analysis.

Second, the sound transformation function of each node are not obvious for modern lan-
guages. In the above Example 10.1, though the operators “�”, “�”, and “⊕1” are straight-
forward for the example program construct at each node, for complicated languages and
value domains the sound definitions can be error-prone. A framework to check the trans-
formation function’s soundness (such as Theorem 4.4 of page 117, Theorem 8.1 of page
201, and Theorem 8.2 of page 209) is necessary so that the equation solution guarantees to
be sound.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10.2 Static Analysis by Monotonic Closure 261

x0 = [−∞,+∞]

x1 = x0 � x3

x2 = x1

x3 = x2 ⊕ 1

x4 = x1 � [100,+∞].

Figure 10.3
Another set of sound equations for the program in Figure 10.1

Third issue is about design choices. For a program, the equations are not unique. There
are a vast number of ways to set up sound equations that over-approximate all the exe-
cutions of the program. From this collection of sound equation sets, an analysis chooses
one particular way of setting up equations. For example, given the program in the above
Example 10.1, different equations sets may be chosen, whose solutions also cover all the
possible executions of the program. One such example is in Figure 10.3.

The data-flow analysis lacks a systematic approach to explore various possible choices
of sound equations for a given program. For every choice, though simple, we have to argue
the soundness of the equations from scratch.

Meanwhile, the semantics-based general frameworks (Chapter 3 and Chapter 4) work for
an arbitrary programming language once the concrete semantics of the language is defined
in the styles supported by the frameworks. From the point of view of data-flow analysis,
the semantic frameworks guide us on what to check (Section 3.4 and Section 4.2.3) to set
up sound equations from the programs to analyze. In the semantic frameworks sound and
finitely computable static analyses with various accuracies can be systematically defined,
only if the required properties of the abstract domains and of the abstract semantic function
are ensured.

10.2 Static Analysis by Monotonic Closure

From the monotonic-closure point of view, static analysis comprises setting up initial facts
then collecting new facts by a kind of chain reactions. An analysis definition consists of
rules for collecting initial facts and rules for inductively generating new facts from existing
facts. An analysis in action accumulates facts until no more fact is possible. This collection
of facts is an over-approximation of the program behavior.

The initial facts are those that are immediate from the program text. The chain reaction
steps generate new facts from existing facts by simulating the program semantics. The
analysis terminates when no more facts are generated. For the analysis to terminate, the
universe of facts for a given input program must be finite.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

262 Chapter 10 Specialized Static Analysis Frameworks

For simple target languages and properties, the soundness of the analysis – setting up the
initial facts and the chain reactions – are straightforward.

Formally, let R be the set of the chain-reaction rules and X0 be the initial fact set. Let
Facts be the set of all possible facts. Notation X �R Y denotes that new set Y of facts is
generated from X by applying all possible rules in R. Then the analysis result is

�

i≥0
Yi

where
Y0 = X0

Yi+1 = Y such that Yi �R Y.

Or, equivalently, the analysis result is the least fixpoint
�

i≥0
φ i(/0)

of monotonic function φ :℘(Facts)→℘(Facts)

φ(X) = X0 ∪ (Y such that X �R Y).

10.2.1 Pointer Analysis
Let us consider the following simple C-like imperative language. A program is a collection
of assignments.

P ::= C program
C ::= statement

| L := R assignment
| C ; C sequence
| B C while-loop

L ::= x | *x target to assign to
R ::= n | x | *x | &x value to assign
B boolean expression

The left- or right-hand-side of an assignment may be a variable(x), the dereference (*x)
of a variable, or the location (&x) of a variable. Let the semantics of these reference and
dereference constructs be the same as in the C language. A variable may store an integer
or the location of a variable.

