
Modularity for decidability
of deductive verification with

applications to distributed systems

Mooly Sagiv

Contributors
Marcelo Taube, Giuliano Losa, Kenneth McMillan, Oded Padon, Sharon Shoham

http://microsoft.github.io/ivy/

James R. Wilcox, Doug Woos

http://microsoft.github.io/ivy/

And Also

Anindya Benerjee, Neil Immerman, Shachar Itzhaky, Aleks Nanevsky Aurojit Panda

http://microsoft.github.io/ivy/

http://microsoft.github.io/ivy/

Virtual Machine

• http://www.cs.tau.ac.il/~odedp/ivy-sri18.ova

Deductive Verification of
Distributed Protocols in First-Order Logic

[CAV’13] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, MS:

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham
Ivy: Safety Verification by Interactive Generalization

[POPL’16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS
Decidability of Inferring Inductive Invariants

[OOPSLA’17] Oded Padon, Giuliano Losa, MS, Sharon Shoham
Paxos made EPR: Decidable Reasoning about Distributed Protocols

[PLDI’18] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, MS, Sharon
Shoham, James R. Wilcox, Doug Woos: Modularity for Decidability of Deductive Verification
with Applications to Distributed Systems

Agenda

• Today
• Motivation

• Deductive Verification in Ivy

• Wednesday
• Decidable logics

• Case study
• Reasoning about linked list

• Modularity and decidability

Why verify distributed protocols?

• Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchain

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient

Why verify distributed protocols?

• Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchain

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient

Why verify distributed protocols?

• Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchain

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient

Proving distributed systems is hard

• Amazon [CACM’15] uses TLA+ for testing protocols, but no proofs

• IronFleet [SOSP’15] – verification of Multi-Paxos in Dafny (3.7 person-years)

• Verdi [PLDI’15] – verification of Raft in Coq (50,000 lines of proofs)

Our goal: reduce human effort while maintaining flexibility

Our approach: decompose verification into decidable problems

[CACM’15] Newcombe et al. How Amazon Web Services Uses Formal Methods

[SOSP’15] Hawblitzel et al. IronFleet: proving practical distributed systems correct

[PLDI’15] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed systems

Verification
Is there a behavior

of 𝑆 that violates 𝜑?

Counterexample Proof

Automatic verification of infinite-state systems

Property 𝜑System 𝑆

Unknown / Diverge

Rice’s Theorem

I can’t decide!

Semi-automatic deductive verification

Counter-model Proof

Deductive verification

Property 𝜑System 𝑆 Invariant 𝐼𝑛𝑣

Deductive Verification
Is 𝐼𝑛𝑣 an inductive invariant for 𝑆 that proves 𝜑 ?
 Are the logical verification conditions valid ?

Inductive invariants

System State Space Safety
Property

𝐵𝑎𝑑

𝐼𝑛𝑖𝑡

𝑅𝑒𝑎𝑐ℎ

System 𝑆 is safe if all the reachable states satisfy the property ¬𝐵𝑎𝑑

Inductive invariants

System State Space Safety
Property

𝐵𝑎𝑑𝐼𝑛𝑣

𝐼𝑛𝑖𝑡

System 𝑆 is safe iff there exists an inductive invariant 𝐼𝑛𝑣 :

System 𝑆 is safe if all the reachable states satisfy the property ¬𝐵𝑎𝑑

𝑇𝑅

𝑇𝑅

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

𝑅𝑒𝑎𝑐ℎ

translated to VC’s

𝑇𝑅

Counterexample To Induction (CTI)

• States σ,σ’ are a CTI of Inv if:

• σ ∈ Inv

• σ’ ∉ Inv

• σ σ’

• A CTI may indicate:
• A bug in the system
• A bug in the safety property
• A bug in the inductive invariant

• Too weak
• Too strong

Inv

σ ∈ Inv

σ’ ∉ Inv

Strengthening & weakening from CTI

Inv

σ∈Inv

σ’∉Inv

Inv’Inv’ σ’

σ σ

σ'

Strengthening Weakening

Induction on a ball game

• Four players pass a ball:

• A will pass to C
• B will pas to D
• C will pass to A
• D will pass to B

• The ball starts at player A

• Can the ball get to D?

