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Why Logic?

Computing, like mathematics, is the study of reusable
abstractions.

Abstractions in computing include numbers, lists, channels,
processes, protocols, and programming languages.

These abstractions have algorithmic value in designing,
representing, and reasoning about computational processes.

Properties of abstractions are captured by precisely stated
laws through formalization using axioms, definitions,
theorems, and proofs.

Logic is the medium for expressing these abstract laws and the
method for deriving consequences of these laws using sound
reasoning principles.

Computing is abstraction engineering.

Logic is the calculus of computing.
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The Unreasonable Effectiveness of Logic in Computing

The world is increasingly an interplay of abstractions’

Caches, files, IP addresses, avatars, friends, likes, hyperlinks,
packets, network protocols, and cyber-physical systems are all
examples of abstractions in daily use.

Such abstract entities and the relationships can be expresses
clearly and precisely in logic.

In computing, and elsewhere, we are becoming increasingly
dependent on formalization as a way of managing the abstract
universe.
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Where Logic has Been Effective

Logic has been unreasonably effective in computing, with an
impact that spans

Theoretical computer science: Algorithms, Complexity,
Descriptive Complexity

Hardware design and verification: Logic design, minimization,
synthesis, model checking

Software verification: Specification languages, Assertional
verification, Verification tools

Computer security: Information flow, Cryptographic protocols

Programming languages: Logic/functional programming, Type
systems, Semantics

Artificial intelligence: Knowledge representation, Planning

Databases: Data models, Query languages

Systems biology: Process models

Our course is about the effective use of logic in computing.
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Speaking Logic

In mathematics, logic is studied as a source of interesting
(meta-)theorems, but the reasoning is typically informal.

In philosophy, logic is studied as a minimal set of foundational
principles from which knowledge can be derived.

In computing, the challenge is to solve large and complex
problems through abstraction and decomposition.

Formal, logical reasoning is needed to achieve scale and
correctness.

We will examine how logic is used to formulate problems, find
solutions, and build proofs.

We will also examine useful metalogical properties of logics, as
well as algorithmic methods for effective inference.
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Course Schedule

The course is spread over Four lectures:

Lecture 1: Proofs and Things
Lecture 2: Propositional Logics
Lecture 3: First-Order and Higher-Order Logic
Lecture 4: Advanced topics

The goal is to learn how to speak logic fluently through the
use of propositional, modal, equational, first-order, and
higher-order logic.

This will serve as a background for the more sophisticated
ideas in the main lectures in the school.

To get the most out of the course, please do the exercises.
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A Small Puzzle [Wason]

Given four cards laid out on a table as: D , 3 , F , 7 , where
each card has a letter on one side and a number on the other.

Which cards should you flip over to determine if every card
with a D on one side has a 7 on the other side?
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A Small Problem

Given a bag containing some black balls and white balls, and a
stash of black/white balls. Repeatedly

1 Remove a random pair of balls from the bag

2 If they are the same color, insert a white ball into the bag

3 If they are of different colors, insert a black ball into the bag

What is the color of the last ball?
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Truthtellers and Liars [Smullyan]

You are confronted with two gates.

One gate leads to the castle, and the other leads to a trap

There are two guards, one at each gate: one always tells the
truth, and the other always lies.

You are allowed to ask one of the guards on question with a
yes/no answer.

What question should you ask in order to find out which gate
leads to the castle?
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When is Cheryl’s Birthday?

Albert and Bernard have just become friends with Cheryl, and
they want to know her date of birth. Cheryl gives them 10
possible dates:

May 15 May 16 May 19
June 17 June 18
July 14 July 16

August 14 August 15 August 17

Cheryl then tells Albert and Bernard separately the month and
the day of her birthday, respectively.

Albert: I don’t know when Cheryl’s birthday is, but I know
that Bernhard does not know too.
Bernard: Af first I didn’t know Cheryl’s birthday, but now I
do.
Albert: Then I also know Cheryl’s birthday.

When is Cheryl’s birthday?
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Mr. S and Mr. P

Two integers m and n are picked from the interval [2, 99].

Mr. S is given the sum m + n. and Mr. P is given the product
mn.

They then have the following dialogue:

S: I don’t know m and n.
P: Me neither.
S: I know that you don’t.
P: In that case, I do know m and n.
S: Then, I do too.

How would you determine the numbers m and n?
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Pigeonhole Principle & Cantor’s Theorem

Why can’t you park n + 1 cars in n parking spaces, if each car
needs its own space?

Let m..n represent the subrange of integers from m to, but
not including, n.

An injection from set A to set B is a map f such that
f (x) = f (y) implies x = y , for any x , y in A.

The Pigeonole principle can be restated as asserting that
there is no injection from 0..n + 1 to 0..n. Prove it.

Let N be the set of natural numbers 0, 1, 2, . . ., and let ℘(N)
be the set of subsets of N.

Show that there is no injection from ℘(N) to N.
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Hard Sudoku [Wikipedia/Algorithmics of Sudoku]
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Gilbreath’s Card Trick

Start with a deck consisting of a stack of quartets, where the
cards in each quartet appear in suit order ♠,♥,♣,♦:

〈5♠〉, 〈3♥〉, 〈Q♣〉, 〈8♦〉,
〈K♠〉, 〈2♥〉, 〈7♣〉, 〈4♦〉,
〈8♠〉, 〈J♥〉, 〈9♣〉, 〈A♦〉

Cut the deck, say as 〈5♠〉, 〈3♥〉, 〈Q♣〉, 〈8♦〉, 〈K♠〉 and
〈2♥〉, 〈7♣〉, 〈4♦〉, 〈8♠〉, 〈J♥〉, 〈9♣〉, 〈A♦〉.
Reverse one of the decks as 〈K♠〉, 〈8♦〉, 〈Q♣〉, 〈3♥〉, 〈5♠〉.
Now shuffling, for example, as

〈2♥〉, 〈7♣〉, 〈K♠〉, 〈8♦〉,
〈4♦〉, 〈8♠〉, 〈Q♣〉, 〈J♥〉,
〈3♥〉, 〈9♣〉, 〈5♠〉, 〈A♦〉

Each quartet contains a card from each suit. Why?
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A Sorting Card Trick

Arrange 25 cards from a deck of cards in a 5x5 grid.

First, sort each of the rows individually.

