Speaking Logic

N. Shankar

Computer Science Laboratory SRI International Menlo Park, CA

May 17, 2015

(□) (@) (E) (E) (E)

Proofs and Things

æ

< 同 ▶

- Computing, like mathematics, is the study of reusable abstractions.
- Abstractions in computing include numbers, lists, channels, processes, protocols, and programming languages.
- These abstractions have algorithmic value in designing, representing, and reasoning about computational processes.
- Properties of abstractions are captured by precisely stated laws through *formalization* using axioms, definitions, theorems, and proofs.
- Logic is the *medium* for expressing these abstract laws and the *method* for deriving consequences of these laws using sound reasoning principles.
- Computing is *abstraction engineering*.
- Logic is the calculus of computing.

- The world is increasingly an interplay of abstractions'
- Caches, files, IP addresses, avatars, friends, likes, hyperlinks, packets, network protocols, and cyber-physical systems are all examples of abstractions in daily use.
- Such abstract entities and the relationships can be expresses clearly and precisely in logic.
- In computing, and elsewhere, we are becoming increasingly dependent on formalization as a way of managing the abstract universe.

Where Logic has Been Effective

Logic has been *unreasonably* effective in computing, with an impact that spans

- Theoretical computer science: Algorithms, Complexity, Descriptive Complexity
- Hardware design and verification: Logic design, minimization, synthesis, model checking
- Software verification: Specification languages, Assertional verification, Verification tools
- Computer security: Information flow, Cryptographic protocols
- Programming languages: Logic/functional programming, Type systems, Semantics
- Artificial intelligence: Knowledge representation, Planning
- Databases: Data models, Query languages
- Systems biology: Process models

Our course is about the effective use of logic in computing.

Speaking Logic

- In mathematics, logic is studied as a source of interesting (meta-)theorems, but the reasoning is typically informal.
- In philosophy, logic is studied as a minimal set of foundational principles from which knowledge can be derived.
- In computing, the challenge is to solve large and complex problems through abstraction and decomposition.
- Formal, logical reasoning is needed to achieve scale and correctness.
- We will examine how logic is used to formulate problems, find solutions, and build proofs.
- We will also examine useful metalogical properties of logics, as well as algorithmic methods for effective inference.

Course Schedule

• The course is spread over Four lectures:

- Lecture 1: Proofs and Things
- Lecture 2: Propositional Logics
- Lecture 3: First-Order and Higher-Order Logic
- Lecture 4: Advanced topics
- The goal is to learn how to speak logic fluently through the use of propositional, modal, equational, first-order, and higher-order logic.
- This will serve as a background for the more sophisticated ideas in the main lectures in the school.
- To get the most out of the course, please do the exercises.

- Given four cards laid out on a table as: D, 3, F, 7, where each card has a letter on one side and a number on the other.
- Which cards should you flip over to determine if every card with a D on one side has a 7 on the other side?

Given a bag containing some black balls and white balls, and a stash of black/white balls. Repeatedly

- Remove a random pair of balls from the bag
- 2 If they are the same color, insert a white ball into the bag
- If they are of different colors, insert a black ball into the bag What is the color of the last ball?

- You are confronted with two gates.
- One gate leads to the castle, and the other leads to a trap
- There are two guards, one at each gate: one always tells the truth, and the other always lies.
- You are allowed to ask one of the guards on question with a yes/no answer.
- What question should you ask in order to find out which gate leads to the castle?

• Albert and Bernard have just become friends with Cheryl, and they want to know her date of birth. Cheryl gives them 10 possible dates:

May 15	May 16	May 19
June 17	June 18	
July 14	July 16	
August 14	August 15	August 17

- Cheryl then tells Albert and Bernard separately the month and the day of her birthday, respectively.
- Albert: I don't know when Cheryl's birthday is, but I know that Bernhard does not know too.
 Bernard: Af first I didn't know Cheryl's birthday, but now I do.

Albert: Then I also know Cheryl's birthday.

• When is Cheryl's birthday?

Mr. S and Mr. P

- Two integers m and n are picked from the interval [2,99].
- Mr. S is given the sum m + n. and Mr. P is given the product mn.
- They then have the following dialogue:
 - S: I don't know m and n.
 - P: Me neither.
 - **S:** I know that you don't.
 - **P:** In that case, I do know m and n.
 - S: Then, I do too.
- How would you determine the numbers *m* and *n*?

Pigeonhole Principle & Cantor's Theorem

- Why can't you park *n* + 1 cars in *n* parking spaces, if each car needs its own space?
- Let *m..n* represent the subrange of integers from *m* to, but not including, *n*.
- An injection from set A to set B is a map f such that f(x) = f(y) implies x = y, for any x, y in A.
- The Pigeonole principle can be restated as asserting that there is no injection from 0..n + 1 to 0..n. Prove it.
- Let N be the set of natural numbers 0, 1, 2, ..., and let ℘(N) be the set of subsets of N.
- Show that there is no injection from $\wp(\mathbb{N})$ to \mathbb{N} .

Hard Sudoku [Wikipedia/Algorithmics_of_Sudoku]

					3		8	5
		1		2				
			5		7			
		4				1		
	9							
5							7	3
		2		1				
				4				9

Gilbreath's Card Trick

Start with a deck consisting of a stack of quartets, where the cards in each quartet appear in suit order ♠, ♡, ♣, ◊:

$$\begin{array}{l} \langle 5 \blacklozenge \rangle, \langle 3 \heartsuit \rangle, \langle Q \clubsuit \rangle, \langle 8 \diamondsuit \rangle, \\ \langle K \blacklozenge \rangle, \langle 2 \heartsuit \rangle, \langle 7 \clubsuit \rangle, \langle 4 \diamondsuit \rangle, \\ \langle 8 \blacklozenge \rangle, \langle J \heartsuit \rangle, \langle 9 \clubsuit \rangle, \langle A \diamondsuit \rangle \end{array}$$

- Cut the deck, say as $\langle 5 \spadesuit \rangle$, $\langle 3 \heartsuit \rangle$, $\langle Q \clubsuit \rangle$, $\langle 8 \diamondsuit \rangle$, $\langle K \spadesuit \rangle$ and $\langle 2 \heartsuit \rangle$, $\langle 7 \clubsuit \rangle$, $\langle 4 \diamondsuit \rangle$, $\langle 8 \spadesuit \rangle$, $\langle J \heartsuit \rangle$, $\langle 9 \clubsuit \rangle$, $\langle A \diamondsuit \rangle$.
- Reverse one of the decks as $\langle K \spadesuit \rangle, \langle 8 \diamondsuit \rangle, \langle Q \clubsuit \rangle, \langle 3 \heartsuit \rangle, \langle 5 \spadesuit \rangle.$
- Now shuffling, for example, as

$$\begin{array}{l} \langle 2\heartsuit\rangle, \langle 7\clubsuit\rangle, \underline{\langle K \diamondsuit\rangle}, \underline{\langle 8\diamondsuit\rangle}, \\ \langle 4\diamondsuit\rangle, \langle 8\clubsuit\rangle, \underline{\langle Q\clubsuit\rangle}, \overline{\langle J\heartsuit\rangle}, \\ \langle 3\heartsuit\rangle, \langle 9\clubsuit\rangle, \overline{\langle 5\diamondsuit\rangle}, \langle A\diamondsuit\rangle \end{array}$$

• Each quartet contains a card from each suit. Why?

- Arrange 25 cards from a deck of cards in a 5x5 grid.
- First, sort each of the rows individually.
- Then, sort each of the columns individually.
- Now both the rows and columns are sorted. How come?