A B

C D

Induction on a ball game

• Four players pass a ball:

• A will pass to C
• B will pas to D
• C will pass to A
• D will pass to B

• The ball starts at player A

• Can the ball get to D?

A B

C D

Formalizing with induction

• 𝑥0 = 𝐴

• 𝑥𝑛+1 =

𝐶 𝑖𝑓 𝑥𝑛 = 𝐴
𝐷 𝑖𝑓𝑥𝑛 = 𝐵
𝐴 𝑖𝑓𝑥𝑛 = 𝐶
𝐵 𝑖𝑓𝑥𝑛 = 𝐷

• Prove by induction ∀𝑛. 𝑥𝑛 ≠ 𝐷
• 𝑥0 ≠ 𝐷 ?

• 𝑥𝑚 ≠ 𝐷 ⇒ 𝑥𝑚+1 ≠ 𝐷 ?

A B

C D

Formalizing with induction

• 𝑥0 =
𝐴

• 𝑥𝑛+1 =

𝐶 𝑖𝑓 𝑥𝑛 = 𝐴
𝐷 𝑖𝑓𝑥𝑛 = 𝐵
𝐴 𝑖𝑓𝑥𝑛 = 𝐶
𝐵 𝑖𝑓𝑥𝑛 = 𝐷

• Prove a stronger claim by induction ∀𝑛. 𝑥𝑛 ≠ 𝐵 ∧ 𝑥𝑛
≠ 𝐷
• 𝑥0 ≠ 𝐵 ∧ 𝑥0 ≠ 𝐷

• 𝑥𝑚 ≠ 𝐵 ∧ 𝑥𝑚 ≠ 𝐷 ⇒ 𝑥𝑚+1 ≠ 𝐵 ∧ 𝑥𝑚+1 ≠ 𝐷

A B

C D

Simple example: loop invariants

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4x := 1;
y := 2;
while * do {
assert ¬even[x];
x := x + y;
y := y + 2;
}

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

𝑇𝑅

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

Counterexample to
induction (CTI)x=3, y =4

x=1, y =2

x=1, y =0

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

x := 1;
y := 2;
while * do {
assert ¬even[x];
x := x + y;
y := y + 2;
}

Simple example: loop invariants

¬even[x]

𝑇𝑅

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Inv = ¬even[x] ∧ even[y]

x := 1;
y := 2;
while * do {
assert ¬even[x];
x := x + y;
y := y + 2;
}

Simple example: loop invariants

𝑇𝑅

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Inv = ¬even[x] ∧ even[y]

Simple example: loop invariants

x := 1;
y := 2;
while * do {
assert ¬even[x];
x:=(x*x–y*y)/(x-y);
y := y + 2;
}

𝑇𝑅

x=7, y =6x=3, y =0

x=3, y =2

x=5, y =4

x=4, y =5

x=2, y =5

x=2, y =3

x=2, y =4

x=3, y =4

x=1, y =2

x=1, y =0

x=1, y =3

x=1, y =1

even[x]

x=1, y =0

Inv = 𝑦2− 2𝑦 − 4𝑥 + 4 = 0

x := 1;
y := 2;
while * do {
assert ¬even[x];
x := x + y;
y := y + 2;
}

Simple example: loop invariants

𝑇𝑅

Dafny [Leino’17]

Property 𝜑System 𝑆 Invariant 𝐼𝑛𝑣

Deductive Verification
Is 𝐼𝑛𝑣 an inductive invariant for 𝑆 that proves 𝜑 ?
 Are the logical verification conditions valid ?

K. Rustan M. Leino: Accessible Software Verification with Dafny. IEEE Software 34(6): 94-97 (2017)

SMT Formula

SAT UNSAT

?

Counter-model Proof

Deductive verification

Property 𝜑System 𝑆 Invariant 𝐼𝑛𝑣

Unknown / Diverge

Church’s Theorem

I can’t decide!Deductive Verification
Is 𝐼𝑛𝑣 an inductive invariant for 𝑆 that proves 𝜑 ?
 Are the logical verification conditions valid ?

