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Previous work: Provable crytography

Algorithms:

Primitives(RSA)

Protocols(SSH)
Adversary

Provable security: Pr [A breaks P] ≤ Pr [B(A) breaks assumption] + ε

• Foundation: Probabilistic Relational Hoare Logic (pRHL)
• Tools : EasyCrypt / AutoG&P
• Case studies:

encryption, signatures, hash designs (SHA3), key exchange protocols,
zero knowledge protocols, garbled circuits, voting, key management
service (AWS)
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Implementation details are important

Most algorithms (widely) deployed today are provably secure

Still we frequently hear of crypto implementations being broken

What is the problem ?

Let us loop at some examples
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Example 1: Bleichenbacher’s attack

in 1998 SSLv3 and PKCS#1 v1.5 were widely used

• Session key transported using RSA with random padding
• Bleichenbacher’s attack was published (CRYPTO’98)

• Some SSL servers would signal padding errors in decryption
• The revealed if exponentiation result was in known range

• Vulnerability allowed decrypting arbitrary messages
• Using adaptive chosen-ciphertext attack (IND-CCA)

“ The SSL documentation does not clearly specify the error conditions and
corresponding alerts”
Error messages left as “implementation details”
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Example 2: MEE-CBC and timing

• TLSv1.0 uses an authenticated encryption scheme called MEE-CBC
• This is a MAC-then-Pad-Then-Encrypt construction
• MEE-CBC is known to be vulnerable to padding oracle attacks using error

messages

• In TLSv1.0 error messages for MEE-CBC decryption failures are sent over
an encrypted channel

• So security analysis took this possibility into consideration and all is OK
• Not quite ...
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Example 2: MEE-CBC and timing

• Canvel et al. [CRYPTO’03] break TLSv1.0
• Padding oracle attack can recover encrypted passwords

Attack strategy:
• Measure the time that a server takes to abort: checks padding only or

padding and MAC
• If short time, guess it was padding error
• if long time, guess it was not a padding error

Simple timing attack brings padding oracle back
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Lesson learned

Real-world attackers can observe more than the I/O values of crypto
algorithms:
• Timing
• Power
• Sound emmitted by fan (!)

All that the adversary can somehow measure and use as a side-channel.
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Constant-time programming

Software-based countermeasure against timing attacks and cache attacks.

Guideline: control-flow and memory accesses should not depend on secret
data.

Rationale: crypto implementations without this property are vulnerable.
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Can we trust our compiler ?

gcc/clang:
• Their intensive use provides some guaranties on their correctness
• This is not the case when we require a high level of optimisations

CompCert:
• It is certified in Coq (semantic preservation)
• Certified compilers do not perform aggressive optimisation

Do compilers preserve “constant-time”-ness?
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Counter-example: emulation of conditional-move

Before
int cmove(int x, int y, bool b) {
return x + (y−x) * b;
}

After
int cmove(int x, int y, bool b) {
if (b) {
return y;
} else {
return x;
}
}
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Counter-example: double-word multiplication

Before
long long llmul(long long x, long long y) {
return x * y;
}

x = aN + b y = cN + d xy = (ad + cb)N + bd (mod N2)

After
long long llmul(long long x, long long y) {
long a = High(x);
long c = High(y);
if (a | c) {
. . .
} else {
return Low(x) * Low(y);
}
}
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Counter-example: tabulation

Before
char rot13(char x) {
return `a` + (x− `a` + 13) % 26;
}

After
char rot13(char x) {
static char table[26] = ``nopqrstuvwxyzabcdefghijklm'';
return table[x− `a`];
}
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Where we are?

High-assurance and high-speed cryptography
• We need cryptographic libraries that we can trust
• Correct implementation frequently remain vulnerable to side channel

attacks
• Efficiency considerations often force developers to carry out very

aggressive optimizations
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Implementing “crypto”: a subtle equilibrium

• Fast
• Correct (functional correctness, safety)
• Side-channel resistant (constant-time)
• Provably secure
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A gap between source and assembly languages

Source
• Portable
• Convenient software-engineering abstractions
• Readable, maintainable

Assembly
• Efficiency
• Control (instruction selection and scheduling)
• Predictable
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A gap between source and assembly languages

• Assembly is not programmer/verifier friendly
- The code is obfuscated
- More error prone
- Harder to prove / analyze

