
Specification, Verification, and
Interactive Proof

Sam Owre

SRI International

May 23, 2016

Sam Owre Specification, Verification, and Interactive Proof



PVS

PVS - Prototype Verification System
PVS is a verification system combining language
expressiveness with automated tools.
It features an interactive theorem prover with powerful
commands and user-definable strategies
PVS has been available since 1993
It has hundreds of users
It is open source (GitHub)

Sam Owre Specification, Verification, and Interactive Proof



PVS Language

The PVS language is based on higher-order logic (type
theory)
Many other systems use higher-order logic including Coq,
HOL, Isabelle/HOL, Nuprl, Agda, Lean
PVS uses classical (non-constructive) logic
It has a set-theoretic semantics

Sam Owre Specification, Verification, and Interactive Proof



PVS Theories

Theories contain declarations, importings
Theories may be parameterized with types, constants, and
other theories
Theories and theory instances may be imported
Theory interpretations may be given, using mappings to
interpret uninterpreted types, constants, and theories
Theories may have assumptions on the parameters
Theories may state what is visible, through exportings

Sam Owre Specification, Verification, and Interactive Proof



Declarations

PVS supports a number of kinds of declarations
Declarations may themselves have formal parameters (types)

Types
Constants, definitions, macros
Recursive definitions
Inductive and coinductive definitions
Formulas and axioms
Assumptions on formal parameters
Judgements, including recursive judgements
Conversions
Auto-rewrites

Sam Owre Specification, Verification, and Interactive Proof



Types

PVS has a rich type system

Basic types:
number, boolean, etc. New basic types may be introduced

Enumeration types:
{red, green, blue}

Function, record, tuple, and cotuple types:
[number -> number]
[\# flag:\ boolean, value:\ number \#]
[boolean, number]
[boolean + number]

Sam Owre Specification, Verification, and Interactive Proof



Recursive Types

Datatype
list[T: TYPE]: DATATYPE BEGIN
null: null?
cons(car: T, cdr: list): cons?

END DATATYPE

Codatatype
colist[T: TYPE]: CODATATYPE BEGIN
cnull: cnull?
ccons(car: T, cdr: list): ccons?

END CODATATYPE

Sam Owre Specification, Verification, and Interactive Proof



Subtypes

PVS has two notions of subtype:

Predicate Subtypes
{x: real | x /= 0}
{f: [real -> real] | injective?(f)}

The type {x: T | P(x)} may be abbreviated as (P).

Structural Subtypes
[# x, y: real, c: color #] <: [# x, y: real #]

Class hierarchy may be captured with this
Update is structural subtype polymorphic:

{r WITH [`x := 0]}

Sam Owre Specification, Verification, and Interactive Proof



Dependent types

Function, tuple, record, and (co)datatypes may be dependent:

Dependent Types
[n: nat -> {m: nat | m <= n}]
[n: nat, {m: nat | m <= n}]
[# n: nat, m: {k: nat | k <= n} #]

dt: DATATYPE BEGIN
b: b?
c(n: nat, d: {d: dt | d /= b}): c?

END DATATYPE

Sam Owre Specification, Verification, and Interactive Proof



Expressions

Logic: TRUE, FALSE, AND, OR, NOT, IMPLIES, FORALL,
EXISTS, =
Arithmetic: +, -, *, /, <, <=, >, >=, 0, 1, 2, …
Function application, abstraction, and update
Binder macro: the! (x: nat) p(x)
Coercions
Record construction, selection, and update
Tuple construction, projection, and update
IF-THEN-ELSE, COND
CASES: Pattern matching on (co)datatypes
Tables

Sam Owre Specification, Verification, and Interactive Proof



Names

Names may be heavily overloaded
All names have an identifier; in addition, they may have:

a theory identifier
actual parameters
a library identifier
a mapping giving a theory interpretation

For example, a reference to “a” may internally be equivalent
to the form
Expanded name
lib@th[int, 0][nat]{{T := real, c := 1}}.a

Sam Owre Specification, Verification, and Interactive Proof



Prover

The PVS prover is interactive, but with powerful
automation
It supports exploration, design, implementation, and
maintenance of proofs
The prover was designed to preserve correspondence with
an informal argument
Support for user defined strategies and rules
Based on the sequent calculus

Sam Owre Specification, Verification, and Interactive Proof



PVS Libraries

Any directory containing PVS files (.pvscontext) may
be used as a library
Libraries may contain pvs-strategies, pvs-lib.lisp,
and pvs-lib.el files - automatically loaded
PVS_LIBRARY_PATH is a colon-separated set of paths to
search
M-x load-prelude-library has the effect of extending
the prelude so that the library theories do not need to be
explicitly imported

Sam Owre Specification, Verification, and Interactive Proof



NASA Libraries
NASA has a large and growing set of libraries at (google for
nasalib)
About 140,000 lines of PVS code, over 23,000 theorems
(including TCCs)
affine_arith a model for self-validated numerical analysis
algebra groups, monoids, rings, etc
analysis real analysis, limits, continuity, derivatives,

integrals
analysis_ax fundamental_theorem, integrals,

taylor expansions, chain_rule
Bernstein solver for polynomial inequalities
calculus axiomatic version of calculus
complex complex numbers
co_structures sequences of countable length defined as

coalgebra datatypes
Sam Owre Specification, Verification, and Interactive Proof



NASA Libraries

digraphs directed graphs: circuits, maximal subtrees,
paths, dags

fault_tolerance consensus protocols, clock synchronization
float floating point numbers and arithmetic
graphs graph theory: connectedness, walks, trees,

Menger’s Theorem
ints integer division, gcd, mod, prime factorization,

min, max
interval_arith interval bounds and numerical approximations
lnexp logarithm, exponential and hyperbolic functions
lnexp_fnd foundational definitions of logarithm,

exponential, and hyperbolic functions
matrices inverse, determinants, upper-triangular,diagonal

Sam Owre Specification, Verification, and Interactive Proof



NASA Libraries

MetiTarski PVS with MetiTarski
numbers primes, sqrt(2) irr, chinese remainder,

Fermats little theorem
orders abstract orders, lattices, fixedpoints
power roots, powers and generalized logs
reals summations, sup, inf, sqrt over the reals, abs lemmas
scott Theories for reasoning about compiler correctness
series power series, comparison test, ratio test,

Taylor’s theorem
sets_aux powersets, orders, cardinality over infinite sets
sigma_set summations over countably infinite sets
structures bounded arrays, finite sequences and bags
Sturm Sturm sequences
Tarski generalizes Sturm

Sam Owre Specification, Verification, and Interactive Proof



NASA Libraries

topology continuity, homeomorphisms, connected
and compact spaces,
Borel sets/functions

trig trigonometry: definitions, identities,
approximations

trig_fnd foundational development of trigonometry:
proofs of trig axioms

vectors basic properties of vectors
vect_analysis vector analysis
while semantics for the programming language ”while”

Sam Owre Specification, Verification, and Interactive Proof