Then, sort each of the columns individually.

Now both the rows and columns are sorted. How come?

N. Shankar Speaking Logic 2015 16/100



Length of the Longest Increasing Subsequence

You have a sequence of numbers, e.g.,
9, 7, 10, 9, 5, 4, 10.

The task is to find the length of the longest increasing
subsequence.

Here the longest subsequence is 7, 9, 10, and its length is 3.

Patience solitaire is a card game where cards are placed, one
by one, into a sequence of columns.

Each card is placed at the bottom of the leftmost column
where it is no bigger than the current bottom card in the
column.

If there is no such column, we start a new column at the right.

Show that the number of columns left at the end yields the
length of the longest increasing subsequence.
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Computing Majority

An election has five candidates: Alice, Bob, Cathy, Don, and
Ella.

The votes have come in as:
E, D, C, B, C, C, A, C, E, C, A, C, C.

You are told that some candidate has won the majority (over
half) of the votes.

You successively remove pairs of dissimilar votes, until there
are no more such pairs.

That is, the remaining votes, if any, are all for the same
candidate.

Show that this candidate has the majority.
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Propositional Logic
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What is Logic?

Logic is the art and science of effective reasoning.

How can we draw general and reliable conclusions from a
collection of facts?

Formal logic: Precise, syntactic characterizations of
well-formed expressions and valid deductions.

Formal logic makes it possible to calculate consequences so
that each step is verifiable by means of proof.

Computers can be used to automate such symbolic
calculations.
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Logic Basics

Logic studies the trinity between language, interpretation, and
proof.

Language: What are you allowed to say?

Interpretation: What is the intended meaning?

Meaning is usually compositional: Follows the syntax
Some symbols have fixed meaning: connectives, equality,
quantifiers
Other symbols are allowed to vary variables, functions, and
predicates
Assertions either hold or fail to hold in a given interpretation
A valid assertion holds in every interpretation

Proofs are used to demonstrate validity
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Propositional Logic

Propositional logic can be more accurately described as a
logic of conditions – propositions are always true or always
false. [Couturat, Algebra of Logic]

A condition can be represented by a propositional variable,
e.g., p, q, etc., so that distinct propositional variables can
range over possibly different conditions.

The conjunction, disjunction, and negation of conditions are
also conditions.

The syntactic representation of conditions is using
propositional formulas:

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2

P is a class of propositional variables: p0, p1, . . ..

Examples of formulas are p, p ∧ ¬p, p ∨ ¬p, (p ∧ ¬q) ∨ ¬p.
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Meaning

In logic, the meaning of an expression is constructed
compositionally from the meanings of its subexpressions.

The meanings of the symbols are either fixed, as with ¬, ∧,
and ∨, or allowed to vary, as with the propositional variables.

An interpretation (truth assignment) M assigns truth values
{>,⊥} to propositional variables: M(p) = > ⇐⇒ M |= p.

M[[A]] is the meaning of A in M and is computed using truth
tables:

φ p q ¬p p ∨ q p ∧ q

M1(φ) ⊥ ⊥ > ⊥ ⊥
M2(φ) ⊥ > > > ⊥
M3(φ) > ⊥ ⊥ > ⊥
M4(φ) > > ⊥ > >
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Truth Tables

We can use truth tables to evaluate formulas for
validity/satisfiability.

p q (¬p ∨ q) (¬(¬p ∨ q) ∨ p) ¬(¬(¬p ∨ q) ∨ p) ∨ p

⊥ ⊥ > ⊥ >
⊥ > > ⊥ >
> ⊥ ⊥ > >
> > > > >

How many rows are there in the truth table for a formula with n
distinct propositional variables?
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Problems

Define the operation of substituting a formula A for a variable
p in a formula B, i.e., B[p 7→ A].

Is the result always a well-formed formula?

Can the variable p occur in B[p 7→ A]?

What is the truth-table meaning of B[p 7→ A] in terms of the
meaning of B and A?
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Defining New Connectives

How do you define ∧ in terms of ¬ and ∨?

Give the truth table for A⇒ B and define it in terms of ¬
and ∨.

Define bi-implication A ⇐⇒ B in terms of ⇒ and ∧ and
show its truth table.

An n-ary Boolean function maps {>,⊥}n to {>,⊥}
Show that every n-ary Boolean function can be defined using
¬ and ∨.

Using ¬ and ∨ define an n-ary parity function which evaluates
to > iff the parity is odd.

Define an n-ary function which determines that the unsigned
value of the little-endian input p0, . . . , pn−1 is even?

Define the NAND operation, where NAND(p, q) is ¬(p ∧ q)
using ¬ and ∨. Conversely, define ¬ and ∨ using NAND.
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Satisfiability and Validity

An interpretation M is a model of a formula φ if M |= φ.

If M |= ¬φ, then M is a countermodel for φ.

When φ has a model, it is said to be satisfiable.

If it has no model, then it is unsatisfiable.

If ¬φ is unsatisfiable, then φ is valid, i.e., alway evaluates to
>.

We write φ |= ψ if every model of φ is a model of ψ.

If φ ∧ ¬ψ is unsatisfiable, then φ |= ψ.
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Satisfiable, Unsatisfiable, or Valid?

Classify these formulas as satisfiable, unsatisfiable, or valid?

p ∨ ¬p
p ∧ ¬p
¬p ⇒ p
((p ⇒ q)⇒ p)⇒ p

Make up some examples of formulas that are satisfiable
(unsatisfiable, valid)?

If A and B are satisfiable, is A ∧ B satisfiable? What about
A ∨ B.

Can A and ¬A both be satisfiable (unsatisfiable, valid)?
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Some Valid Laws

¬(A ∧ B) ⇐⇒ ¬A ∨ ¬B
¬(A ∨ B) ⇐⇒ ¬A ∧ ¬B
((A ∨ B) ∨ C ) ⇐⇒ A ∨ (B ∨ C )

(A⇒ B) ⇐⇒ (¬A ∨ B)

(¬A⇒ ¬B) ⇐⇒ (B ⇒ A)

¬¬A ⇐⇒ A

A⇒ B ⇐⇒ ¬A ∨ B

¬(A ∧ B) ⇐⇒ ¬A ∨ ¬B
¬(A ∨ B) ⇐⇒ ¬A ∧ ¬B
¬A⇒ B ⇐⇒ ¬B ⇒ A
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What Can Propositional Logic Express?