Effects of undecidability

• The verifier may fail on tiny programs

• No explanation when tactics fails
• Counterproofs

• The butterfly effect

• Observed in the IronFleet Project

Challenges in deductive verification

1. Formal specification: formalizing infinite-state systems and their properties

2. Deduction: checking inductiveness

• Undecidability of implication checking

• Unbounded state (threads, messages), arithmetic, quantifier alternation

3. Inference: finding inductive invariants (Inv)

• Hard to specify

• Hard to maintain

• Hard to infer

• Undecidable even when deduction is decidable

State of the art in formal verification
Ex

p
re

ss
iv

en
e

ss

Automation

Proof Assistants

Ultimately limited by human

proof/code:

Verdi: ~10

IronFleet: ~4

Decidable Models
Model Checking
Static Analysis

Ultimately limited by undecidability

Ivy
Decidable deduction

Finite counterexamples

proof/code: ~0.2

Modularity
Original system Original inductive argument

Original property

Verification of each module

Incorrect
Finds bug

Correct
Finds proof

subsystem Partial
argument Property

Verification tool

Ivy’s principles

• Modularity
• The user breaks the verification system into small problems expressed in decidable logics

• The system explores circular assume/guarantee reasoning to prove correctness

• Inductive invariants and transition systems are expressed in decidable logics

• Turing complete imperative programs over unbounded relations

• Allows quantifiers to reason about unbounded sets
• But no arbitrary quantifier alternations and theories

• Checking inductiveness is decidable

• Display CTIs as graphs (similar to Alloy)

Languages and verification

Language Executable Expressiveness Inductiveness

C, Java, Python… Turing-Complete Undecidable

SMV Finite-state Temporal Properties

TLA+ Turing-Complete Manual

Coq, Isabelle/HOL Turing-Complete Manual with tactics

Dafny Turing-Complete
Undecidable with
lemmas

Ivy Turing-Complete Decidable(EPR)

Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:

• Each node sends its id to the next

• Upon receiving a message, a node passes it (to the next) if
the id in the message is higher than the node’s own id

• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

• Inductive?

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

3 5

2

4

1

6

2
3 5

2

4

1

6

NO

Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:

• Each node sends its id to the next

• Upon receiving a message, a node passes it (to the next) if
the id in the message is higher than the node’s own id

• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

Leader election protocol – first-order logic
• (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5

Leader election protocol – first-order logic
• (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5

1
 L

next

2
L

next
id id

3
L

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

1
 L

next

2
L

next
id id

3
L

id
next

1
 L

next

2
L

next
id id

3
L

id
next

pnd

…

Specify and verify the protocol for any number of nodes in the ring

Leader election protocol – first-order logic
• (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

action receive(n: Node, m: ID) = {
requires pending(m, n);
if id(n) = m then
// found leader
leader(n) := true

else if id(n) m then
// pass message
“s := next(n)”;
pending(m, s) := true

}

action send(n: Node) = {
“s := next(n)”;
pending(id(n),s) := true

}

𝑇𝑅(send):

∃n,s: Node. “s = next(n)” ∧ ∀x:ID,y:Node. pending'(x,y)↔ (pending(x,y)∨(x=id(n)∧y=s))

𝐵𝑎𝑑:

assert I0 = ∀ x,y: Node. leader(x)leader(y) → x = y

1
 L

next

2
L

next
id id

3
L

id
next

1
 L

next

2
L

next
id id

3
L

id
next

1
 L

next

2
L

next
id id

3
L

id
next

pnd

1
 L

next

2
L

next
id id

3
L

id
next

pnd

1
 L

next

2
L

next
id id

3
L

id
next

pnd

Safety property: I0

I0 = x, y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0 I1 I2 I3

I1 = n1,n2: Node. leader(n2) → id[n1] id[n2]

I2 = n1,n2: Node. pending(id[n2],n2) → id[n1] id[n2]

I3 =n1,n2,n3: Node. btw(n1,n2,n3) pending(id[n2], n1) → id[n3] id[n2]

The leader has the highest ID

Only the leader can be self-pending

Cannot bypass higher nodes

Leader election protocol – inductive invariant

• (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

EPR Solver
𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉

𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

Proof

I can decide EPR!