• Source is not security/efficiency friendly
- Trust compiler
- Certified compilers are less efficient
- Optimizing compilers can break side channel resistance
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What are the possible solutions

• Fast
• Correct (functional correctness, safety)
• Side-channel resistant (constant-time)
• Provably secure

Vale: Assembly level
• Prove functional correctness and constant time at the assembly level
• the code can be manually written or generated

Frama-C, Hacl*, ...: Source level
• functional correctness is proved at the source level
• Should trust the compiler or use a certified compiler

Easycrypt
• Provable secure
• But at the algorithm level (no executable code)
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Jasmin: last mile of high assurance cryptography

Fast and formally verified assembly code
• Source language: assembly in the head with formal semantics
=⇒ programmer & verification friendly

• Compiler: predictable & formally verified (in Coq)
=⇒ programmer has control and no compiler security bug

• Verification toolchain (based on EasyCrypt):
- provable security
- safety
- side channel resistance (constant-time)
- functional correctness

World speed record + full verification
TLS 1.3 components : ChaCha20, Poly1305, Curve25519, Sha3(keccak)
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Jasmin by example
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Initialization of Chacha20 state

inline fn init(reg u64 key nonce, reg u32 counter)→ stack u32[16]
{
inline int i;
stack u32[16] st;
reg u32[8] k;
reg u32[3] n;

st[0] = 0x61707865;
st[1] = 0x3320646e;
st[2] = 0x79622d32;
st[3] = 0x6b206574;

for i=0 to 8 {
k[i] = (u32)[key + 4*i];
st[4+i] = k[i];
}

st[12] = counter;

for i=0 to 3 {
n[i] = (u32)[nonce + 4*i];
st[13+i] = n[i];
}

return st;
}

Zero-cost abstractions
• Variable names
• Arrays
• Loops
• Inline functions
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User control: loop unrolling

for i=0 to 15 {
k[i] = st[i];
}

• For loops are fully unrolled
• The value of the counter is

propagated
• The source code still

readable and compact

while(i < 15) {
k[i] = st[i]; i += 1;
}

• While loops are untouched
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User control: register or stack

• Jasmin has two kind of variables:
- register variables (reg)
- stack variables (stack)

• Array can be register array or stack array
• Spilling is done manually (by the user)

inline fn sum states(reg u32[16] k, stack u32 k15, stack u32[16] st)→ reg u32[16], stack u32
{
inline int i;
stack u32 k14;

for i=0 to 15 {
k[i] += st[i];
}

k14 = k[14]; // Spilling
k[15] = k15; // Spilling
k[15] += st[15];
k15 = k[15]; // Spilling
k[14] = k14; // Spilling

return k, k15;
}
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User control: instruction-set architecture level

• Direct memory access

reg u64 output, plain;
for i=0 to 12
{ k[i] ˆ= (u32)[plain + 4*i];
(u32)[output + 4*i] = k[i]; }

• Conditional move

x = y if ¬cf;

• The carry flag is an ordinary boolean variable

reg u64[3] h;
reg bool cf0 cf1;
reg u64 h2rx4 h2r;

h2r += h2rx4;
cf0 , h[0] += h2r;
cf1 , h[1] += 0 + cf0;

, h[2] += 0 + cf1;
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User control : instruction-set architecture level

• Most of assembly instructions are accessible in the source language

of, cf ,sf, pf, zf, z = x86 ADC(x, y, cf);

of, cf, x = x86 ROL 32(x, bits);

• SIMD instructions

k[0] +8u32= k[1]; // vectorized addition of 8 32−bits word;

k[1] = x86 VPSHUFD 256(k[1], (4u2)[0,3,2,1]);
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The Jasmin compiler
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Goals / Features

• Predictability and control of generated assembly
• Preserves semantics (Coq proofs, machine-checked)
• Preserves side-channel resistance
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Compilation passes

• For loop unrolling
• Function inlining
• Constant-propagation
• Sharing of stack variables
• Register array expansion
• Lowering
• Register allocation
• Linearization
• Assembly generation

Formal verification:
• Maximal use of validation
• Reuse of a single checker (core) for various passes
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Semantic preservation

Theorem

∀ p p′ compile(p) = ok(p′)⇒
∀ f ∈ exports(p)⇒
∀ va m vr m′ enough-stack-space(f , p′,m)⇒

f , va,m ⇓p vr ,m′ ⇒ f , va,m ⇓p′ vr ,m′
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Preservation of constant-time’?