Constraints over bounded domains can be expressed as
satisfiability problems in propositional logic (SAT).

Define a 1-bit full adder in propositional logic.

The Pigeonhole Principle states that if n + 1 pigeons are
assigned to n holes, then some hole must contain more than
one pigeon. Formalize the pigeonhole principle for four
pigeons and three holes.

Formalize the statement that a graph of n elements is
k-colorable for given k and n such that k < n.

Formalize and prove the statement that given a symmetric
and transitive graph over 3 elements, either the graph is
complete or contains an isolated point.

Formalize Sudoku and Latin Squares in propositional logic.
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Using Propositional Logic

Write a propositional formula for checking that a given finite
automaton 〈Q,Σ, q,F , δ〉 with

Alphabet Σ,
Set of states S
Initial state q,
Set of final states F , and
Transition function δ from 〈Q,Σ〉 to Q

accepts some string of length 5.

Describe an N-bit ripple carry adder with a carry-in and
carry-out bits as a formula.
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Cook’s Theorem

A Turing machine consists of a finite automaton reading (and
writing) symbols from a tape.

The finite automaton (in a non-accepting state) reads the
symbol at the current position of the head, and
nondeterministically executes a step consisting of

1 A new symbol to write at the head position
2 A move (left or right) of the head from the current position
3 A next automaton state

Show that SAT is solvable in polynomial time (in the size of
the input) by a nondeterministic Turing machine.

Show that for any nondeterministic Turing machine and
polynomial bound p(n) for input of size n, one can (in
polynomial time) construct a propositional formula which is
satisfiable iff there is the Turing machine accepts the input in
at most p(n).
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Proof Systems

There are three basic styles of proof systems.

These are distinguished by their basic judgement.
1 Hilbert systems: ` A means the formula A is provable.
2 Natural deduction: Γ ` A means the formula A is provable

from a set of assumption formulas Γ.
3 Sequent Calculus: Γ ` ∆ means the consequence of

∨
∆ from∧

Γ is derivable.
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Hilbert System (H) for Propositional Logic

The basic judgement here is ` A asserting that a formula is
provable.

We can pick ⇒ as the basic connectives

The axioms are

`A⇒A
`A⇒(B⇒A)

`(A⇒(B⇒C ))⇒((A⇒B)⇒(A⇒C ))

A single rule of inference (Modus Ponens) is given

` A ` A⇒ B

` B

Can you prove ((p ⇒ q)⇒ p)⇒ p using the above system?
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Hilbert System (H)

Add a propositional constant ⊥ to the formula syntax, where
[[⊥]] = ⊥.

Define negation ¬A as A⇒ ⊥.

Can you prove
1 ¬A⇒ (A⇒ ¬B)
2 ¬A⇒ (A⇒ ⊥)
3 ¬¬A⇒ A

Are any of the axioms redundant? [Hint: See if you can prove
the first axiom from the other two.]

Write Hilbert axioms for ∧ and ∨.
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Deduction Theorem

We write Γ ` A for a set of formulas Γ, if ` A can be proved
given ` B for each B ∈ Γ.

Deduction theorem: Show that if Γ,A ` B, then Γ ` A⇒ B,
where Γ,A is Γ ∪ {A}. [Hint: Use induction on proofs.]

A derived rule of inference has the form

P1, . . . ,Pn

C

where there is a derivation in the base logic from the premises
P1, . . . ,Pn to the conclusion C .

An admissible rule of inference is one where the conclusion C
is provable if the premises P1, . . . ,Pn are provable.

Every derived rule is admissible, but what is an example of an
admissible rule that is not a derived one?

N. Shankar Speaking Logic 2015 36/100



Natural Deduction for Propositional Logic

In natural deduction (ND), the basic judgement is Γ ` A.

The rules are classified according to the introduction or
elimination of connectives from A in Γ ` A.

The axiom, introduction, and elimination rules of natural
deduction are

Γ,A`A
Γ1`A Γ2`A⇒B

Γ1∪Γ2`B
Γ,A`B

Γ`A⇒B
Use ND to prove the axioms of the Hilbert system.

A proof is in normal form if no introduction rule appears
above an elimination rule. Can you ensure that your proofs
are always in normal form? Can you write an algorithm to
convert non-normal proofs to normal ones?
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Sequent Calculus (LK) for Propositional Logic

The basic judgement is Γ ` ∆ asserting that
∧

Γ⇒
∨

∆, where Γ
and ∆ are sets (or bags) of formulas.

Left Right

Ax
Γ,A ` A,∆

¬ Γ ` A,∆

Γ,¬A ` ∆

Γ,A ` ∆

Γ ` ¬A,∆

∨ Γ,A ` ∆ Γ,B ` ∆

Γ,A ∨ B ` ∆

Γ ` A,B,∆

Γ ` A ∨ B,∆

∧ Γ,A,B ` ∆

Γ,A ∧ B ` ∆

Γ ` A,∆ Γ ` B,∆

Γ ` A ∧ B,∆

⇒ Γ,B ` ∆ Γ ` A,∆

Γ,A ⇒ B ` ∆

Γ,A ` B,∆

Γ ` A ⇒ B,∆

Cut
Γ ` A,∆ Γ,A ` ∆

Γ ` ∆
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Peirce’s Formula

A sequent calculus proof of Peirce’s formula
((p ⇒ q)⇒ p)⇒ p is given by

p ` p, q
Ax

` p, p ⇒ q
`⇒

p ` p
Ax

(p ⇒ q)⇒ p ` p
⇒`

` ((p ⇒ q)⇒ p)⇒ p
`⇒

The sequent formula that is introduced in the conclusion is
the principal formula, and its components in the premise(s)
are side formulas.
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Metatheory

Metatheorems about proof systems are useful in providing
reasoning short-cuts.

The deduction theorem for H and the normalization theorem
for ND are examples.

Prove that the Cut rule is admissible for the LK . (Difficult!)

A bi-implication is a formula of the form A ⇐⇒ B, and it is
an equivalence when it is valid. Show that the following is a
derived inference rule.

A ⇐⇒ B

C [p 7→ A] ⇐⇒ C [p 7→ B]

State a similar rule for implication where

A⇒ B

C [p 7→ A]⇒ C [p 7→ B]
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Normal Forms for Formulas

A formula where negation is applied only to propositional
atoms is said to be in negation normal form (NNF).