Length of the Longest Increasing Subsequence

- You have a sequence of numbers, e.g., 9, 7, 10, 9, 5, 4, 10.
- The task is to find the length of the longest increasing subsequence.
- Here the longest subsequence is 7, 9, 10, and its length is 3.
- Patience solitaire is a card game where cards are placed, one by one, into a sequence of columns.
- Each card is placed at the bottom of the leftmost column where it is no bigger than the current bottom card in the column.
- If there is no such column, we start a new column at the right.
- Show that the number of columns left at the end yields the length of the longest increasing subsequence.

Computing Majority

- An election has five candidates: Alice, Bob, Cathy, Don, and Ella.
- The votes have come in as:
 E, D, C, B, C, C, A, C, E, C, A, C, C.
- You are told that some candidate has won the majority (over half) of the votes.
- You successively remove pairs of dissimilar votes, until there are no more such pairs.
- That is, the remaining votes, if any, are all for the same candidate.
- Show that this candidate has the majority.

Propositional Logic

æ

< 同 ▶

- Logic is the art and science of effective reasoning.
- How can we draw general and reliable conclusions from a collection of facts?
- Formal logic: Precise, syntactic characterizations of well-formed expressions and valid deductions.
- Formal logic makes it possible to *calculate* consequences so that each step is verifiable by means of proof.
- Computers can be used to automate such symbolic calculations.

- Logic studies the *trinity* between *language*, *interpretation*, and *proof*.
- Language: What are you allowed to say?
- Interpretation: What is the intended meaning?
 - Meaning is usually *compositional*: Follows the syntax
 - Some symbols have fixed meaning: connectives, equality, quantifiers
 - Other symbols are allowed to vary variables, functions, and predicates
 - Assertions either hold or fail to hold in a given interpretation
 - A valid assertion holds in every interpretation
- Proofs are used to demonstrate validity

Propositional Logic

- Propositional logic can be more accurately described as a logic of conditions *propositions are always true or always false.* [Couturat, *Algebra of Logic*]
- A condition can be represented by a propositional variable, e.g., *p*, *q*, etc., so that distinct propositional variables can range over possibly different conditions.
- The conjunction, disjunction, and negation of conditions are also conditions.
- The syntactic representation of conditions is using propositional formulas:

$$\phi := P \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2$$

- *P* is a class of propositional variables: p_0, p_1, \ldots
- Examples of formulas are $p, p \land \neg p, p \lor \neg p, (p \land \neg q) \lor \neg p$.

Meaning

- In logic, the meaning of an expression is constructed compositionally from the meanings of its subexpressions.
- The meanings of the symbols are either *fixed*, as with ¬, ∧, and ∨, or allowed to vary, as with the propositional variables.
- An interpretation (truth assignment) M assigns truth values $\{\top, \bot\}$ to propositional variables: $M(p) = \top \iff M \models p$.
- *M*[[*A*]] is the meaning of *A* in *M* and is computed using truth tables:

ϕ	р	q	$\neg p$	$p \lor q$	$p \wedge q$
$M_1(\phi)$	\perp	\perp	Т	\perp	\perp
$M_2(\phi)$	\perp	Т	Т	Т	\perp
$M_3(\phi)$	Т	\perp	\perp	Т	\perp
$M_4(\phi)$	Т	Т	\perp	Τ	Т

We can use truth tables to evaluate formulas for validity/satisfiability.

р	q	$(\neg p \lor q)$	$(\neg(\neg p \lor q) \lor p)$	$ eg(\neg(\neg p \lor q) \lor p) \lor p$
\perp		Т	\perp	Т
	Т	Т	\perp	Т
Т		\perp	Т	Т
Т	Т	Т	Т	Т

How many rows are there in the truth table for a formula with n distinct propositional variables?

- Define the operation of substituting a formula A for a variable p in a formula B, i.e., B[p → A].
- Is the result always a well-formed formula?
- Can the variable p occur in $B[p \mapsto A]$?
- What is the truth-table meaning of B[p → A] in terms of the meaning of B and A?

Defining New Connectives

- How do you define \wedge in terms of \neg and $\lor?$
- Give the truth table for A ⇒ B and define it in terms of and ∨.
- Define bi-implication $A \iff B$ in terms of \Rightarrow and \land and show its truth table.
- An *n*-ary Boolean function maps $\{\top, \bot\}^n$ to $\{\top, \bot\}$
- Show that every *n*-ary Boolean function can be defined using
 ¬ and ∨.
- Using ¬ and ∨ define an *n*-ary parity function which evaluates to ⊤ iff the parity is odd.
- Define an *n*-ary function which determines that the unsigned value of the little-endian input p₀,..., p_{n-1} is even?
- Define the NAND operation, where NAND(p, q) is ¬(p ∧ q) using ¬ and ∨. Conversely, define ¬ and ∨ using NAND.

- An interpretation *M* is a model of a formula ϕ if $M \models \phi$.
- If $M \models \neg \phi$, then *M* is a *countermodel* for ϕ .
- When ϕ has a model, it is said to be *satisfiable*.
- If it has no model, then it is unsatisfiable.
- If $\neg \phi$ is unsatisfiable, then ϕ is valid, i.e., alway evaluates to \top .
- We write $\phi \models \psi$ if every model of ϕ is a model of ψ .
- If $\phi \land \neg \psi$ is unsatisfiable, then $\phi \models \psi$.

Satisfiable, Unsatisfiable, or Valid?

- Classify these formulas as satisfiable, unsatisfiable, or valid?
 - $p \lor \neg p$
 - $p \land \neg p$
 - $\neg p \Rightarrow p$
 - $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$
- Make up some examples of formulas that are satisfiable (unsatisfiable, valid)?
- If A and B are satisfiable, is $A \wedge B$ satisfiable? What about $A \vee B$.
- Can A and $\neg A$ both be satisfiable (unsatisfiable, valid)?

Some Valid Laws

• $\neg (A \land B) \iff \neg A \lor \neg B$ • $\neg (A \lor B) \iff \neg A \land \neg B$ • $((A \lor B) \lor C) \iff A \lor (B \lor C)$ • $(A \Rightarrow B) \iff (\neg A \lor B)$ • $(\neg A \Rightarrow \neg B) \iff (B \Rightarrow A)$ $\bullet \neg \neg A \iff A$ • $A \Rightarrow B \iff \neg A \lor B$ • $\neg (A \land B) \iff \neg A \lor \neg B$ • $\neg (A \lor B) \iff \neg A \land \neg B$ • $\neg A \Rightarrow B \iff \neg B \Rightarrow A$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

What Can Propositional Logic Express?

- Constraints over bounded domains can be expressed as satisfiability problems in propositional logic (SAT).
- Define a 1-bit full adder in propositional logic.
- The Pigeonhole Principle states that if *n* + 1 pigeons are assigned to *n* holes, then some hole must contain more than one pigeon. Formalize the pigeonhole principle for four pigeons and three holes.
- Formalize the statement that a graph of *n* elements is *k*-colorable for given *k* and *n* such that *k* < *n*.
- Formalize and prove the statement that given a symmetric and transitive graph over 3 elements, either the graph is complete or contains an isolated point.
- Formalize Sudoku and Latin Squares in propositional logic.

Using Propositional Logic

- Write a propositional formula for checking that a given finite automaton $\langle Q, \Sigma, q, F, \delta \rangle$ with
 - Alphabet Σ ,
 - Set of states S
 - Initial state q,
 - Set of final states F, and
 - Transition function δ from $\langle Q, \Sigma \rangle$ to Q

accepts some string of length 5.

• Describe an *N*-bit ripple carry adder with a carry-in and carry-out bits as a formula.