Target property. Suppose we are interested in the set of locations that each pointer vari-
able may store during program execution. Computing such set is reduced to collecting all
possible “point-to” facts between two variables: which variable can store the location of
which variable. We hence represent each points-to fact by a pair of two variables: a→ b

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10.2 Static Analysis by Monotonic Closure 263

denotes that variable a can point to (can have the address of) variable b. The set of such
points-to facts is finite for each program because a program has a finite number of vari-
ables.

Rules. The analysis globally collects the set of possible points-to facts that can happen
during the program execution. We start from an initially empty set. We apply the following
rules to add new facts to the global set. This collection (hence the analysis) terminates
when no more addition is possible. The rule has the following form

C i1 · · · ik
j

and it dictates that if the program text has component C and the current solution set has
i1 · · · ik then add j to the solution set (?). The i1 · · · ik part can be omitted.

The initial facts that are obvious from the program text are collected by this rule:
x := &y

x → y

That is, for each assignment statement of the form x := &y, add the fact that x points to y.
The chain-reaction rules are for other cases of assignments:

x := y y → z
x → z

x := *y y → z z → w
x → w

*x := y x → w y → z
w → z

*x := *y x → w y → z z → v
w → v

*x := &y x → w
w → y

Soundness. It is easy to see that the above rules will collect every possible points-to
facts of the input program. The easiness comes from the simple semantics of the target
language. The six rules follow, in terms of the points-to information, from the semantics
of all six cases of the assignment statements. Consider the last rule, for example. The
assignment statement *x := &y stores the location &y of y to the location that x points to.
Thus, the rule adds w → y if x points to w. Other rules are similarly straightforward to see
their soundness.

Given the global set of facts, applying all the possible rules to the set is a monotonic
operation; every rule always adds, if any, new facts to the global set. The analysis result is
the least fixpoint of this applying-all-rules function.

The over approximation comes from two sources. First, the rules ignore the conditional
execution of the while-loop. Regardless of the while-loop condition the rules are applied
to the assignments in the loop body. Second, we collect the points-to facts into a single

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

264 Chapter 10 Specialized Static Analysis Frameworks

global set. This means that a points-to fact from any statement in the input program can
trigger a new points-to fact at any statement.

Example 10.2 Consider the following program.

x := &a ;

y := &x ;

B
*y := &b ;

*x := *y

Initial facts are from the first two assignments:

x→ a, y→ x.

From y→ x and the assignment body of the while-loop, the analysis can apply the last rule to add

x→ b.

For the last assignment and the hitherto collected facts the analysis can apply the second-to-the-last
rule and add new facts as follows: from x→ a and y→ x, the analysis can add a→ a; from x→ b
and y→ x, the analysis can add b→ b; from x→ a, y→ x, and x→ b, the analysis can add a→ b;
from x→ b, y→ x, and x→ a, the analysis can add b→ a.

Limitation. Note that the above rules do not take the control flow into account. The rules
are applied for any assignment statement regardless of where it appears. For example,
there is no separate rule for while-loop statement. Regardless of where an assignment
appears in the program (e.g., whether an assignment appears within a while-loop body or
outside), the analysis blindly collects every possible points-to facts from the collection of
the assignment statements in the program.

Similarly, the above analysis is flow-insensitive: the closure rules are oblivious to the
statement order in the input program. Regardless of where the assignment statement ap-
pears in the program, whenever the premise (numerators) of a rule holds the analysis ap-
plies the rule.

For example, for a sequence of statements

x := &a ; y := x ; x := &b

the analysis concludes y→ a and y→ b because x→ a and x→ b even though y has x
before x→ b.

This flow-insensitivity can indeed be avoided by pre-processing the input program into a
static single assignment (SSA) form where each variable is defined only once. Two writes
to a single variable and its reads are transformed into writes to two different variables and
their distinctive reads.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10.2 Static Analysis by Monotonic Closure 265

10.2.2 Higher-order Control Flow Analysis
As an another example, consider the following higher-order call-by-value functional lan-
guage. We uniquely label each sub-expression of the program.