For example, ¬(p ∨ ¬q) can be represented as ¬p ∧ q.

Show that every propositional formula built using ¬, ∨, and ∧
is equivalent to one in NNF.

A literal l is either a propositional atom p or its negation ¬p.

A clause is a multiary disjunction of a set of literals
l1 ∨ . . . ∨ ln.

A multiary conjunction of n formulas A1, . . . ,An is
∧n

i=1 Ai .
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Conjunctive and Disjunctive Normal Forms

A formula that is a multiary conjunction of multiary
disjunctions of literals is in conjunctive normal form (CNF).

CNF Example: (¬p ∨ q ∨ ¬r)
∧ (p ∨ r)
∧ (¬p ∨ ¬q ∨ r)

Define an algorithm for converting any propositional formula
to CNF.

A formula is in k-CNF if it uses at most k literals per clause.
Define an algorithm for converting any formula to 3-CNF.

A formula that is a multiary disjunction of multiary
conjunctions of literals is in disjunctive normal form (DNF).

Define an algorithm for converting any formula to DNF.
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Soundness

A proof system is sound if all provable formulas are valid, i.e.,
` A implies |= A, i.e., M |= A for all M.

To prove soundness, show that for any inference rule of the
form

` P1, . . . ,` Pn

` C
,

any model of all of the premises is also a model of the
conclusion.

Since the axioms are valid, and each step preserves validity,
we have that the conclusion of a proof is also valid.

Demonstrate the soundness of the proof systems shown so far,
i.e.,

1 Hilbert system H
2 Natural deduction ND
3 Sequent Calculus LK
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Completeness

A proof system is complete if all valid formulas are provable,
i.e., |= A implies ` A.
A countermodel M of Γ ` ∆ is one where either M |= A for
all A in Γ, and M |= ¬B for all B ∈ ∆.
In LK , any countermodel of some premise of a rule is also a
countermodel for the conclusion.
We can then show that a non-provable sequent Γ ` ∆ has a
countermodel.
Each non-Cut rule has premises that are simpler than its
conclusion.
By applying the rules starting from Γ ` ∆ to completion, you
end up with a set of premise sequents {Γ1 ` ∆1, . . . , Γn ` ∆n}
that are atomic, i.e., that contain no connectives.
If an atomic sequent Γi ` ∆i is unprovable, then it has a
countermodel, i.e., one in which each formula in Γi holds but
no formula in ∆i holds.
Hence, Γ ` ∆ has a countermodel.
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Completeness, More Generally

A set of formulas Γ is consistent, i.e., Con(Γ) iff there is no
formula A in Γ such that Γ ` ¬A is provable.

If Γ is consistent, then Γ ∪ {A} is consistent iff Γ ` ¬A is not
provable.

If Γ is consistent, then at least one of Γ ∪ {A} or Γ ∪ {¬A}
must be consistent.

A set of formulas Γ is complete if for each formula A, it
contains A or ¬A.
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Completeness

Any consistent set of formulas Γ can be made complete as Γ̂.

Let Ai be the i ’th formula in some enumeration of PL
formulas. Define

Γ0 = Γ

Γi+1 = Γi ∪ {Ai}, if Con(Γi ∪ {Ai})
= Γi ∪ {¬Ai}, otherwise.

Γ̂ = Γω =
⋃
i

Γi

Ex: Check that Γ̂ yields an interpretation MΓ̂ satisfying Γ.

If Γ ` ∆ is unprovable, then Γ ∪∆ is consistent, and has a
model.

N. Shankar Speaking Logic 2015 46/100



Compactness

A logic is compact if any set of sentences Γ is satisfiable iff all
finite subsets of it are, i.e., if it is finitely satisfiable.

Propositional logic is compact — hard direction is showing
that every finitely satisfiable set is satisfiable.

Zorn’s lemma states that if in a partially ordered set A, every
chain L has an upper bound L̂ in A, then A has a maximal
element.

Given a finitely satisfiable set Γ, the set of finitely satisfiable
extensions satisfies the conditions of Zorn’s lemma.

Hence there is a maximal extension Γ̂ that is finitely
satisfiable.

For any atom p, exactly p ∈ Γ̂ or ¬p ∈ Γ̂. Why?

We can similarly define the model M
Γ̂

to show that Γ̂ is
satisfiable.
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Interpolation

Craig’s interpolation property states that given two sets of formulas
Γ1 and Γ2 in propositional variables Σ1 and Σ2, respectively,
Γ1 ∪ Γ2 is unsatisfiable iff there is a formula A in propositional
variables Σ1 ∩ Σ2 such that Γ1 |= A and Γ2,A is unsatisfiable.

Ax1 [⊥] ` Γ,P,P; ∆

Ax2 [>] ` Γ;P,P,∆

Ax3 [P] ` Γ,P;P,∆

¬¬ [I ] ` P,∆
[I ] ` ¬¬P,∆

∨ [I ] ` A,B,∆
[I ] ` A ∨ B,∆

¬∨1
[I1] ` Γ,¬A; ∆ [I2] ` Γ,¬B; ∆

[[I1 ∨ I2] ` Γ,¬(A ∨ B); ∆

¬∨2
[I1] ` Γ;¬A,∆ [I2] ` Γ;¬B,∆

[I1 ∧ I2] ` Γ;¬(A ∨ B),∆
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Resolution

We have already seen that any propositional formula can be
written in CNF as a conjunction of clauses.

Input K is a set of clauses.

Tautologies, i.e., clauses containing both l and l , are deleted
from initial input.

Res
K , l ∨ Γ1, l ∨ Γ2

K , l ∨ Γ1, l ∨ Γ2, Γ1 ∨ Γ2

Γ1 ∨ Γ2 6∈ K
Γ1 ∨ Γ2 is not tautological

Contrad
K , l , l

⊥
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Resolution: Example

(K0 =) ¬p ∨ ¬q ∨ r , ¬p ∨ q, p ∨ r , ¬r
(K1 =) ¬q ∨ r , K0

Res

(K2 =) q ∨ r , K1
Res

(K3 =) r , K2
Res

⊥
Contrad

Show that resolution is a sound and complete procedure for
checking satisfiability.

N. Shankar Speaking Logic 2015 50/100



CDCL Informally

Goal: Does a given set of clauses K have a satisfying
assignment?