Cook's Theorem

- A Turing machine consists of a finite automaton reading (and writing) symbols from a tape.
- The finite automaton (in a non-accepting state) reads the symbol at the current position of the head, and nondeterministically executes a step consisting of
 - A new symbol to write at the head position
 - A move (left or right) of the head from the current position
 - A next automaton state
- Show that SAT is solvable in polynomial time (in the size of the input) by a nondeterministic Turing machine.
- Show that for any nondeterministic Turing machine and polynomial bound p(n) for input of size n, one can (in polynomial time) construct a propositional formula which is satisfiable iff there is the Turing machine accepts the input in at most p(n).

- There are three basic styles of proof systems.
- These are distinguished by their basic judgement.
 - **1** Hilbert systems: $\vdash A$ means the formula A is provable.
 - ② Natural deduction: Γ ⊢ A means the formula A is provable from a set of assumption formulas Γ.
 - Sequent Calculus: Γ⊢∆ means the consequence of V∆ from ∧ Γ is derivable.

Hilbert System (H) for Propositional Logic

- The basic judgement here is ⊢ A asserting that a formula is *provable*.
- We can pick \Rightarrow as the basic connectives
- The axioms are

•
$$\vdash A \Rightarrow A$$

•
$$\vdash A \Rightarrow (B \Rightarrow A)$$

$$\vdash (A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$$

• A single rule of inference (Modus Ponens) is given

$$\frac{\vdash A \qquad \vdash A \Rightarrow B}{\vdash B}$$

• Can you prove $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$ using the above system?

Hilbert System (H)

- Add a propositional constant \bot to the formula syntax, where $[\![\bot]\!] = \bot.$
- Define negation $\neg A$ as $A \Rightarrow \bot$.
- Can you prove

- Are any of the axioms redundant? [Hint: See if you can prove the first axiom from the other two.]
- Write Hilbert axioms for \wedge and $\vee.$

Deduction Theorem

- We write Γ ⊢ A for a set of formulas Γ, if ⊢ A can be proved given ⊢ B for each B ∈ Γ.
- Deduction theorem: Show that if Γ, A ⊢ B, then Γ ⊢ A ⇒ B, where Γ, A is Γ ∪ {A}. [Hint: Use induction on proofs.]
- A *derived* rule of inference has the form

$$\frac{P_1,\ldots,P_n}{C}$$

where there is a derivation in the base logic from the premises P_1, \ldots, P_n to the conclusion *C*.

- An *admissible* rule of inference is one where the conclusion *C* is provable if the premises *P*₁,...,*P*_n are provable.
- Every derived rule is admissible, but what is an example of an admissible rule that is not a derived one?

Natural Deduction for Propositional Logic

- In natural deduction (ND), the basic judgement is $\Gamma \vdash A$.
- The rules are classified according to the introduction or elimination of connectives from A in Γ ⊢ A.
- The axiom, introduction, and elimination rules of natural deduction are

•
$$\overline{\Gamma, A \vdash A}$$
•
$$\overline{\Gamma_1 \vdash A} \qquad \Gamma_2 \vdash A \Rightarrow B$$
•
$$\overline{\Gamma_1 \cup \Gamma_2 \vdash B}$$
•
$$\overline{\Gamma, A \vdash B}$$
•
$$\overline{\Gamma \vdash A \Rightarrow B}$$

- Use ND to prove the axioms of the Hilbert system.
- A proof is in *normal form* if no introduction rule appears above an elimination rule. Can you ensure that your proofs are always in normal form? Can you write an algorithm to convert non-normal proofs to normal ones?

Sequent Calculus (LK) for Propositional Logic

The basic judgement is $\Gamma \vdash \Delta$ asserting that $\bigwedge \Gamma \Rightarrow \bigvee \Delta$, where Γ and Δ are sets (or bags) of formulas.

Peirce's Formula

• A sequent calculus proof of Peirce's formula $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$ is given by

$$\frac{ \overbrace{p \vdash p, q}^{Ax}}{\vdash p, p \Rightarrow q} \stackrel{+\Rightarrow}{\mapsto} \frac{p \vdash p}{p \vdash p} \stackrel{Ax}{\Rightarrow} \\ \hline (p \Rightarrow q) \Rightarrow p \vdash p}{\vdash ((p \Rightarrow q) \Rightarrow p) \Rightarrow p} \stackrel{+\Rightarrow}{\mapsto}$$

• The sequent formula that is introduced in the conclusion is the *principal* formula, and its components in the premise(s) are *side* formulas.

- Metatheorems about proof systems are useful in providing reasoning short-cuts.
- The deduction theorem for *H* and the normalization theorem for *ND* are examples.
- Prove that the Cut rule is admissible for the *LK*. (Difficult!)
- A bi-implication is a formula of the form $A \iff B$, and it is an equivalence when it is valid. Show that the following is a derived inference rule.

$$\frac{A \iff B}{C[p \mapsto A] \iff C[p \mapsto B]}$$

• State a similar rule for implication where

$$\frac{A \Rightarrow B}{C[p \mapsto A] \Rightarrow C[p \mapsto B]}$$

- A formula where negation is applied only to propositional atoms is said to be in negation normal form (NNF).
- For example, $\neg(p \lor \neg q)$ can be represented as $\neg p \land q$.
- Show that every propositional formula built using $\neg, \lor,$ and \land is equivalent to one in NNF.
- A *literal I* is either a propositional atom p or its negation $\neg p$.
- A *clause* is a multiary disjunction of a set of literals $l_1 \vee \ldots \vee l_n$.
- A multiary conjunction of *n* formulas A_1, \ldots, A_n is $\bigwedge_{i=1}^n A_i$.

Conjunctive and Disjunctive Normal Forms

- A formula that is a multiary conjunction of multiary disjunctions of literals is in conjunctive normal form (CNF).
- CNF Example: $(\neg p \lor q \lor \neg r)$ $\land (p \lor r)$ $\land (\neg p \lor \neg q \lor r)$
- Define an algorithm for converting any propositional formula to CNF.
- A formula is in *k*-CNF if it uses at most *k* literals per clause. Define an algorithm for converting any formula to 3-CNF.
- A formula that is a multiary disjunction of multiary conjunctions of literals is in disjunctive normal form (DNF).
- Define an algorithm for converting any formula to DNF.

Soundness

- A proof system is *sound* if all provable formulas are valid, i.e., $\vdash A$ implies $\models A$, i.e., $M \models A$ for all M.
- To prove soundness, show that for any inference rule of the form

$$\frac{\vdash P_1,\ldots,\vdash P_n}{\vdash C},$$

any model of all of the premises is also a model of the conclusion.

- Since the axioms are valid, and each step preserves validity, we have that the conclusion of a proof is also valid.
- Demonstrate the soundness of the proof systems shown so far, i.e.,
 - Hilbert system H
 - 2 Natural deduction ND
 - Sequent Calculus LK

Completeness

- A proof system is *complete* if all valid formulas are provable,
 i.e., ⊨ A implies ⊢ A.
- A countermodel M of Γ ⊢ Δ is one where either M ⊨ A for all A in Γ, and M ⊨ ¬B for all B ∈ Δ.
- In *LK*, any countermodel of some premise of a rule is also a countermodel for the conclusion.
- We can then show that a non-provable sequent $\Gamma\vdash\Delta$ has a countermodel.
- Each non-Cut rule has premises that are simpler than its conclusion.
- By applying the rules starting from Γ ⊢ Δ to completion, you end up with a set of premise sequents {Γ₁ ⊢ Δ₁,..., Γ_n ⊢ Δ_n} that are *atomic*, i.e., that contain no connectives.
- If an atomic sequent Γ_i ⊢ Δ_i is unprovable, then it has a countermodel, i.e., one in which each formula in Γ_i holds but no formula in Δ_i holds.
- Hence, $\Gamma \vdash \Delta$ has a countermodel.