VC Generator

How can we find an inductive invariant without knowing it?

I can decide EPR!

Interactive invariant inference [PLDI’16]

Model Candidate Inductive Invariant

Inductive?
Yes

No

Find “minimal” CTI

Modify candidate invariant

Generalize from CTI

User Automation

Inductive Invariant Found

EPR

EPR

EPR

https://www.quora.com/Human-Computer-Interaction

Leader Protocol 𝐼𝑛𝑣 = I0 I1 I2

rcv(1, id(2))

I0I1 I2 I2

1
 L

next

2
L

next
id id

pnd

3
L

id
next

1
 L

next

2
L

next
id id

pnd

3
L

id
next

Check Inductiveness

CTI

EPR

Ivy: check inductiveness

𝐵𝑎𝑑 = I0

VC Generator

Leader Protocol 𝐼𝑛𝑣 = I0 I1 I2 I3

EPR Solver

Proof

I0 I1 I2 I3 is an inductive invariant for the leader protocol, proving its safety

I can decide EPR!

Ivy: check inductiveness

𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉
𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

L L
≤

id idpnd

pnd
id
≤

id

btw

≤

L

id id

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

∀∗ invariant – excluded substructures

substructure

The leader has
the highest ID

Only the leader can
be self-pending

Cannot bypass
higher nodes

At most
one leader

Principle: first-order abstractions/modularity

Concept Intention First-order abstraction

Node ID’s Integers

function id: Node ID
relation ≤(ID, ID)
axiom ∀x:ID. x ≤ x reflexive
axiom ∀x,y,z:ID. x≤y ∧ y≤z → x ≤ z transitive
axiom ∀x,y:ID. x≤y ∧ y≤ x → x=y anti-symmetric
axiom ∀x,y:ID. x≤y ∨ y ≤ x total
axiom x, y: Node. id(x) = id(y) → x=y injective

Ring Topology
Next edges +
Transitive
closure

relation btw (Node, Node, Node)
axiom x, y, z: Node. btw(x, y, z) →btw(y, z, x) circular
axiom x, y, z, w: Node. btw(w, x, y) ∧ btw(w, y, z) → btw(w, x, z) transitive
axiom x, y, w: Node. btw(w, x, y) → btw(w, y, x) anti-symmetric
axiom x, y, w: Node. (w, x, y) → btw(w, x, y) ∨ btw(w, y, x) total
macro “next(a)=b” x: Node. x=a x=b btw(a,b,x) edges

Challenge: How to use restricted first-order
logic to verify interesting systems?

• Expressing transitive closure

• Linked lists

• Ring protocols

• Expressing sets and cardinalities

• Paxos, Multi-Paxos

• Reconfiguration

• Byzantine Fault Tolerance

• Liveness and temporal properties

Key idea: representing deterministic paths
[Itzhaky SIGPLAN Dissertation Award 2016]

Alternative 1: maintain n
• n* defined by transitive closure of n
• not definable in first-order logic

nn

n*

h t

nnh t

Alternative 2: maintain n*

• n defined by transitive reduction of n*

• Unique due to outdegree 1
• Definable in first order logic (for roots)

• n+(a,b) n*(a, b)ab
• n(a, b) n+(a,b) z: n+(a, z)n*(b, z)

n*

h t
Not first order expressible

First order expressible

n* btw

Challenge: How to use restricted first-order
logic to verify interesting systems?

• Expressing transitive closure

• Linked lists

• Ring protocols

• Expressing sets and cardinalities

• Paxos and its variants

• Byzantine Fault Tolerance

• Reconfiguration

• Liveness and temporal properties

Paxos

• Single decree Paxos – consensus
lets nodes make a common decision despite node crashes and packet loss

• Paxos family of protocols – state machine replication
variants for different tradeoffs, e.g., Fast Paxos is optimized for low
contention, Vertical Paxos is reconfigurable, etc.