If M is a total assignment such that M |= Γ for each Γ ∈ K ,
then M |= K .

If M is a partial assignment at level h, then propagation
extends M at level h with the implied literals l such that
l ∨ Γ ∈ K ∪ C and M |= ¬Γ.

If M detects a conflict, i.e., a clause Γ ∈ K ∪ C such that
M |= ¬Γ, then the conflict is analyzed to construct a conflict
clause that allows the search to be continued from a prior
level.

If M cannot be extended at level h and no conflict is detected,
then an unassigned literal l is selected and assigned at level
h + 1 where the search is continued.
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Conflict-Driven Clause Learning (CDCL) SAT

Name Rule Condition

Propagate
h, 〈M〉,K ,C

h, 〈M, l [Γ]〉,K ,C
Γ ≡ l ∨ Γ′ ∈ K ∪ C
M |= ¬Γ′

Select
h, 〈M〉,K ,C

h + 1, 〈M; l []〉,K ,C
M 6|= l
M 6|= ¬l

Conflict
0, 〈M〉,K ,C

⊥
M |= ¬Γ
for some Γ ∈ K ∪ C

Backjump
h + 1, 〈M〉,K ,C

h′, 〈M≤h′ , l [Γ′]〉,K ,C ∪ {Γ′}

M |= ¬Γ
for some Γ ∈ K ∪ C
〈h′, Γ′〉
= analyze(ψ)(Γ)

for ψ = h, 〈M〉,K ,C
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CDCL Example

Let K be
{p∨q,¬p∨q, p∨¬q, s ∨¬p∨q,¬s ∨p∨¬q,¬p∨ r ,¬q∨¬r}.

step h M K C Γ

select s 1 ; s K ∅
select r 2 ; s; r K ∅
propagate 2 ; s; r ,¬q[¬q ∨ ¬r ] K ∅
propagate 2 ; s; r ,¬q, p[p ∨ q] K ∅
conflict 2 ; s; r ,¬q, p K ∅ ¬p ∨ q
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CDCL Example (contd.)

step h M K C Γ

conflict 2 ; s; r ,¬q, p K ∅ ¬p ∨ q

backjump 0 ∅ K q

propagate 0 q[q] K q

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r [¬p ∨ r ] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

Show that CDCL is sound and complete.
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ROBDD

Boolean functions map {0, 1}n to {0, 1}.
We have already seen how n-ary Boolean functions can be
represented by propositional formulas of n variables.

ROBDDs are a canonical representation of boolean functions
as a decision diagram where

1 Literals are uniformly ordered along every branch:
f (x1, . . . , xn) = IF(x1, f (>, x2, . . . , xn), f (⊥, x2, . . . , xn))

2 Common subterms are identified
3 Redundant branches are removed: IF(xi ,A,A) = A

Efficient implementation of boolean operations: f1.f2, f1 + f2,
−f , including quantification.

Canonical form yields free equivalence checks (for convergence
of fixed points).
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ROBDD for Even Parity

ROBDD for even parity boolean function of a, b, c .

0 1

0 1

1
0 0

1

1
0

1
0

a

b b

c c

Construct an algorithm to compute f1 � f2, where � is ∧ or ∨.
Construct an algorithm to compute ∃x .f .
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First and Higher-Order Logic
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Equality Logic (EL)

In the process of creeping toward first-order logic, we introduce a
modest but interesting extension of propositional logic.
In addition to propositional atoms, we add a set of constants τ
given by c0, c1, . . . and equalities c = d for constants c and d .

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | τ1 = τ2

The structure M now has a domain |M| and maps propositional
variables to {>,⊥} and constants to |M|.

M[[c = d ]] =

{
>, if M[[c]] = M[[d ]]
⊥, otherwise
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Proof Rules for Equality Logic

Reflexivity Γ ` a = a,∆

Symmetry
Γ ` a = b,∆

Γ ` b = a,∆

Transitivity
Γ ` a = b,∆ Γ ` b = c ,∆

Γ ` a = c ,∆

Show that the above proof rules (on top of propositional
logic) are sound and complete.

Show that Equality Logic is decidable.

Adapt the above logic to reason about a partial ordering
relation ≤, i.e., one that is reflexive, transitive, and
anti-symmetric (x ≤ y ∧ y ≤ x ⇒ x = y).
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Term Equality Logic (TEL)

One further extension is to add function symbols from a
signature Σ that assigns an arity to each symbol.

Function symbols are used to form terms τ , so that constants
are just 0-ary function symbols.

τ := f (τ1, . . . , τn), for n ≥ 0

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | τ1 = τ2

For an n-ary function f , M(f ) maps |M|n to |M|.

M[[a = b]] = M[[a]] = M[[b]]

M[[f (a1, . . . , an)]] = (M[[f ]])(M[[a1]], . . . ,M[[an]])

We need one additional proof rule.

Congruence
Γ ` a1 = b1,∆ . . . Γ ` an = bn,∆

Γ ` f (a1, . . . , an) = f (b1, . . . , bn),∆
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Term Equality Proof Examples

Let f n(a) represent f (. . . f︸ ︷︷ ︸
n

(a) . . .).

f 3(a) = f (a) ` f 3(a) = f (a)
Ax

f 3(a) = f (a) ` f 4(a) = f 2(a)
C

f 3(a) = f (a) ` f 5(a) = f 3(a)
C

f 3(a) = f (a) ` f 3(a) = f (a)
Ax

f 3(a) = f (a) ` f 5(a) = f (a)
T

Show soundness and completeness of TEL.
Show that TEL is decidable.
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Equational Logic

Equational Logic is a heavily used fragment of first-order logic.

It consists of term equalities s = t, with proof rules
1 Reflexivity: s=s
2 Symmetry:

s=t
t=s

3 Transitivity:
r=s s=t

r=t
4 Congruence:

s1=t1,...,sn=tn
f (s1,...,sn)=f (t1,...,tn)

5 Instantiation:
s=t

σ(s)=σ(t) , for substitution σ.

We say Γ ` s = t when the equality s = t can be derived from
the equalities in Γ.