- A set of formulas Γ is *consistent*, i.e., *Con*(Γ) iff there is no formula A in Γ such that Γ ⊢ ¬A is provable.
- If Γ is consistent, then Γ ∪ {A} is consistent iff Γ ⊢ ¬A is not provable.
- If Γ is consistent, then at least one of Γ ∪ {A} or Γ ∪ {¬A} must be consistent.
- A set of formulas Γ is *complete* if for each formula A, it contains A or ¬A.

- Any consistent set of formulas Γ can be made complete as $\hat{\Gamma}.$
- Let A_i be the *i*'th formula in some enumeration of PL formulas. Define

$$\begin{split} \Gamma_0 &= & \Gamma \\ \Gamma_{i+1} &= & \Gamma_i \cup \{A_i\}, \text{ if } Con(\Gamma_i \cup \{A_i\}) \\ &= & \Gamma_i \cup \{\neg A_i\}, \text{ otherwise.} \\ \hat{\Gamma} &= & \Gamma_\omega = \bigcup_i \Gamma_i \end{split}$$

- \bullet Ex: Check that $\hat{\Gamma}$ yields an interpretation $\mathcal{M}_{\hat{\Gamma}}$ satisfying $\Gamma.$
- ۲
- If Γ ⊢ Δ is unprovable, then Γ ∪ Δ is consistent, and has a model.

Compactness

- A logic is *compact* if any set of sentences Γ is satisfiable iff all finite subsets of it are, i.e., if it is *finitely satisfiable*.
- Propositional logic is compact hard direction is showing that every finitely satisfiable set is satisfiable.
- Zorn's lemma states that if in a partially ordered set A, every chain L has an upper bound \hat{L} in A, then A has a maximal element.
- Given a finitely satisfiable set Γ, the set of finitely satisfiable extensions satisfies the conditions of Zorn's lemma.
- Hence there is a maximal extension $\widehat{\Gamma}$ that is finitely satisfiable.
- For any atom p, exactly $p \in \widehat{\Gamma}$ or $\neg p \in \widehat{\Gamma}$. Why?
- We can similarly define the model M_Γ to show that Γ is satisfiable.

Interpolation

Craig's interpolation property states that given two sets of formulas Γ_1 and Γ_2 in propositional variables Σ_1 and Σ_2 , respectively, $\Gamma_1 \cup \Gamma_2$ is unsatisfiable iff there is a formula A in propositional variables $\Sigma_1 \cap \Sigma_2$ such that $\Gamma_1 \models A$ and Γ_2, A is unsatisfiable.

- We have already seen that any propositional formula can be written in CNF as a conjunction of clauses.
- Input K is a set of clauses.
- Tautologies, i.e., clauses containing both *I* and \overline{I} , are deleted from initial input.

Res	$\frac{K, I \lor \Gamma_1, \overline{I} \lor \Gamma_2}{K, I \lor \Gamma_1, \overline{I} \lor \Gamma_2, \Gamma_1 \lor \Gamma_2} \Gamma$	$_{1} \vee \Gamma_{2} \notin K$ $_{1} \vee \Gamma_{2}$ is not tautological
Contrad	<u></u>	<u>, ī</u>

Resolution: Example

$$\frac{(K_0 =) \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r}{(K_1 =) \neg q \lor r, \ K_0} \operatorname{Res}_{\operatorname{Res}} \\
\frac{(K_2 =) \ q \lor r, \ K_1}{(K_3 =) \ r, \ K_2} \operatorname{Res}_{\operatorname{Contrad}}$$

Show that resolution is a sound and complete procedure for checking satisfiability.

CDCL Informally

- Goal: Does a given set of clauses *K* have a satisfying assignment?
- If *M* is a total assignment such that $M \models \Gamma$ for each $\Gamma \in K$, then $M \models K$.
- If *M* is a partial assignment at level *h*, then propagation extends *M* at level *h* with the *implied literals I* such that $I \vee \Gamma \in K \cup C$ and $M \models \neg \Gamma$.
- If M detects a conflict, i.e., a clause Γ ∈ K ∪ C such that M ⊨ ¬Γ, then the conflict is *analyzed* to construct a conflict clause that allows the search to be continued from a prior level.
- If M cannot be extended at level h and no conflict is detected, then an unassigned literal l is *selected* and assigned at level h+1 where the search is continued.

Conflict-Driven Clause Learning (CDCL) SAT

Name	Rule	Condition		
Propagate	$h, \langle M \rangle, K, C$	$\Gamma \equiv I \lor \Gamma' \in K \cup C$		
	$\overline{h,\langle M,I[\Gamma] angle,K,C}$	$M \models \neg \Gamma'$		
Select	$h,\langle M angle,K,C$	$M \not\models I$		
	$\overline{h+1,\langle M;I[] angle,K,C}$	$M \not\models \neg I$		
Conflict	$0,\langle M angle,K,C$	$M \models \neg \Gamma$		
		for some $\Gamma \in K \cup C$		
Backjump	$\frac{h+1, \langle M \rangle, K, C}{h', \langle M_{\leq h'}, I[\Gamma'] \rangle, K, C \cup \{\Gamma'\}}$	$M \models \neg \Gamma$		
		for some $\Gamma \in K \cup C$		
		$\langle h', \Gamma' angle$		
		$=$ analyze $(\psi)(\Gamma)$		
		for $\psi = h, \langle M \rangle, K, C$		

▲□ ▶ ▲ 臣 ▶ ▲ 臣

CDCL Example

• Let K be

۲

 $\{p \lor q, \neg p \lor q, p \lor \neg q, s \lor \neg p \lor q, \neg s \lor p \lor \neg q, \neg p \lor r, \neg q \lor \neg r\}.$

step	h	М	K	С	Г
select <i>s</i>	1	; <i>s</i>	K	Ø	-
select r	2	; s; r	K	Ø	-
propagate	2	; s; r, $\neg q[\neg q \lor \neg r]$	K	Ø	-
propagate	2	; s; r, $\neg q$, $p[p \lor q]$	K	Ø	-
conflict	2	; <i>s</i> ; <i>r</i> ,¬ <i>q</i> , <i>p</i>	K	Ø	$\neg p \lor q$

æ

- ∢ ≣ →

∄ ▶ ∢ ∋

CDCL Example (contd.)

step	h	М	K	С	Г
conflict	2	; <i>s</i> ; <i>r</i> , ¬ <i>q</i> , <i>p</i>	K	Ø	$\neg p \lor q$
backjump	0	Ø	K	q	-
propagate	0	q[q]	K	q	-
propagate	0	$q, p[p \lor \neg q]$	K	q	-
propagate	0	$q, p, r[\neg p \lor r]$	K	q	-
conflict	0	<i>q</i> , <i>p</i> , <i>r</i>	K	q	$\neg q \lor \neg r$

Show that CDCL is sound and complete.

ROBDD

- Boolean functions map $\{0,1\}^n$ to $\{0,1\}$.
- We have already seen how *n*-ary Boolean functions can be represented by propositional formulas of *n* variables.
- ROBDDs are a canonical representation of boolean functions as a decision diagram where
 - Literals are uniformly ordered along every branch: $f(x_1, \ldots, x_n) = IF(x_1, f(\top, x_2, \ldots, x_n), f(\bot, x_2, \ldots, x_n))$
 - 2 Common subterms are identified
 - Solution Redundant branches are removed: $IF(x_i, A, A) = A$
- Efficient implementation of boolean operations: $f_1.f_2$, $f_1 + f_2$, -f, including quantification.
- Canonical form yields free equivalence checks (for convergence of fixed points).

