PLDI

Philadelphia 2018

Modularity for decidability
of deductive verification with
applications to distributed systems

Mooly Sagiv

W

vmware

http:// microsoft.qithub.io/ivy COntribUtOrS
Marcelo Taube, Giuliano Losa, Kenneth McMilldddedPadon SharorShoham

B Microsoft

TEL AUIV
Bl Research UNIUERSITY UNIUERSITY

TeL AVIV
UNIVERSITY

James R. Wilcox, Doug Woos

UNIVERSITY of
WASHINGTON

http://microsoft.github.io/ivy/

And Also

AnindyaBenerjee Neil Immerman Shachattzhaky, AleksNanevsky Aurojit Pand

software

- Berkeley
u software

http://microsoft.qithub.io/ivy/

http://microsoft.github.io/ivy/

Virtual Machine

Ahttp://www.cs.tau.ac.il/~odedp/ivysril8.ova

Deductive Verification of
Distributed Protocols in Fir§rder Logic

|[CA\Q 3] Shachattzhaky AnindyaBanerjee, Nellmmerman AleksandaiNanevski MS:
EffectivelyPropositional Reasoning about Reachability in Linked Datat@teac

[PLDQ6] OdedPadon Kenneth McMillan, Aurojit Panda, MS, ShaBhroham
lvy: Safety Verification by Interactive Generalization

[POPQ6] OdedPadon Neillmmerman AleksandKarbysheySharorShoham MS
Decidabllity of Inferring Inductive Invariants

[OOPSLA7] OdedPadon Giuliano Losa, MS, Shar®hoham
Paxognade EPR: Decidable Reasoning about Distributed Protocols

[PLD@8] Marcelo Taube, Giuliano Losa, Kenneth L. McMiCadedPadon MS, Sharon
ShohamJames R. Wilcox, Doug Wodosodularity for Decidability of Deductive Verificatior
with Applications to Distributed Systems

Agenda

AToday
AMotivation
ADeductive Verification in Ivy

AWednesday

ADecidable logics
ACase study

A Reasoning about linked list
A Modularity and decidability

Why verify distributed protocols?

ADistributed systems are everywhere
ASafetycritical systems
ACloud infrastructure
ABlockchain

ADistributed systems are notoriously hard to get right
AEven small protocols can be tricky
ABugs occur on rare scenarios
ATesting is costly and not sufficient

Why verify distributed protocols?

ADistributed systems are everywhere
ASafetycritical systems
ACloud infrastructure
ABlockchain

F e

S |GCOMMOL | === :
Chord: A Scalable P er-to-Peer Lookup Protocol

for Internet Applications

1on Stolca, Robert Marris, David Liben—NuwelL David R. Kargef, M. Frans Kaashoek, F
Hari Balakrishnan. Member, IEEE

Attractive features of Chord include its simplicity, provable
able performance even in the face of
1s and departures. Tt continues to func-

rank Dabek, and

correctness. and prov
concurrent node arriva

Why verify distributed protocols?

ADistributed systems are everywhere
ASafetycritical systems
ACloud infrastructure
ABlockchain

ADistributed systems are notoriously hard to get right

o ’ | o ma— & Us,n L. CRIlZ
sIGCOMM'01) 9 Lightweigp, :
Chord: A Scalable Peer-to-P 91t Modeling 1o yy
for Internet Appl’ -
Morris, David Liben-Nowell, David f{ K:’ F?Ti;m Poraglr?efi‘ge .
o obert Morms, avl : Balakrishnan. / e or ark, eresearc
fon Stoica, Robe Hari Balakrishnan Under the « Pamela@res';arc‘;u asgy C%%:

A3 de 1 » Samme e ‘

res of Chord mclu 1?10 [SIGCOM E,e?:z?“mptlons n the
FArmanc: not ersion o ‘ e Ch .