• Pervasive approach to fault-tolerant distributed computing

• Google Chubby

• VMware NSX

• Amazon AWS

• Many more…

Challenge: sets and cardinalities in FOL

• Consensus algorithms use set cardinalities

• Wait for messages from more than N / 2 nodes

• Insight: set cardinalities are used to get a simple effect

Can be modeled in first-order logic!

• Solution: axiomatize quorums in first-order logic

sort Quorum
relation member (Node, Quorum)
– set membership (2nd-order logic in first-order)

axiom ∀q1,q2: Quorum. ∃n: Node. member(n, q1) ∧ member(n, q2)

action propose(r:Round) {
require “>N/2 join_msg’s”
…

}

action propose(r:Round) {
require ∃q.∀n.member(n,q) →
∃r’,v’.join_msg(n,r,r’,v’)

…
}

Principle: first-order abstractions

Concept Intention First-order abstraction

Quorums Majority sets
relation member (Node, Quorum)
axiom ∀q1,q2:Quorum∃n:Node. member(n, q1) ∧ member(n, q2)

Rounds
Natural
numbers

relation ≤(Round, Round)
axiom ∀x:Round. x ≤ x reflexive
axiom ∀x,y,z:Round. x≤y ∧ y≤z → x ≤ z transitive
axiom ∀x,y:Round. x≤y ∧ y≤ x → x=y anti-symmetric
axiom ∀x,y:Round. x≤y ∨ y ≤ x total

Messages

Network with:
dropping
duplication
reordering

relation start_msg(Round)
relation join_msg(Node, Round, Round, Value)
relation propose_msg(Round, Value)
relation vote_msg(Node, Round, Value)

Paxos in first-order logic

VC’s in first-order logic

Quantifier alternation cycles
• Axiom

∀q1,q2: Quorum. ∃n: Node. member(n, q1) ∧ member(n, q2)

• Propose action precondition

∃q:Quorum. ∀n:Node. member(n,q) → ∃r’:Round,v’:Value. join_msg(n,r,r’,v’)

• Inductive invariant

∀r:Round, v:Value. decision(r,v) → ∃q:Quorum. ∀n:Node. member(n,q) → vote_msg(n,r,v)

Round

Value

NodeQuorum

Quantifier
Alternation Cycle

Paxos made EPR [OOPSLA’17]

Methodology for decidable verification of infinite-state systems

Formal specification
in first-order logic

Formal specification
with decidable VC

Protocol

First-order abstractions
Domain knowledge

1 2

Modeling Transforming

I can decide EPR!

Inductive invariant of Paxos
safety property

conjecture decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

proposals are unique per round

conjecture proposal(R,V1) & proposal(R,V2) -> V1 = V2

only vote for proposed values

conjecture vote(N,R,V) -> proposal(R,V)

decisions come from quorums of votes:

conjecture forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)

properties of one_b_max_vote

conjecture one_b_max_vote(N,R2,none,V1) & ~le(R2,R1) -> ~vote(N,R1,V2)

conjecture one_b_max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)

conjecture one_b_max_vote(N,R,RM,V) & RM ~= none & ~le(R,RO) & ~le(RO,RM) -> ~vote(N,RO,VO)

property of choosable and proposal

conjecture ~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left_rnd(N,R1) & ~vote(N,R1,V1)

property of one_b, left_rnd

conjecture one_b(N,R2) & ~le(R2,R1) -> left_rnd(N,R1)

Protocol
Model
[LOC]

Invariant
[Conjectures]

EPR [sec]
𝝁 𝝈

RW
[sec]

Paxos 85 11 1.0 0.1 1.2

Multi-Paxos 98 12 1.2 0.1 1.4

Vertical Paxos* 123 18 2.2 0.2 -

Fast Paxos* 117 17 4.7 1.6 1.5

Flexible Paxos 88 11 1.0 0 1.2

Stoppable Paxos* 132 16 3.8 0.9 1.6

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Protocol
Model
[LOC]

Invariant
[Conjectures]

EPR [sec]
𝝁 𝝈

RW
[sec]