P ::= F program
F ::= expression

| x variable
| λx.E a function with argument x and body E
| E E function application

E ::= Fl expression F with label l

A program is defined as an expression that has no free variable. Program executions are
defined by the transition steps, each step (→) of which is by the beta-reduction in the
call-by-value order. The beta-reduction step is

(λx.e) e� → {e�/x}e

where {e�/x}e denotes the expression obtained by replacing x by e� in e. We assume that,
during execution, every function’s argument is uniquely re-named.

For example, the following program

(λx.(x(λy.y)))(λz.z)

runs as follows
(λx.(x(λy.y)))(λz.z)

→ (λz.z)(λy.y)
→ λy.y.

During the execution, the first step binds x to λz.z and the second step binds z to λy.y.

Target property. Suppose we are interested in which functions are called for each appli-
cation expression. Since functions can be passed to parameters of other functions, such
inter-functional control flow is not obvious from the program text. For the target prop-
erty we need to collect which lambda expression can be bound to which argument during
program execution.

Rules. We let an analysis collect facts about which lambda expression “λx.e” a sub-
expression may evaluate to. Hence, we represents each fact by a pair L � R meaning “L
can have value R” where L is either an expression label or a variable, and R is either an

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

266 Chapter 10 Specialized Static Analysis Frameworks

expression label, a variable, or a lambda expression:

L ::= l | x expression label or variable
R ::= l | x | v
v ::= λx.E

For each program the set of the pairs is finite because a program has a finite number of
expressions (l), variables (x), and lambda expressions (v).

From a global set that is initially empty we apply the following rules to add facts of the
form L � R to the set. The addition (the analysis) terminates when no more addition is
possible. Each rule has the following form

C i1 · · · im
j1 · · · jn

and it dictates that if the program text has component C and the hitherto collected facts
include i1 · · · im then add j1, · · · , jn to the global set. The i1 · · · im part may be empty.

The initial fact set-up rules collect facts that are obvious from the program text only:
(λx.E)l

l � λx.E
(x)l

l � x

A lambda expression is a constant whose value is itself, and a variable expression contains
the value of the variable. The value of a variable will be later collected when the variable
as the parameter of a function is bound to the actual parameter value at the applications of
the function.

The propagation rules that collects new fact by simulating expression evaluations are:
(El1 El2)l l1 � λx.El3 l2 � v

l � l3 x � v
l1 � l2 l2 � v

l1 � v

As in the points-to analysis case, it is easy to see that the above rules will collect every
possible values of expressions and variables. For an application expression (El1 El2)l , if
we knew which function can be called l1 � λx.El3 with which parameter l2 � v, we add
two new facts: the first l � l3 about the result of the function application and the other
x � v about the parameter binding. The second rule propagates the actual value along the
chains of collected facts. Formally proving the soundness seems again a much ado for the
obvious.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10.3 Static Analysis by Proof Construction 267

Example 10.3 Consider the following program. Every lambda expression is identified by its unique
parameter name. Each expression of the program is labeled from 0 to 7.

(λx.(x5(

3� �� �
λy.y6))� �� �

2

)

� �� �
1

(

4� �� �
λz.z7)

� �� �
0

During the execution, variable x (expression numbered 5) will be bound to λz.z and variable z
(expression numbered 7) to λy.y.

Let’s see how this information is collected from the above rules. The initial facts are collected from
the lambda expressions 1, 3, and 4, and variable expressions 5, 6, and 7:

{1 � λx.(x(λy.y)), 3 � λy.y, 4 � λz.z, 5 � x, 6 � y, 7 � z.}

• From application expression 0, we add x � 4 (parameter binding) and 0 � 2 (application result)
to the above set;

• then by the last propagation rule from x � 4 and 4 � λz.z, we add x � λz.z then from 5 � x,
5 � λz.z to the above set;

• then from application expression 2, we add z � 3 (parameter binding) and 2 � 7 (application
result) to the above set;

• then by the last propagation rule, we add to the above set z � λy.y then, from 7 � z, we add
7 � λy.y then 2 � λy.y then 0 � λy.y.