ROBDD for Even Parity

ROBDD for even parity boolean function of a, b, c.

Construct an algorithm to compute $f_1 \odot f_2$, where \odot is \land or \lor . Construct an algorithm to compute $\exists \overline{x}.f$.

First and Higher-Order Logic

æ

A ►

In the process of creeping toward first-order logic, we introduce a modest but interesting extension of propositional logic. In addition to propositional atoms, we add a set of constants τ given by c_0, c_1, \ldots and equalities c = d for constants c and d.

$$\phi := P \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \tau_1 = \tau_2$$

The structure M now has a domain |M| and maps propositional variables to $\{\top, \bot\}$ and constants to |M|.

$$M\llbracket c = d\rrbracket = \begin{cases} \top, \text{ if } M\llbracket c\rrbracket = M\llbracket d\rrbracket \\ \bot, \text{ otherwise} \end{cases}$$

Reflexivity	$\Gamma \vdash a = a, \Delta$	
Symmetry	$\frac{\Gamma \vdash a = b, \Delta}{\Gamma \vdash b = a, \Delta}$	
Transitivity	$\frac{\Gamma \vdash a = b, \Delta \qquad \Gamma \vdash b = c, \Delta}{\Gamma \vdash a = c, \Delta}$	

- Show that the above proof rules (on top of propositional logic) are sound and complete.
- Show that Equality Logic is decidable.
- Adapt the above logic to reason about a partial ordering relation ≤, i.e., one that is reflexive, transitive, and anti-symmetric (x ≤ y ∧ y ≤ x ⇒ x = y).

Term Equality Logic (TEL)

- One further extension is to add function symbols from a signature Σ that assigns an arity to each symbol.
- Function symbols are used to form terms τ , so that constants are just 0-ary function symbols.

$$\begin{aligned} \tau &:= f(\tau_1, \dots, \tau_n), \text{ for } n \ge 0\\ \phi &:= P \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \tau_1 = \tau_2 \end{aligned}$$

• For an *n*-ary function f, M(f) maps $|M|^n$ to |M|.

$$M[\![a = b]\!] = M[\![a]\!] = M[\![b]\!]$$
$$M[\![f(a_1, \dots, a_n)]\!] = (M[\![f]\!])(M[\![a_1]\!], \dots, M[\![a_n]\!])$$

• We need one additional proof rule.

Congruence
$$\Gamma \vdash a_1 = b_1, \Delta \dots \Gamma \vdash a_n = b_n, \Delta$$

 $\Gamma \vdash f(a_1, \dots, a_n) = f(b_1, \dots, b_n), \Delta$ $\Box \vdash d \supseteq \vdash d \supseteq \vdash d \supseteq \vdash d \supseteq \vdash d \supseteq$ N. ShankarSpeaking Logic 201560/100

I

Let
$$f^{n}(a)$$
 represent $\underbrace{f(\dots f(a)\dots)}_{n}^{Ax}$

$$\underbrace{\frac{\overline{f^{3}(a) = f(a) \vdash f^{3}(a) = f(a)}_{f^{3}(a) = f(a) \vdash f^{4}(a) = f^{2}(a)}^{Ax}}_{f^{3}(a) = f(a) \vdash f^{5}(a) = f^{3}(a)} C \xrightarrow{f^{3}(a) = f(a) \vdash f^{3}(a) = f(a)}_{f^{3}(a) = f(a) \vdash f^{5}(a) = f(a)} T$$

Show soundness and completeness of TEL. Show that TEL is decidable.

Equational Logic

- Equational Logic is a heavily used fragment of first-order logic.
- It consists of term equalities s = t, with proof rules
 - 1 Reflexivity: $\overline{s=s}_{\substack{s=t\\s=t\\t=s}}$ 2 Symmetry: $\frac{\overline{s=s}}{t=s}$ 3 Transitivity: $\frac{r=s}{r=t_1,...,s_n=t_n}$ 4 Congruence: $\frac{s_1=t_1,...,s_n=t_n}{f(s_1,...,s_n)=f(t_1,...,t_n)}$ 5 Instantiation: $\frac{s=t}{\sigma(s)=\sigma(t)}$, for substitution σ .
- We say Γ ⊢ s = t when the equality s = t can be derived from the equalities in Γ.
- Show that equational logic is sound and complete.

Equational Logic

Use equational logic to formalize

- **2** Monoids: A set M with associative binary operator . and unit 1
- **③** Groups: A monoid with an right-inverse operator x^{-1}
- Ommutative groups and semigroups
- Sings: A set R with commutative group $\langle R, +, -, 0 \rangle$, semigroup $\langle R, . \rangle$, and distributive laws x.(y + z) = x.y + x.z and (y + z).x = y.x + z.x
- Semilattice: A commutative semigroup (S, ∧) with idempotence x ∧ x = x
- **2** Lattice: $\langle L, \wedge, \vee \rangle$ where $\langle L, \wedge \rangle$ and $\langle L, \vee \rangle$ are semilattices, and $x \vee (x \wedge y) = x$ and $x \wedge (x \vee y) = x$.
- **3** Distributive lattice: A lattice with $x \land (y \lor z) = (x \land y) \lor (x \land z)$.
- Boolean algebra: Distributive lattice with constants 0 and 1 and unary operation – such that x ∧ 0 = 0, x ∨ 1 = 1, x ∧ −x = 0, and x ∨ −x = 1.

- Prove that every group element has a left inverse.
- For a lattice, define x ≤ y as x ∧ y = x. Show that ≤ is a partial order (reflexive, transitive, and antisymmetric).
- Show that a distributive lattice satisfies $x \lor (y \land z) = (x \lor y) \land (x \lor z).$
- Prove the de Morgan laws, $-(x \lor y) = -x \land -y$ and $-(x \land y) = -x \lor -y$ for Boolean algebras.

We can now complete the transition to first-order logic by adding

$$\tau := X$$

$$| f(\tau_1, \dots, \tau_n), \text{ for } n \ge 0$$

$$\phi := \neg \phi | \phi_1 \lor \phi_2 | \phi_1 \land \phi_2 | \tau_1 = \tau_2$$

$$| \forall x.\phi | \exists x.\phi | q(\tau_1, \dots, \tau_n), \text{ for } n \ge 0$$

Terms contain variables, and formulas contain atomic and quantified formulas.

 $M[\![q]\!]$ is a map from D^n to $\{\top, \bot\}$, where *n* is the arity of predicate *q*.

$$\begin{split} &M[\![x]\!]\rho = \rho(x) \\ &M[\![q(a_1,\ldots,a_n)]\!]\rho = M[\![q]\!](M[\![a_1]]\!]\rho,\ldots,M[\![a_n]]\!]\rho) \\ &M[\![\forall x.A]\!]\rho = \begin{cases} \top, & \text{if } M[\![A]\!]\rho[x:=d] \text{ for all } d \in D \\ \bot, & \text{otherwise} \end{cases} \\ &M[\![\exists x.A]\!]\rho = \begin{cases} \top, & \text{if } M[\![A]\!]\rho[x:=d] \text{ for some } d \in D \\ \bot, & \text{otherwise} \end{cases} \end{split}$$

Atomic formulas are either equalities or of the form $q(a_1, \ldots, a_n)$.

First-Order Logic

- Constant *c* must be chosen to be new so that it does not appear in the conclusion sequent.
- Demonstrate the soundness of first-order logic.
- A theory consists of a signature Σ for the function and predicate symbols and non-logical axioms.
- If a *T* is obtained from *S* by extending the signature and adding axioms, then *T* is conservative with respect to *S*, if all the formulas in *S* provable in *T* are also provable in *S*.