Show that equational logic is sound and complete.
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Equational Logic

Use equational logic to formalize

1 Semigroups: A set G with an associative binary operator .

2 Monoids: A set M with associative binary operator . and unit 1

3 Groups: A monoid with an right-inverse operator x−1

4 Commutative groups and semigroups

5 Rings: A set R with commutative group 〈R,+,−, 0〉, semigroup
〈R, .〉, and distributive laws x .(y + z) = x .y + x .z and
(y + z).x = y .x + z .x

6 Semilattice: A commutative semigroup 〈S ,∧〉 with idempotence
x ∧ x = x

7 Lattice: 〈L,∧,∨〉 where 〈L,∧〉 and 〈L,∨〉 are semilattices, and
x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x .

8 Distributive lattice: A lattice with x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

9 Boolean algebra: Distributive lattice with constants 0 and 1 and
unary operation − such that x ∧ 0 = 0, x ∨ 1 = 1, x ∧ −x = 0, and
x ∨ −x = 1.
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Equational Logic

Prove that every group element has a left inverse.

For a lattice, define x ≤ y as x ∧ y = x . Show that ≤ is a
partial order (reflexive, transitive, and antisymmetric).

Show that a distributive lattice satisfies
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Prove the de Morgan laws, −(x ∨ y) = −x ∧ −y and
−(x ∧ y) = −x ∨ −y for Boolean algebras.
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First-Order Logic

We can now complete the transition to first-order logic by adding

τ := X
| f (τ1, . . . , τn), for n ≥ 0

φ := ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | τ1 = τ2

| ∀x .φ | ∃x .φ | q(τ1, . . . , τn), for n ≥ 0

Terms contain variables, and formulas contain atomic and
quantified formulas.
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Semantics for Variables and Quantifiers

M[[q]] is a map from Dn to {>,⊥}, where n is the arity of
predicate q.

M[[x ]]ρ = ρ(x)

M[[q(a1, . . . , an)]]ρ = M[[q]](M[[a1]]ρ, . . . ,M[[an]]ρ)

M[[∀x .A]]ρ =

{
>, if M[[A]]ρ[x := d ] for all d ∈ D
⊥, otherwise

M[[∃x .A]]ρ =

{
>, if M[[A]]ρ[x := d ] for some d ∈ D
⊥, otherwise

Atomic formulas are either equalities or of the form q(a1, . . . , an).
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First-Order Logic

Left Right

∀ Γ,A[t/x ] ` ∆

Γ, ∀x .A ` ∆

Γ ` A[c/x ],∆

Γ ` ∀x .A,∆

∃ Γ,A[c/x ] ` ∆

Γ, ∃x .A ` ∆

Γ ` A[t/x ],∆

Γ ` ∃x .A,∆
Constant c must be chosen to be new so that it does not
appear in the conclusion sequent.

Demonstrate the soundness of first-order logic.

A theory consists of a signature Σ for the function and
predicate symbols and non-logical axioms.

If a T is obtained from S by extending the signature and
adding axioms, then T is conservative with respect to S , if all
the formulas in S provable in T are also provable in S .
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Using First-Order Logic

Prove ∃x .(p(x)⇒ ∀y .p(y)).
Give at least two satisfying interpretations for the statement
(∃x .p(x)) =⇒ (∀x .p(x)).
A sentence is a formula with no free variables. Find a
sentence A such that both A and ¬A are satisfiable.
Write a formula asserting the unique existence of an x such
that p(x).
Define operations for collecting the free variables vars(A) in a
given formula A, and substituting a term a for a free variable
x in a formula A to get A{x 7→ a}.
Is M[[A{x 7→ a}]]ρ = M[[A]]ρ[x := M[[a]]ρ]? If not, show an
example where it fails. Under what condition does the
equality hold?
Show that any quantified formula is equivalent to one in
prenex normal form, i.e., where the only quantifiers appear at
the head of the formula and the body is purely a propositional
combination of atomic formulas.
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More Exercises

Prove
1 ¬∀x .A ⇐⇒ ∃x .¬A
2 (∀x .A ∧ B) ⇐⇒ (∀x .A) ∧ (∀x .B)
3 (∃x .A ∨ B) ⇐⇒ (∃x .A) ∨ (∃x .B)
4 ((∀x .A) ∨ (∀x .B))⇒ (∀x .A ∨ B)

Write the axioms for a partially ordered relation ≤.

Write the axioms for a bijective (1-to-1, onto) function f .

Write a formula asserting that for any x , there is a unique y
such that p(x , y).

Can you write first-order formulas whose models
1 Have exactly (at most, at least) three elements?
2 Are infinite
3 Are finite but unbounded

Can you write a first-order formula asserting that
1 A relation is transitively closed
2 A relation is the transitive closure of another relation.
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Advanced Topics
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Completeness of First-Order Logic

The quantifier rules for sequent calculus require copying.

Proof branches can be extended without bound.

Ex: Show that LK is sound: ` A implies |= A.

The Henkin closure H(Γ) is the smallest extension of a set of
sentences Γ that is Henkin-closed, i.e., contains B ⇒ A(cB)
for every B ∈ H(Γ) of the form ∃x : A. (cB is a fresh
constant.)

Any consistent set of formulas Γ has a consistent Henkin
closure H(Γ).

As before, any consistent, Henkin closed set of formulas Γ has
a complete, Henkin-closed extension Γ̂.

Ex: Construct an interpretation M
Ĥ(Γ)

from Ĥ(Γ) and show

that it is a model for Γ.
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Herbrand’s Theorem

For any sentence A there is a quantifier-free sentence AH (the
Herbrand form of A) such that ` A in LK iff ` AH in TEL0.

The Herbrand form is a dual of Skolemization where each
universal quantifier is replaced by a term f (y), where y is the
set of governing existentially quantified variables.

Then, ∃x : (p(x)⇒ ∀y : p(y)) has the Herbrand form
∃x .p(x)⇒ p(f (x)), and the two formulas are equi-valid.

How do you prove the latter formula?
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Herbrand’s Theorem

Herbrand terms are those built from function symbols in AH

(adding a constant, if needed).

Show that if AH is of the form ∃x .B, then ` AH iff∨n
i=0 σi (B), for some Herbrand term substitutions σ1, . . . , σn.

[Hint: In a cut-free sequent proof of a prenex formula, the quantifier

rules can be made to appear below all the other rules. Such proofs

must have a quantifier-free mid-sequent above which the proof is

entirely equational/propositional.]