Limitation. The above analysis uses a crude abstraction for the function values. Note
that a function value in the concrete semantics is a pair made of the function code and a
table (called environment) that determines the values of the function’s free variables. The
above analysis completely abstracts away the environment part. In the concrete semantics,
a function expression (λx.E) in a program may evaluate into distinct values at different
contexts (e.g., when the function’s free variable is the parameter of a function that is multi-
ply called with different actual parameters). The above analysis collects only the function
code part with no distinction for the values of the function’s free variables.

In order to employ some degree of context-sensitivity in the abstraction of the function
values, the above analysis needs an overhaul, whose design and soundness assurance will
be facilitated by semantic frameworks such as Chapter 3 and Chapter 4. See Section 8.2
and Section 8.4.1).

10.3 Static Analysis by Proof Construction

From the proof-construction point of view, static analysis is a proof construction in a finite
proof system. A finite proof system is a finite set of inference rules for a pre-defined set
of judgments. The soundness of the analysis corresponds to the soundness of the proof

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

268 Chapter 10 Specialized Static Analysis Frameworks

system. The soundness property of the proof system expresses that if the input program is
provable, then the program satisfies the proven judgment. Thus, for a sound proof system,
if a program violates a target judgment then proving the judgment fails for the program.

10.3.1 Type Inference
Let us consider a proof system whose judgment is about the types (?) of program ex-
pressions. The set of types corresponds to an abstract domain of a static analysis. A type
over-approximates the values of an expression. This proof system is called type system,
and the proof construction called static type inference or static typing.

Let us consider the following higher-order language with the call-by-value evaluation.

P ::= E program
E ::= expression

| n integer
| x variable
| λx.E function
| E E function application

In type systems, the judgment that says expression E has type τ is written as

Γ � E : τ

where Γ is a set of type assumptions for the free variables in E and τ is a type. The
judgment means that the evaluation of e with its free variables having values of the types
as assumed in Γ is type-safe (runs without a type error) and returns a value of type τ if it
terminates.

Simple Type Inference. The above language has two kinds of values, namely integers and
functions. Hence, we use following types.

τ ::= int | τ → τ

Type int describes integers, and τ1 → τ2 the type-safe functions from τ1 to τ2 (functions
that if given a value of type τ1 run without a type-error and return a value of type τ2 if they
terminate).

We say that “a program runs without a type error” whenever during the evaluation of the
applications expression “E1 E2” in the program the value of E1 is always a function value,
not an integer.

The type environment Γ is a finite map from variables to types. Let us write each entry
as x : τ . The notation Γ+ x : τ denotes the same function as Γ except that its entry for x is
τ .

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10.3 Static Analysis by Proof Construction 269

Γ � n : int
x : τ ∈ Γ
Γ � x : τ

Γ+x : τ1 � E : τ2

Γ � λx.E : τ1 → τ2

Γ � E1 : τ1 → τ2 Γ � E2 : τ1
Γ � E1 E2 : τ2

Figure 10.4
Proof rules of simple types

The simple type system is shown in Figure 10.4. Each proof rule
J1 · · ·Jk

J

is read as: whenever all the premises (J1, · · ·Jk) are provable then the conclusion (J) is
provable. A rule with an empty set of premises is an axiom, i.e., its denominator is always
provable.

Example 10.4 For example, program

(λx.x 1)(λy.y)

is typed int because we can prove

/0 � (λx.x 1)(λy.y) : int

as follows:

x : int → int ∈ {x : int → int}
{x : int → int} � x : int → int {x : int → int} � 1 : int

{x : int → int} � x 1 : int
/0 � λx.x 1 : (int → int)→ int

y : int ∈ {y : int}
{y : int} � y : int

/0 � λy.y : int → int
/0 � (λx.x 1)(λy.y) : int

Note that each step of the above proof is an instance of one of the proof rules in Figure 10.4.