Good news . . .
Many compiler optimizations do preserve “constant-time”-ness:
• Constant folding
• Constant propagation
• Variable spilling / Register allocation
• Expression flattening
• Loop peeling
• Pull common instructions out of branches
• Swap independent instructions
• Linearization

Formally verified for a toy language: CSF18

Future work: Jasmin, CompCert
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Constant-time: a non-interference property

Decorate the small-step relation with a leakage: a b
ℓ

Definition (Constant-time):
For every two execution prefixes

i

i′

s0

s′0

ℓ0

ℓ′0

s1

s′1

ℓ1

ℓ′1

s2

s′2

ℓ2

ℓ′2

. . .

. . .

the leakages agree whenever the inputs agree:

ψ(ı̇, ı̇′)⇒ `0 · `1 · `2 = `′0 · `′1 · `′2
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Preservation of constant time
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Intuition, all leakages at the target level correspond to:
• Correspond to an observation at the source level
• Or can be computed using previous leakage + some constant
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Where we are ?

Two correctness theorems:
• Functional correctness can be proved at the source level
=⇒ certified compiler

• Side channel resistance can be proved at the source level
=⇒ constant-time preservation

Both theorems assume that programs are safe =⇒ we need to prove safety

We also need to establish at source level:
• Functional correctness
• Side channel resistance
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Functional correctness

Using Hoare Logic: c : P V Q
• P is the precondition
• the post-condition Q is a mathematical description

Using Relational Hoare Logic:
• c1 is the reference implementation (the specification)
• c2 is the optimized implementation

c1 ∼ c2 : ={args} V ={res}

Combine both of them

EasyCrypt already provides Hoare Logic and Relational Hoare Logic
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Functional correctness by game hopping

We have built an EasyCrypt model for Jasmin

Jasmin compiler is able to translate programs into the EasyCrypt syntax

We perform functional correctness proofs by game hopping:

cref ∼ c1 ∼ . . . ∼ copt
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Function correctness by game hopping

Computing sum:
• p is a pointer,
• len the number of 64-bits words to sum

We want to compute :
∑

i<len (u64)[p+8 * i]

S0

s = 0;
i = 0;
while (i < len) {
s += (u64)[p + 8 * i];
i += i
}
return s;
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i += i
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return s;

S1

s = 0;
plen = p + 8 * len;
while (p < plen) {

s += (u64)[p];
p += 8;
}
return s;

S0 ∼ S1 : ={p,len,mem} V ={s}

Benjamin Grégoire – Jasmin: A Compiler and Framework for High-Assurance and High-Speed Cryptography 35



Loop transformations

S1

s = 0;
plen = p + 8 * len;
while (p < plen) {
s += (u64)[p];
p += 8;
}
return s;
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Loop transformations

S1

s = 0;
plen = p + 8 * len;
while (p < plen) {
s += (u64)[p];
p += 8;
}
return s;

S2

s = 0;
plen = p + 8 * len;
len4 = 4 * (len / 4);
plen4 = p + 8 * len4;
while (p < plen4) {
s += (u64)[p]; p += 8;
s += (u64)[p]; p += 8;
s += (u64)[p]; p += 8;
s += (u64)[p]; p += 8;
}
while (p < plen) {

s += (u64)[p];
p += 8;
}
return s;
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Loop transformations

S1

s = 0;
plen = p + 8 * len;
while (p < plen) {
s += (u64)[p];
p += 8;
}
return s;

S2

s = 0;
plen = p + 8 * len;
len4 = 4 * (len / 4);
plen4 = p + 8 * len4;
while (p < plen4) {
s += (u64)[p]; p += 8;
s += (u64)[p]; p += 8;
s += (u64)[p]; p += 8;
s += (u64)[p]; p += 8;
}
while (p < plen) {

s += (u64)[p];
p += 8;
}
return s;