Show that if a formula has a counter-model, then it has one
built from Herbrand terms (with an added constant if there
isn’t one).
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Skolemization

Consider a formula of the form ∀x .∃y .q(x , y).

It is equisatisfiable with the formula ∀x .q(x , f (x)) for a new
function symbol f .

If M |= ∀x .∃y .q(x , y), then for any c ∈ |M|, there is dc ∈ |M|
such that M[[q(x , y)]]{x 7→ c , y 7→ dc}. let M ′ extend M so
that M(f )(c) = dc , for each c ∈ |M|: M ′ |= ∀x .q(x , f (y)).

Conversely, if M |= ∀x .q(x , f (y)), then for every c ∈ |M|,
M[[q(x , y)]]{x 7→ c , y 7→ M(f )(c)}.
Prove the general case that any prenex formula can be
Skolemized by replacing each existentially quantified variable
y by a term f (x), where f is a distinct, new function symbol
for each y , and x are the universally quantified variables
governing y .
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Unification

A substitution is a map {x1 7→ a1, . . . , xn 7→ an} from a finite
set of variables {x1, . . . , xn} to a set of terms.
Define the operation σ(a) of applying a substitution (such as
the one above) to a term a to replace any free variables xi in t
with ai .
Define the operation of composing two substitutions σ1 ◦ σ2

as {x1 7→ σ1(a1), . . . , xn 7→ σ1(an)}, if σ2 is of the form
{x1 7→ a1, . . . , xn 7→ an}.
Given two terms f (x , g(y , y)) and f (g(y , y), x) (possibly
containing free variables), find a substitution σ such that
σ(a) ≡ σ(b).
Such a σ is called a unifier.
Not all terms have such unifiers, e.g., f (g(x)) and f (x).
A substitution σ1 is more general than σ2 if the latter can be
obtained as σ ◦ σ1, for some σ.
Define the operation of computing the most general unifier, if
there is one, and reporting failure, otherwise.
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Resolution Example

To prove (∃y .∀x .p(x , y))⇒ (∀x .∃y .p(x , y))

Negate: (∃y .∀x .p(x , y)) ∧ (∃x .∀y .¬p(x , y))

Prenexify: ∃y1.∀x1.∃x2.∀y2.p(x1, y1) ∧ ¬p(x2, y2)

Skolemize: ∀x1, y2.p(x1, c) ∧ ¬p(f (x1), y2)

Distribute and clausify: {p(x1, c),¬p(f (x3), y2)}
Unify and resolve with unifier {x1 7→ f (x3), y2 7→ c}
Yields an empty clause

Now try to show (∀x .∃y .p(x , y))⇒ (∃y .∀x .p(x , y)).
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Dedekind–Peano Arithmetic

The natural numbers consist of 0, s(0), s(s(0)), etc.
Clearly, 0 6= s(x), for any x .
Also, s(x) = s(y)⇒ x = y , for any x and y .
Next, we would like to say that this is all there is, i.e., every
domain element is reachable from 0 through applications of s.
This requires induction:
P(0) ∧ (∀n.P(n)⇒ P(n + 1))⇒ (∀n.P(n)), for every
property P.
But there is no way to write this — there are uncountably
many properties (subset of natural numbers) but only finitely
many formulas.
Induction is therefore given as a scheme, an infinite set of
axioms, with the template

A{x 7→ 0} ∧ (∀x .A⇒ A{x 7→ s(x)})⇒ (∀x .A).

We still need to define + and ×. How?
How do you define the relations x < y and x ≤ y?
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Using Dedekind–Peano Arithmetic

Prove that
1 ∀x .x = 0 ∨ (∃y .s(y) = x)
2 ∀x , y , z .(x + y) + z = x + (y + z)
3 ∀x , y .x + y = y + x
4 ∀x , y .x < y =⇒ ¬(y < x)
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Set Theory

Set theory can be axiomatized using axiom schemes, using a
membership relation ∈:

Extensionality: x = y ⇐⇒ (∀z .z ∈ x ⇐⇒ z ∈ y)
The existence of the empty set ∀x .¬x ∈ ∅
Pairs: ∀x , y .∃z .∀u.u ∈ z . ⇐⇒ u = x ∨ u = y (Define the
singleton set containing the empty set. Construct a
representation for the ordered pair of two sets.)
Union: How? (Define a representation for the finite ordinals
using singleton, or using singleton and union.)
Separation: {x ∈ y |A}, for any formula A, y 6∈ vars(A).
(Define the intersection and disjointness of two sets.)
Infinity: There is a set containing all the finite ordinals.
Power set: For any set, we have the set of all its subsets.
Regularity: Every set has an element that is disjoint from it.
Replacement: There is a set that is a superset of the image Y
of a set X with respect to a functional (∀x ∈ X .∃!y .A(x , y))
rule A(x , y).
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Using Set Theory

Can two different sets be empty?

For your definition of ordered pairing, define the first and
second projection operations.

Define the Cartesian product x × y of two sets, as the set of
ordered pairs 〈u, v〉 such that u ∈ x and v ∈ y .

Define a subset of x × y to be functional if it does not contain
any ordered pairs 〈u, v〉 and 〈u, v ′〉 such that v 6= v ′.

Define the function space y x of the functions that map
elements of x to elements of y .

Define the join of two relations, where the first is a subset of
x × y and the second is a subset of y × z .
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Incompleteness

Can all mathematical truths (valid sentences) be formally
proved?

No. There are valid statements about numbers that have no
proof. (Gödel’s first incompleteness theorem)

Suppose Z is some formal theory claiming to be a sound and
complete formalization of arithmetic, i.e., it proves all and
only valid statements about numbers.

Gödel showed that there is a valid but unprovable statement.
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The First Incompleteness Theorem

The expressions of Z can be represented as numbers as can
the proofs.

The statement “p is a proof of A” can then be represented by
a formula Pf (x , y) about numbers x and y .

If p is represented by the number p and A by A, then
Pf (p,A) is provable iff p is a proof of A.

Numbers such as A are representable as numerals in Z and
these numerals can also be represented by numbers, A.

Then ∃x .Pf (x , y) says that the statement represented by y is
provable. Call this Pr(y).

N. Shankar Speaking Logic 2015 82/100



The Undecidable Sentence

Let S(x) represent the numeric encoding of the operation
such that for any number k , S(k) is the encoding of the
expression obtained by substituting the numeral for k for the
variable ‘x ’ in the expression represented by the number k .