Prwable performar one of the o the progoco) ; ord papers,

1s and departut€ g

Attractive featu

correctness. and

CDllClll‘[EllT llOdE arrva

Proving distributed systems is hard

AAmazon [CACHEI5] uses TLA+ for testing protocols, but no proofs
AlronFleet{SOSBY] ¢ verification of MultiPaxosn Dafny(3.7 personyears)
AVerdi [PLOR5] ¢ verification of Raft in Cod0,000lines of proofs)

(CACM25] Newcombe et al. How Amazon Web Services Uses Formal Methods

SOSB5] Hawblitzelet al. IronFleet proving practical distributed systems correct

PLDQ5] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed syste

Automatic verification of infinitstate systems

Propertye

Verification

l l

Counterexample Unknown / Diverge Proof

Semiautomatic deductive verification

Deductive verification

ctive Verification

forvthat provese ?
dtonvalid ?

1

Countermodel

Inductive invariants

System State Space Safety

System'Yis safeif all thereachablestates satisfy the property 6 w Q

Inductive invariants

System State Space Safety

System'Yis safeif all thereachablestates satisfy the property 6 w Q

System'Yis safeiff there exists arinductive invariant O¢ :0
‘0¢ B @« (Initiation)
if, N 'Ocand, © ,athen,a Oc¢ (Consecution translated to V@
‘O VO WQ DN (Safety)

Counterexample To Induction (CTI)

AStates ;" Care aCTlof Invif:
AN Inv
A3 Inv
AAQ

A A CTI may indicate:
A A bug in the system
A A bug in the safety property
A A bug in the inductive invariant
A Too weak
A Too strong

Strengthening & weakening from CTI

. .| Weakening

\

Induction on a ball game

AFour players pass a ball:

AA Wi
AB wi
AC wi
AD wi

AThe ball starts at player A
ACan the ball get to D?

nass to C
pas to D
nass to A

nass to B

O I

Ll

Induction on a ball game

AFour players pass a ball:

AA will pass to C

AB will pas to D

AC will pass to A

AD will pass to B ®
AThe ball starts at player A
ACan the ball get to D?

—
—

Ll

Formalizing with induction

Ay, &

(6@ b
oQmw 6
160 6
CRSONeE

AProve by inductioh €8&» O
Ao 0O ?
Ao 0Ot 0 ?

A

Formalizing with induction

Acy, o

(6@ b
oQmw 6
160 6
CRSONeE

AProve a stronger claim by inductiog8» 0
O
Ao 6w ©

IV~~~

Ao 6w 0Ot ® 0" W (@

A

Simple example: loop invariants

1;
2;

X :
y:
while * do {
assert even[x];
YY‘ X=X+Y,
y=y+ 2
}

Simple example: loop invariants

X 1;
y:= 2
while * do {
assert even[x];
o X =EXHY;
y=y+ 2
}

"y

Simple example: loop invariants

Inv = even[x] evenl[y] even(x]

1;
2,
hile * do {
assert even[x];
o X =EXHY;
y=y+ 2
}

X
y
W

"y

Simple example: loop invariants

Inv = even[x] evenl[y] even(x]

1;
2;
hile * do {

X

y .

W

assert even[x];

] Xi= 06X PV)
y=y+ 2

}

Simple example: loop invariants

Inv=¢f Cco T T T even|x]

@D

1;
2;
hile * do {

X
y
W
assert even[x];

"Y'Y‘X::XW;
y=y+ 2
}

Dafny[Leind 7]

Deductive Verification
Is"O¢ an inductive invariant fofvthat provese ?
A Are the logicalerification conditionwvalid ?

/G M1 FormD\
X UNSAT
%

?

W\

K.RustanM. Leina Accessible Software Verification wittafny IEEE Softwargd(6): 94-97 (2017)

Deductive verification

Invariant'Og U

Deductive Verification
Is"O¢ an inductive invariant forvthat provese ?
A Are the logicalerification conditionwvalid ?

Churcf@ Theorem
e 2 L o

| cardecide!

1 v l

Countermodel Unknown / Diverge Proof

= A)

_—-,

: -
> /

Effects olundecidabillity

AThe verifier may fail on tiny progra

ANo explanation when tactics fails
A Counterproofs

AThe butterfly effect
AObserved in théronFleetProject

Challenges Iin deductive verification

formalizing infinitestate systems and thefmroperties

1 checking inductiveness
AUndecidability of implication checking
AUnbounded state (threads, messages), arithmetic, quantifier alternation

finding (Inv)
A Hard to specify
A Hard to maintain
A Hard to infer
A Undecidable even when deduction is decidable