S3

s = 0;
plen = p + 8 * len;

if (4≤ len) {
len4 = 4 * (len / 4);
plen4 = p + 8 * len4;
s0 = 0; s1 = 0; s2 = 0; s3 = 0;
while (p < plen4) {
s0 += (u64)[p]; p += 8;
s1 += (u64)[p]; p += 8;
s2 += (u64)[p]; p += 8;
s3 += (u64)[p]; p += 8;
}
s0 += s2;
s1 += s3;
s = s0 + s1;
}
while (p < plen) {

s += (u64)[p];
p += 8;
}
return s;
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Use vector instructions

S3

s = 0;
plen = p + 8 * len;

if (4≤ len) {
len4 = 4 * (len / 4);
plen4 = p + 8 * len4;
s0 = 0; s1 = 0; s2 = 0; s3 = 0;
while (p < plen4) {
s0 += (u64)[p]; p += 8;
s1 += (u64)[p]; p += 8;
s2 += (u64)[p]; p += 8;
s3 += (u64)[p]; p += 8;
}
s0 += s2;
s1 += s3;
s = s0 + s1;
}
while (p < plen) {
s += (u64)[p];
p += 8;
}
return s;
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Use vector instructions

S3

s = 0;
plen = p + 8 * len;

if (4≤ len) {
len4 = 4 * (len / 4);
plen4 = p + 8 * len4;
s0 = 0; s1 = 0; s2 = 0; s3 = 0;
while (p < plen4) {
s0 += (u64)[p]; p += 8;
s1 += (u64)[p]; p += 8;
s2 += (u64)[p]; p += 8;
s3 += (u64)[p]; p += 8;
}
s0 += s2;
s1 += s3;
s = s0 + s1;
}
while (p < plen) {
s += (u64)[p];
p += 8;
}
return s;

S4

s = 0;
plen = p + 8 * len;

if (4≤ len) {
len4 = 4 * (len / 4);
plen4 = p + 8 * len4;
ss0 = 0; // u256
while (p < plen4) {
ss0 +4u64= (u256)[p];
p += 32;
}
ss1 = x86 VPSHUFD 256(ss0,(4u2)[2,3,0,1]); /* s2, s3, s0, s1 */
ss0 +4u64= ss1; /* s0+s2, s1+s3, s2+s0, s3+s1 */
ss01 = x86 VEXTRACTI128(ss0, 0); /* s0+s2, s1+s3 */
s = x86 VPEXTR 64(ss0, 0); /* s0+s2 */
s1 = x86 VPEXTR 64(ss0, 1); /* s1+s3 */
s += s1; /* s0 + s2 + s1 + s3 */
}
while (p < plen) {
s += (u64)[p];
p += 4;
}
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Where we are?

Implementing “crypto”: a subtle equilibrium
• Fast
• Safety + functional correctness (X)
• Side-channel resistant
• Provably secure (EasyCrypt)
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Side channel resistance
Constant time is a non-interference property:

i

i′

s0

s′0

ℓ0

ℓ′0

s1

s′1

ℓ1

ℓ′1

s2

s′2

ℓ2

ℓ′2

. . .

. . .

Constant time can be checked using RHL
Idea: introduce ghost variable to model leakage

if (t) c1 else c2 leaks = t :: leaks;
if (t) c1 else c2

c is constant time if its model c verifies the relational property:

c ∼ c : ={public inputs} V ={leaks}
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Verification of constant time

Jasmin compiler can generate a EasyCryptmodel for constant-time

Good news:
c ∼ c : ={public inputs} V ={leaks}

• Can be automatically decided (dependency analysis)
• the sim tactic do it for you
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Where we are?

Implementing “crypto”: a subtle equilibrium
• Fast
• Safety + functional correctness (X)
• Side-channel resistant (X)
• Provably secure (EasyCrypt)
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Benchmarks: Comparison to non-verified code
ChaCha20:
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Benjamin Grégoire – Jasmin: A Compiler and Framework for High-Assurance and High-Speed Cryptography 42



Benchmarks: Comparison to fully verified code
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Conclusion

If P is safe, functionally correct, constant-time and

AdvA(P) ≤ ε

then [[P]] is safe, functionally correct, constant-time and

AdvB([[P]]) ≤ ε

and [[P]] is fast!

Furthermore, safety, functional correctness, “constant-time”-ness can be easily
checked at the source level
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Future works

• Extension of Jasmin: More architectures (ARM)
• Preservation of constant time (Jasmin + CompCert)
• TLS 1.3 primitives
• Automation of equivalence proofs
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