Using First-Order Logic

- Prove $\exists x.(p(x) \Rightarrow \forall y.p(y)).$
- Give at least two satisfying interpretations for the statement $(\exists x.p(x)) \implies (\forall x.p(x)).$
- A sentence is a formula with no free variables. Find a sentence A such that both A and ¬A are satisfiable.
- Write a formula asserting the unique existence of an x such that p(x).
- Define operations for collecting the free variables vars(A) in a given formula A, and substituting a term a for a free variable x in a formula A to get A{x → a}.
- Is M[[A{x → a}]]ρ = M[[A]]ρ[x := M[[a]]ρ]? If not, show an example where it fails. Under what condition does the equality hold?
- Show that any quantified formula is equivalent to one in *prenex normal form*, i.e., where the only quantifiers appear at the head of the formula and the body is purely a propositional combination of atomic formulas.

More Exercises

Prove

$$\begin{array}{l} \bullet \neg \forall x.A \iff \exists x. \neg A \\ \hline \bullet & (\forall x.A \land B) \iff (\forall x.A) \land (\forall x.B) \\ \hline \bullet & (\exists x.A \lor B) \iff (\exists x.A) \lor (\exists x.B) \\ \hline \bullet & ((\forall x.A) \lor (\forall x.B)) \Rightarrow (\forall x.A \lor B) \end{array}$$

- Write the axioms for a partially ordered relation \leq .
- Write the axioms for a bijective (1-to-1, onto) function f.
- Write a formula asserting that for any x, there is a unique y such that p(x, y).
- Can you write first-order formulas whose models
 - I Have exactly (at most, at least) three elements?
 - 2 Are infinite
 - Are finite but unbounded
- Can you write a first-order formula asserting that
 - **1** A relation is transitively closed
 - 2 A relation is the transitive closure of another relation.

Advanced Topics

æ

э

< 同 ▶

Completeness of First-Order Logic

- The quantifier rules for sequent calculus require copying.
- Proof branches can be extended without bound.
- Ex: Show that LK is sound: $\vdash A$ implies $\models A$.
- The Henkin closure H(Γ) is the smallest extension of a set of sentences Γ that is Henkin-closed, i.e., contains B ⇒ A(c_B) for every B ∈ H(Γ) of the form ∃x : A. (c_B is a fresh constant.)
- Any consistent set of formulas Γ has a *consistent* Henkin closure H(Γ).
- As before, any consistent, Henkin closed set of formulas Γ has a complete, Henkin-closed extension $\hat{\Gamma}.$
- Ex: Construct an interpretation $M_{\widehat{H(\Gamma)}}$ from $\widehat{H(\Gamma)}$ and show that it is a model for Γ .

- For any sentence A there is a quantifier-free sentence A_H (the Herbrand form of A) such that ⊢ A in LK iff ⊢ A_H in TEL₀.
- The Herbrand form is a *dual* of Skolemization where each universal quantifier is replaced by a term $f(\overline{y})$, where \overline{y} is the set of governing existentially quantified variables.
- Then, $\exists x : (p(x) \Rightarrow \forall y : p(y))$ has the Herbrand form $\exists x.p(x) \Rightarrow p(f(x))$, and the two formulas are equi-valid.
- How do you prove the latter formula?

- Herbrand terms are those built from function symbols in A_H (adding a constant, if needed).
- Show that if A_H is of the form $\exists \overline{x}.B$, then $\vdash A_H$ iff $\bigvee_{i=0}^n \sigma_i(B)$, for some Herbrand term substitutions $\sigma_1, \ldots, \sigma_n$.
- [Hint: In a cut-free sequent proof of a prenex formula, the quantifier rules can be made to appear below all the other rules. Such proofs must have a quantifier-free mid-sequent above which the proof is entirely equational/propositional.]
- Show that if a formula has a counter-model, then it has one built from Herbrand terms (with an added constant if there isn't one).

- Consider a formula of the form $\forall x. \exists y. q(x, y)$.
- It is equisatisfiable with the formula ∀x.q(x, f(x)) for a new function symbol f.
- If $M \models \forall x. \exists y. q(x, y)$, then for any $c \in |M|$, there is $d_c \in |M|$ such that $M[\![q(x, y)]\!] \{x \mapsto c, y \mapsto d_c\}$. let M' extend M so that $M(f)(c) = d_c$, for each $c \in |M|$: $M' \models \forall x.q(x, f(y))$.
- Conversely, if $M \models \forall x.q(x, f(y))$, then for every $c \in |M|$, $M[[q(x, y)]] \{x \mapsto c, y \mapsto M(f)(c)\}$.
- Prove the general case that any prenex formula can be Skolemized by replacing each existentially quantified variable y by a term f(x), where f is a distinct, new function symbol for each y, and x are the universally quantified variables governing y.

・ 同 ト ・ ヨ ト ・ ヨ ト

Unification

- A substitution is a map $\{x_1 \mapsto a_1, \ldots, x_n \mapsto a_n\}$ from a finite set of variables $\{x_1, \ldots, x_n\}$ to a set of terms.
- Define the operation $\sigma(a)$ of applying a substitution (such as the one above) to a term a to replace any free variables x_i in t with ai.
- Define the operation of composing two substitutions $\sigma_1 \circ \sigma_2$ as $\{x_1 \mapsto \sigma_1(a_1), \ldots, x_n \mapsto \sigma_1(a_n)\}$, if σ_2 is of the form $\{x_1 \mapsto a_1, \ldots, x_n \mapsto a_n\}.$
- Given two terms f(x, g(y, y)) and f(g(y, y), x) (possibly containing free variables), find a substitution σ such that $\sigma(a) \equiv \sigma(b).$
- Such a σ is called a unifier.
- Not all terms have such unifiers, e.g., f(g(x)) and f(x).
- A substitution σ_1 is more general than σ_2 if the latter can be obtained as $\sigma \circ \sigma_1$, for some σ .
- Define the operation of computing the most general unifier, if SR there is one, and reporting failure, otherwise.

Speaking Logic 2015

Resolution Example

- To prove $(\exists y.\forall x.p(x,y)) \Rightarrow (\forall x.\exists y.p(x,y))$
- Negate: $(\exists y.\forall x.p(x,y)) \land (\exists x.\forall y.\neg p(x,y))$
- Prenexify: $\exists y_1. \forall x_1. \exists x_2. \forall y_2. p(x_1, y_1) \land \neg p(x_2, y_2)$
- Skolemize: $\forall x_1, y_2.p(x_1, c) \land \neg p(f(x_1), y_2)$
- Distribute and clausify: $\{p(x_1, c), \neg p(f(x_3), y_2)\}$
- Unify and resolve with unifier $\{x_1 \mapsto f(x_3), y_2 \mapsto c\}$
- Yields an empty clause
- Now try to show $(\forall x.\exists y.p(x,y)) \Rightarrow (\exists y.\forall x.p(x,y)).$

Dedekind–Peano Arithmetic

- The natural numbers consist of 0, s(0), s(s(0)), etc.
- Clearly, $0 \neq s(x)$, for any x.
- Also, $s(x) = s(y) \Rightarrow x = y$, for any x and y.
- Next, we would like to say that this is all there is, i.e., every domain element is reachable from 0 through applications of *s*.
- This requires induction:
 P(0) ∧ (∀n.P(n) ⇒ P(n+1)) ⇒ (∀n.P(n)), for every property P.
- But there is no way to write this there are uncountably many properties (subset of natural numbers) but only finitely many formulas.
- Induction is therefore given as a scheme, an infinite set of axioms, with the template

$$A\{x \mapsto 0\} \land (\forall x.A \Rightarrow A\{x \mapsto s(x)\}) \Rightarrow (\forall x.A).$$

- We still need to define + and \times . How?
- How do you define the relations x < y and $x \leq y$?