The proof rules of Figure 10.4 are sound:
Theorem 10.1 (Soundness of the proof rules) Let E be a program, an expression without free
variables. If /0 � E : τ then the program runs without a type error and returns a value of type τ if it
terminates.

The soundness proof is done by proving two facts, upon defining the program execution in
the transitional style as a sequence of steps. The first proof (called progress lemma) shows
that a typed program, unless it is a value, can always progress one step. The second proof
(called preservation lemma) shows that typed program after its one step progress still has
the same type. By these two facts, a typed program runs without a type error and returns a
value of its type if it terminates. The readers can refer to (?) for proofs.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

270 Chapter 10 Specialized Static Analysis Frameworks

Offline Algorithm. The simple type system has a faithful and efficient algorithm for its
proof construction. The algorithm is faithful: it succeeds for a judgment if and only if the
judgment is provable in the simple type system. The algorithm is efficient: it uses a special
operator called unification that has no iterative computations (or, just a single iteration) as
in the fixpoint algorithms of the general frameworks in Chapter 3 and Chapter 4.

The static typing algorithm can be understood as two steps. First, by scanning the input
program we collect equations about the types of every sub-expression of the program. Then
we solve the equations by the unification procedure. This offline algorithm can be made
online where we solve the type equations while we scan the program.

The following procedure V collects type equations of the form τ .
= τ from the input

program. Types in type equations contain type variables α (unknowns) (τ ::= α | int | τ →
τ). Given a program e, an expression without a free variable, the type equations are
collected by calling a function V (/0,E,α) with the empty type environment and a fresh
type variable α . Procedure V (Γ,e,τ) returns a set of type equations that must hold in order
for the e expression to have type τ under assumption Γ:

V (Γ,n,τ) = {τ .
= int}

V (Γ,x,τ) = {τ .
= Γ(x)}

V (Γ,λx.E,τ) = {τ .
= α1 → α2} ∪ V (Γ+x : α1,E,α2) (new α1,α2)

V (Γ,E1 E2,τ) = V (Γ,E1,α → τ) ∪ V (Γ,E2,α) (new α)

Solving the type equations from V is equivalent to proving the given program in the simple
type system:
Theorem 10.2 Let E be a program (an expression without a free variable) and α a fresh type vari-
able. S is a solution for the collection V (/0,E,α) of type equations if and only if judgment /0 � E : Sα
is provable.

Now, solving the equations is done by the unification procedure (?). The unification pro-
cedure unify, given two types τ1 and τ2 of a type equation τ1

.
= τ2, finds a substitution S

(a finite map from type variables to types) whenever possible that make the both sides of
the equation literally the same: Sτ1 = Sτ2. The following unify indeed finds the least solu-
tion: the most-general unifying substitution. The concatenation S2S1 of two substitutions
denotes a substitution that applies S1 then S2: (S2S1)τ = S2(S1τ).

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10.3 Static Analysis by Proof Construction 271

Procedure unify(τ1,τ2) is defined as follows, to do the first match from the top:

unify(α,τ) = {α �→ τ} if α �∈ τ
unify(τ,α) = {α �→ τ} if α �∈ τ

unify(τ1 → τ2,τ �1 → τ �2) = let S1 = unify(τ1,τ �1)
S2 = unify(S1τ2,S1τ �2)

in S2S1

unify(τ,τ �) = failure other cases

Finding a substitution that satisfies all the equations in collection {τ11
.
= τ21 , · · · ,τ1k

.
= τ2k}

is a simple accumulation of the substitution that unifies each type equation:

Solve({τ1
.
= τ2}) = unify(τ1,τ2)

Solve({τ1
.
= τ2}∪ rest) = let S = unify(τ1,τ2)

in (Solve(S rest))S

where “S rest” denotes new type equations after applying the S substitution to every type
variable in rest.