Paxos 85 11 1.0 0.1 1.2

Multi-Paxos 98 12 1.2 0.1 1.4

Vertical Paxos* 123 18 2.2 0.2 -

Fast Paxos* 117 17 4.7 1.6 1.5

Flexible Paxos 88 11 1.0 0 1.2

Stoppable Paxos* 132 16 3.8 0.9 1.6

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Proof / code ratio:
IronFleet: ~4
Verdi: ~10
Ivy: ~0.2

Protocol
Model
[LOC]

Invariant
[Conjectures]

EPR [sec]
𝝁 𝝈

RW
[sec]

Paxos 85 11 1.0 0.1 1.2

Multi-Paxos 98 12 1.2 0.1 1.4

Vertical Paxos* 123 18 2.2 0.2 -

Fast Paxos* 117 17 4.7 1.6 1.5

Flexible Paxos 88 11 1.0 0 1.2

Stoppable Paxos* 132 16 3.8 0.9 1.6

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

𝝁 – mean
𝝈 – std. deviation

Protocol
Model
[LOC]

Invariant
[Conjectures]

EPR [sec]
𝝁 𝝈

RW
[sec]

Paxos 85 11 1.0 0.1 1.2

Multi-Paxos 98 12 1.2 0.1 1.4

Vertical Paxos* 123 18 2.2 0.2 -

Fast Paxos* 117 17 4.7 1.6 1.5

Flexible Paxos 88 11 1.0 0 1.2

Stoppable Paxos* 132 16 3.8 0.9 1.6

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Rounds
FOL [sec]
𝝁 𝝈

T.O.

2 1.2 0.1 0

4 1.8 0.4 0

8 107 129 30%

16 229 110 70%

Multi-Paxos in FOL

Protocol
Model
[LOC]

Invariant
[Conjectures]

EPR [sec]
𝝁 𝝈

RW
[sec]

Paxos 85 11 1.0 0.1 1.2

Multi-Paxos 98 12 1.2 0.1 1.4

Vertical Paxos* 123 18 2.2 0.2 -

Fast Paxos* 117 17 4.7 1.6 1.5

Flexible Paxos 88 11 1.0 0 1.2

Stoppable Paxos* 132 16 3.8 0.9 1.6

Paxos made EPR: experimental evaluation

*first mechanized verification
Transformation to EPR reusable across all variants!

Rounds
FOL [sec]
𝝁 𝝈

T.O.

2 186 123 50%

4 300 0 100%

8 300 0 100%

16 300 0 100%

Stoppable Paxos in FOL

Challenge: How to use restricted first-order
logic to verify interesting systems?

• Expressing transitive closure

• Linked lists

• Ring protocols

• Expressing sets and cardinalities

• Paxos and its variants

• Byzantine Fault Tolerance

• Reconfiguration

• Liveness and temporal properties [POPL’18]

]POPL’18] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, MS, Sharon Shoham
Reducing Liveness to Safety in First-Order Logic

Protocol Model [LOC] Invariant [conjectures] Time [sec]

Leader in Ring 59 4 1.5

Learning Switch 50 5 1.5

DB Chain Replication 143 9 1.7

Chord 155 12 2.4

Lock Server (500 Coq lines [Verdi]) 122 9 2

Distributed Lock (1 week [IronFleet]) 41 7 1.4

Single Decree Paxos (+liveness) 85 11 10.7

Multi-Paxos (+liveness) 98 12 14.6

Vertical Paxos* 123 18 2.2

Fast Paxos 117 17 6.2

Flexible Paxos 88 11 2.2

Stoppable Paxos (+liveness) * 132 16 18.4

Ticket Protocol (+liveness) 86 37 6

Alternating Bit Protocol (+liveness) 161 35 10

TLB Shootdown (+liveness) * 385 91 380 (FOL)

Practical Byzantine Fault Tolerance
Work in progress

Reconfiguration

Proof / code ratio:
IronFleet: ~4
Verdi: ~10
Ivy: ~0.2

* First mechanized
liveness proof

Summary

• Distributed protocols are interesting for verification
• But real distributed systems are more complex

• Decidable logics can be used to reason about interesting
systems
• No more butterfly effects

• But some jagged corners

• Details on Wednesday