77/100

Prove that

æ

・日本 ・日本 ・日本

Set Theory

Set theory can be axiomatized using axiom schemes, using a membership relation \in :

- Extensionality: $x = y \iff (\forall z.z \in x \iff z \in y)$
- The existence of the empty set $\forall x. \neg x \in \emptyset$
- Pairs: ∀x, y.∃z.∀u.u ∈ z. ⇔ u = x ∨ u = y (Define the singleton set containing the empty set. Construct a representation for the ordered pair of two sets.)
- Union: How? (Define a representation for the finite ordinals using singleton, or using singleton and union.)
- Separation: {x ∈ y|A}, for any formula A, y ∉ vars(A).
 (Define the intersection and disjointness of two sets.)
- Infinity: There is a set containing all the finite ordinals.
- Power set: For any set, we have the set of all its subsets.
- Regularity: Every set has an element that is disjoint from it.
- Replacement: There is a set that is a superset of the image Y of a set X with respect to a functional $(\forall x \in X.\exists ! y.A(x, y))$ rule A(x, y).

Using Set Theory

- Can two different sets be empty?
- For your definition of ordered pairing, define the first and second projection operations.
- Define the Cartesian product x × y of two sets, as the set of ordered pairs ⟨u, v⟩ such that u ∈ x and v ∈ y.
- Define a subset of x × y to be functional if it does not contain any ordered pairs ⟨u, v⟩ and ⟨u, v'⟩ such that v ≠ v'.
- Define the function space y^x of the functions that map elements of x to elements of y.
- Define the join of two relations, where the first is a subset of $x \times y$ and the second is a subset of $y \times z$.

- Can all mathematical truths (valid sentences) be formally proved?
- *No.* There are valid statements about numbers that have no proof. (Gödel's first incompleteness theorem)
- Suppose Z is some formal theory claiming to be a sound and complete formalization of arithmetic, i.e., it proves all and only valid statements about numbers.
- Gödel showed that there is a valid but unprovable statement.

The First Incompleteness Theorem

- The expressions of Z can be represented as numbers as can the proofs.
- The statement "p is a proof of A" can then be represented by a formula Pf(x, y) about numbers x and y.
- If p is represented by the number \underline{p} and A by \underline{A} , then $Pf(\underline{p},\underline{A})$ is provable iff p is a proof of A.
- Numbers such as <u>A</u> are representable as numerals in Z and these numerals can also be represented by numbers, <u>A</u>.
- Then ∃x.Pf(x, y) says that the statement represented by y is provable. Call this Pr(y).

The Undecidable Sentence

- Let S(x) represent the numeric encoding of the operation such that for any number k, S(k) is the encoding of the expression obtained by substituting the numeral for k for the variable 'x' in the expression represented by the number k.
- Then ¬Pr(S(x)) is represented by a number k, and the undecidable sentence U is ¬Pr(S(k)).
- <u>U</u> is S(k), i.e., the sentence obtained by substituting the numeral for k for 'x' in ¬Pr(S(x)) which is represented by k.

• Since U is $\neg Pr(\underline{U})$, we have a situation where either

- U, i.e., ¬Pr(<u>U</u>), is provable, but from the numbering of the proof of U, we can also prove Pr(<u>U</u>).
- ¬U, i.e., Pr(<u>U</u>) is provable, but clearly none of Pf(0, <u>U</u>) Pf(1, <u>U</u>), ..., is provable (since otherwise U would be provable), an ω-inconsistency, or
- 3 Neither U nor $\neg U$ is provable: an incompleteness.

Second Incompleteness Theorem

- The negation of the sentence U is Σ₁, and Z can verify Σ₁-completeness (every valid Σ₁-sentence is provable).
- Then

$$\vdash \Pr(\underline{U}) \Rightarrow \Pr(\underline{\Pr(\underline{U})}).$$

- But this says $\vdash Pr(\underline{U}) \Rightarrow Pr(\underline{\neg U})$.
- Therefore $\vdash Con(Z) \Rightarrow \neg Pr(\underline{U}).$
- Hence $\neg \vdash Con(Z)$, by the first incompleteness theorem.
- Exercise: The theory Z is consistent if A ∧ ¬A is not provable for any A. Show that ω-consistency is stronger than consistency. Show that the consistency of Z is adequate for proving the first incompleteness theorem.

Higher-Order Logic

- Thus far, variables ranged over ordinary datatypes such as numbers, and the functions and predicates were fixed (constants).
- Second-order logic allows free and bound variables to range over the functions and predicates of first-order logic.
- In *n*'th-order logic, the arguments (and results) of functions and predicates are the functions and predicates of *m*'th-order logic for m < n.
- This kind of strong typing is required for consistency, otherwise, we could define R(x) = ¬x(x), and derive R(R) = ¬R(R).
- Higher-order logic, which includes n'th-order logic for any n > 0, can express a number of interesting concepts and datatypes that are not expressible within first-order logic: transitive closure, fixpoints, finiteness, etc.

- Base types: e.g., bool, nat, real
- Tuple types: $[T_1, \ldots, T_n]$ for types T_1, \ldots, T_n .
- Tuple terms: (a_1, \ldots, a_n)
- Projections: $\pi_i(a)$
- Function types: $[T_1 \rightarrow T_2]$ for domain type T_1 and range type T_2 .
- Lambda abstraction: $\lambda(x : T_1) : a$
- Function application: f a.

$$\begin{split} \llbracket \texttt{bool} \rrbracket &= \{0,1\} \\ \llbracket \texttt{real} \rrbracket &= \mathsf{R} \\ \llbracket [\mathsf{T}_1, \dots, \mathsf{T}_n] \rrbracket &= \llbracket \mathsf{T}_1 \rrbracket \times \dots \times \llbracket \mathsf{T}_n \rrbracket \\ \llbracket [\mathsf{T}_1 \to \mathsf{T}_2] \rrbracket &= \llbracket \mathsf{T}_2 \rrbracket^{\llbracket \mathsf{T}_1 \rrbracket} \end{split}$$

37/100

β -reduction	$\overline{\Gamma \vdash (\lambda(x:T):a)(b)} = a[b/x], \Delta$
Extensionality	$\frac{\Gamma \vdash (\forall (x:T): f(x) = g(x)), \Delta}{\Gamma \vdash f = g, \Delta}$
Projection	$\overline{\Gamma \vdash \pi_i(a_1, \ldots, a_n) = a_i, \Delta}$
Tuple Ext.	$\frac{\Gamma \vdash \pi_1(a) = \pi_1(b), \Delta, \dots, \Gamma \vdash \pi_n(a) = \pi_i(b), \Delta}{\Gamma \vdash a = b, \Delta}$

æ

э

-**∢**∰ ▶ ∢ ≣

- Define universal quantification using equality in higher-order logic.
- Express and prove Cantor's theorem (there is no injection from a type *T* to a [*T*→*bool*]) in higher-order logic.
- Write the induction principle for Peano arithmetic in higher-order logic.
- Write a definition for the transitive closure of a relation in higher-order logic.
- Describe the modal logic CTL in higher-order logic.
- State and prove the Knaster-Tarski theorem.

Floyd's method for Flowchart programs

- A flowchart has a *start* vertex with a single outgoing edge, a *halt* vertex with a single incoming edge.
- Each vertex corresponds to a program block or a decision conditions.
- Each edge corresponds to an assertion; the start edge is the flowchart *precondition*, and the halt edge is the flowchart *postcondition*.
- Verification conditions check that for each vertex, each incoming edge assertion through the block implies the outgoing edge assertion.
- *Partial correctness*: If each verification condition has been discharged, then every halting computation starting in a state satisfying the precondition terminates in a state satisfying the postcondition.
- *Total correctness*: If there is a ranking function mapping states to ordinals that strictly decreases for any cycle in the flowchart, then every computation terminates in the halt.