For a program E the simple type inference is thus

Solve(V (/0,E,α)).

Online Algorithm The above offline algorithm that first collects equations then solves
them can be re-phrased as an online algorithm. For a program E the online simple type
inference is

M(/0,E,α)

where

M(Γ,n,τ) = unify(τ, int)
M(Γ,x,τ) = unify(τ,Γ(x))

M(Γ,λx.E,τ) = let S1 = unify(τ,α1 → α2) (new α1,α2)
S2 = M(S1Γ+ x : S1α1,E,S1α2)

in S2S1

M(Γ,E1 E2,τ) = let S1 = M(Γ,E1,α → τ) (new α)
S2 = M(S1Γ,E2,S1α)

in S2S1

The above algorithm is easy to follow since the call to M(Γ,E,τ) computes solutions in
order for expression E to have type τ under type assumption Γ for the free variables of E.

Running the M algorithm is equivalent to proving in the type system:

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

272 Chapter 10 Specialized Static Analysis Frameworks

Theorem 10.3 Let E be a program (an expression without a free variable) and α a fresh type vari-
able. If M(/0,E,α)= S then /0�E : Sα . Conversely, if /0�E : τ then M(/0,E,α)= S1 and τ =(S2S1)α
for an additional subsititution S2.

Polymorphic Type Inference. Recall that, from the static analysis point of view, the type
inferene of the sound simple type system over-approximates the set of values of expressions
of the input program. From the soundness point of view, if the analysis succeeds in typing
the input program then we can safely conclude that the program will run without a type
error. On the other hand, if the analysis fails to type the input program, that means we
don’t know whether the program will have a type error or not.

The accuracy of the simple type system can be improved by controlling the degree of
the over-approximation so that the number of fail cases for type-safe programs should be
reduced.

A more accurate system than the simple type system is one called polymorphic type
system. The polymorphic type system reduces the failure cases for type-safe programs
while it is still sound: when the type inference succeeds the input program will run without
a type error.

The set of polymorphic types is a finer abstract domain than that of the simple types. The
abstract domain is refined because there exist elements (polymorphic types) that represent
special sets of values that are not precisely singled out as a separate abstract element in
simple types. For example, a polymorphic function type can represent a set of functions
that can run regardless of the types of arguments. For example, a polymoprhic type, written
as

∀α.α → int

denotes a set of functions that, whatever the type of the actual argument, run without a type
error and return an integer if they terminate.

One polymorphic type inference system is called let-polymorphic type system (?). This
polymorphic type system, which is common in ML-like programming languages, has as for
the simple type system sound and complete algorithms (?) using the unification procedure.
The let-polymorphic type system always computes principal types among multiple poly-
morphic type candidates for each expression. From the static analysis point of view, when
principal types exist, it means the existence of best abstractions in their abstract domains.

During typing, a function that can behave independent of its argument types has a gener-
alized, polymorphic types. At different call to the polymorphic function, the polymorphic
type of the function is instantiated into an appropriate type. For a function, the polymorphic
generalization, if possible, and the distinct instantiations at different calls to the function
are analogous to context-sensitive analysis that analyzes functions differently at different
call site.

MITPress Times.cls LATEX Times A Priori Book Style Typeset with PDFLaTeX Size: 7x9 February 27, 2019 2:23pm

10.3 Static Analysis by Proof Construction 273

Limitation. For target programming languages that lack a sound static type system we
have to invent it. We have to design a finite proof system and prove its soundness. Then
we have to find its algorithm and prove its soundness. The burden grows if the algorithm
has to solve some constraints that turn out to be unsolvable by the unification procedure.

For languages like ML that already has a sound let-polymorphic static type system, we
can instrument its sound type system to carry an extra entity (elements of extra abstract
domains) of our interest other than just the conventional type (?). However, again, if the
system derives some constraints that are unsolvable by the unification procedure, it is our
burden to invent a new algorithm and prove its soundness from scratch.