◆ 同 ▶ → 三 ▶

- A Hoare triple has the form $\{P\}S\{Q\}$, where S is a program statement in terms of the program variables drawn from the set Y and P and Q are assertions containing logical variables from X and program variables.
- A program statement is one of
 - A skip statement skip.

 - **3** A conditional statement $e ? S_1 : S_2$, where C is a $\Sigma[Y]$ -formula.
 - A loop while e do S.
 - **6** A sequential composition S_1 ; S_2 .

Skip	$\{P\}$ skip $\{P\}$
Assignment	$\{P[\overline{e}/\overline{y}]\}\overline{y}:=\overline{e}\{P\}$
Conditional	$\frac{\{C \land P\}S_1\{Q\}}{\{\neg C \land P\}S_2\{Q\}}$
	$\{P\}C ? S_1 : S_2\{Q\}$
Loop	$\{P \land C\}S\{P\}$
	$\{P\}$ while C do $S\{P \land \neg C\}$
Composition	$\{P\}S_1\{R\} \ \{R\}S_2\{Q\}$
	$\{P\}S_1; S_2\{Q\}$
Consequence	$P \Rightarrow P' \{P'\}S\{Q'\} Q' \Rightarrow Q$
	$\overline{\{P\}S\{Q\}}$

æ

æ

< 同 ▶

Ξ

Hoare Logic Semantics

- Both assertions and statements contain operations from a first-order signature Σ.
- An assignment σ maps program variables in Y to values in dom(M).
- A program expression e has value M[[e]]σ.
- The meaning of a statement M[S] is given by a sequence of states (of length at least 2).
 - **1** $\sigma \circ \sigma \in M[skip],$ for any state σ .
 - 2 $\sigma \circ \sigma[M[\overline{e}]\sigma/\overline{y}] \in M[\overline{y} := \overline{e}]$, for any state σ .
 - $\begin{array}{l} \textcircled{\textbf{0}} \quad \psi_1 \circ \sigma \circ \psi_2 \in M[\![S_1; S_2]\!] \text{ for } \psi_1 \circ \sigma \in M[\![S_1]\!] \text{ and} \\ \sigma \circ \psi_2 \in M[\![S_2]\!] \end{array}$

 - **5** $\sigma \circ \sigma \in M[[while \ C \ do \ S]]$ if $M[[C]]\sigma = \bot$
 - $\psi_1 \circ \sigma \circ \psi_2 \in M[[while \ C \ do \ S]]$ if $M[[C]](\psi_1[0]) = \top$, $\psi_1 \circ \sigma \in M[[S]]$, and $\sigma \circ \psi_2 \in M[[while \ C \ do \ S]]$

 {P}S{Q} is valid in a Σ-structure M if for every sequence σ ∘ ψ ∘ σ' ∈ M[S] and any assignment ρ of values in dom(M) to logical variables in X, either

1
$$M\llbracket Q \rrbracket_{\sigma'}^{\rho} = \top$$
, or
2 $M\llbracket P \rrbracket_{\sigma}^{\rho} = \bot$.

- Informally, every computation sequence for S either ends in a state satisfying Q or starts in a state falsifying P.
- Demonstrate the soundness of the Hoare calculus.

- The proof of a valid triple $\{P\}S\{Q\}$ can be decomposed into
 - **1** The valid triple $\{wlp(S)(Q)\}S\{Q\}$, and
 - **2** The valid assertion $P \Rightarrow wlp(S)(Q)$
- wlp(S)(Q) (the weakest liberal precondition) is an assertion such that for any ψ ∈ M[[S]] with |ψ| = n + 1 and ρ, either M[[Q]]^ρ_{ψ_n} = ⊥ or M[[wlp(S)(Q)]]^ρ_{ψ₀} = ⊤.
- Show that for any S and Q, the valid triple
 {wlp(S)(Q)}S{Q} can be proved in the Hoare calculus.
 (Hint: Use induction on S.)
- First-order arithmetic over (+,.,0,1) is sufficient to express wlp(S)(Q) since it can code up sequences of states representing computations.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Transition Systems: Mutual Exclusion

 $\begin{array}{ll} \mbox{initially} \\ \mbox{try}[1] = \mbox{critical}[1] = \mbox{turn} = \mbox{false} \\ \mbox{transition} \\ & \neg \mbox{try}[1] \rightarrow & \mbox{try}[1] := \mbox{true}; \\ & \mbox{turn} := \mbox{false}; \\ & \neg \mbox{try}[2] \lor \mbox{turn} \rightarrow & \mbox{critical}[1] := \mbox{true}; \\ & \mbox{critical}[1] \rightarrow & \mbox{critical}[1] := \mbox{false}; \\ & \mbox{try}[1] := \mbox{false}; \end{array}$

Model Checking Transition Systems

- A transition system is given as a triple $\langle W, I, N \rangle$ of states W, an initialization predicate I, and a transition relation N.
- Symbolic Model Checking: Fixpoints such as µX.I ⊔ post(N)(X) which is the set of reachable states can be constructed as an ROBDD.
- Bounded Model Checking: I(s₀) ∧ ∧^k_{i=0} N(s_i, s_{i+1}) represents the set of possible (k + 1)-step computations and ¬P(s_{k+1}) represents the possible violations of state predicate P at the state s_{k+1}.
- *k*-Induction: A variant of bounded model checking can be used to prove properties:
 - Base: Check that *P* holds in the first *k* states of the computation
 - Induction: If *P* holds for any sequence of *k* steps in a computation, it holds in the *k* + 1-th state.
- Prove the mutual exclusion property by *k*-induction.

Interpolation-Based Model Checking

- Interpolation: The unsatisfiability of the BMC query yields an interpolant Q such that $I(s_0) \wedge N(s_0, s_1)$ and $\bigwedge_{i=1}^{k} N(s_i, s_{i+1}) \wedge \neg P(s_{k+1})$ are jointly unsatisfiable.
- The proof yields an interpolant $Q(s_1)$.
- Let $I'(s_0)$ be $I(s_0) \lor Q(s_0)$.
- If I(s₀) = I'(s₀) then this is an invariant. Otherwise, repeat the process with I replaced by I'.
- Prove the mutual exclusion property using interpolation-based model checking.

Conclusions: Speak Logic!

- Logic is a powerful tool for
 - Formalizing concepts
 - 2 Defining abstractions
 - Proving validities
 - Solving constraints
 - 6 Reasoning by calculation
 - Mechanized inference
- The power of logic is when it is used as an aid to effective reasoning.
- Logic can become enormously difficult, and it would undoubtedly be well to produce more assurance in its use. ... We may some day click off arguments on a machine with the same assurance that we now enter sales on a cash register.

Vannevar Bush, As We May Think

• The machinery of logic has made it possible to solve large and complex problems; formal verification is now a practical technology.

- Barwise, Handbook of Mathematical Logic
- Johnstone, Notes on logic and set theory
- Ebbinghaus, Flum, and Thomas, Mathematical Logic
- Kees Doets, Basic Model Theory
- Huth and Ryan, *Logic in Computer Science: Modelling and Reasoning about Systems*
- Girard, Lafont, and Taylor, Proofs and Types
- Shankar, Automated Reasoning for Verification, ACM Computing Surveys, 2009
- Shankar, *Model Checking and Deduction*, Handbook of Model Checking (To appear), 2015.