Then ¬Pr(S(x)) is represented by a number k , and the
undecidable sentence U is ¬Pr(S(k)).

U is S(k), i.e., the sentence obtained by substituting the
numeral for k for ‘x ’ in ¬Pr(S(x)) which is represented by k .

Since U is ¬Pr(U), we have a situation where either
1 U, i.e., ¬Pr(U), is provable, but from the numbering of the

proof of U, we can also prove Pr(U).
2 ¬U, i.e., Pr(U) is provable, but clearly none of Pf (0,U)

Pf (1,U), . . . , is provable (since otherwise U would be
provable), an ω-inconsistency, or

3 Neither U nor ¬U is provable: an incompleteness.
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Second Incompleteness Theorem

The negation of the sentence U is Σ1, and Z can verify
Σ1-completeness (every valid Σ1-sentence is provable).

Then
` Pr(U)⇒ Pr(Pr(U)).

But this says ` Pr(U)⇒ Pr(¬U).

Therefore ` Con(Z )⇒ ¬Pr(U).

Hence ¬ ` Con(Z ), by the first incompleteness theorem.

Exercise: The theory Z is consistent if A ∧ ¬A is not
provable for any A. Show that ω-consistency is stronger than
consistency. Show that the consistency of Z is adequate for
proving the first incompleteness theorem.
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Higher-Order Logic

Thus far, variables ranged over ordinary datatypes such as
numbers, and the functions and predicates were fixed
(constants).

Second-order logic allows free and bound variables to range
over the functions and predicates of first-order logic.

In n’th-order logic, the arguments (and results) of functions
and predicates are the functions and predicates of m’th-order
logic for m < n.

This kind of strong typing is required for consistency,
otherwise, we could define R(x) = ¬x(x), and derive
R(R) = ¬R(R).

Higher-order logic, which includes n’th-order logic for any
n > 0, can express a number of interesting concepts and
datatypes that are not expressible within first-order logic:
transitive closure, fixpoints, finiteness, etc.
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Types in Higher-Order Logic

Base types: e.g., bool, nat, real

Tuple types: [T1, . . . ,Tn] for types T1, . . . , Tn.

Tuple terms: (a1, . . . , an)

Projections: πi (a)

Function types: [T1→T2] for domain type T1 and range type
T2.

Lambda abstraction: λ(x : T1) : a

Function application: f a.
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Semantics of Higher Order Types

[[bool]] = {0, 1}
[[real]] = R

[[[T1, . . . ,Tn]]] = [[T1]]× . . .× [[Tn]]

[[[T1→T2]]] = [[T2]][[T1]]
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Higher-Order Proof Rules

β-reduction
Γ ` (λ(x : T ) : a)(b) = a[b/x ],∆

Extensionality
Γ ` (∀(x : T ) : f (x) = g(x)),∆

Γ ` f = g ,∆

Projection
Γ ` πi (a1, . . . , an) = ai ,∆

Tuple Ext.
Γ ` π1(a) = π1(b),∆, . . . , Γ ` πn(a) = πi (b),∆

Γ ` a = b,∆
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Using Higher-Order Logic

Define universal quantification using equality in higher-order
logic.

Express and prove Cantor’s theorem (there is no injection
from a type T to a [T→bool ]) in higher-order logic.

Write the induction principle for Peano arithmetic in
higher-order logic.

Write a definition for the transitive closure of a relation in
higher-order logic.

Describe the modal logic CTL in higher-order logic.

State and prove the Knaster-Tarski theorem.
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Floyd’s method for Flowchart programs

A flowchart has a start vertex with a single outgoing edge, a
halt vertex with a single incoming edge.
Each vertex corresponds to a program block or a decision
conditions.
Each edge corresponds to an assertion; the start edge is the
flowchart precondition, and the halt edge is the flowchart
postcondition.
Verification conditions check that for each vertex, each
incoming edge assertion through the block implies the
outgoing edge assertion.
Partial correctness: If each verification condition has been
discharged, then every halting computation starting in a state
satisfying the precondition terminates in a state satisfying the
postcondition.
Total correctness: If there is a ranking function mapping
states to ordinals that strictly decreases for any cycle in the
flowchart, then every computation terminates in the halt
vertex. N. Shankar Speaking Logic 2015 90/100



Floyd’s Method

max = 0;

i = 0;

{i ≤ N ∧ ∀(j < i) : a[j] ≤ max}
while (i < N){
if (a[i] > max){
max = a[i];

}
i++;

}
{∀(j < N) : a[j] ≤ max}

Yes

max = 0;
i = 0;

START

i < N

a[i] > max
HALT

max = a[i];

i++;

No

Yes No

Precondition is true, and postcondition is ∀(j < N) : a[j] ≤ max.
The loop invariant is i ≤ N ∧ ∀(j < i) : a[j] ≤ max.
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Hoare Logic

A Hoare triple has the form {P}S{Q}, where S is a program
statement in terms of the program variables drawn from the
set Y and P and Q are assertions containing logical variables
from X and program variables.

A program statement is one of
1 A skip statement skip.
2 A simultaneous assignment y := e where y is a sequence of n

distinct program variables, e is a sequence of n Σ[Y ]-terms.
3 A conditional statement e ? S1 : S2, where C is a

Σ[Y ]-formula.
4 A loop while e do S .
5 A sequential composition S1;S2.
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Hoare Logic

Skip {P}skip{P}
Assignment {P[e/y ]}y := e{P}

Conditional
{C ∧ P}S1{Q} {¬C ∧ P}S2{Q}

{P}C ? S1 : S2{Q}

Loop
{P ∧ C}S{P}

{P}while C do S{P ∧ ¬C}

Composition
{P}S1{R} {R}S2{Q}
{P}S1;S2{Q}

Consequence
P ⇒ P ′ {P ′}S{Q ′} Q ′ ⇒ Q

{P}S{Q}
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Hoare Logic Semantics

Both assertions and statements contain operations from a
first-order signature Σ.

An assignment σ maps program variables in Y to values in
dom(M).

A program expression e has value M[[e]]σ.

The meaning of a statement M[[S ]] is given by a sequence of
states (of length at least 2).

1 σ ◦ σ ∈ M[[skip]], for any state σ.
2 σ ◦ σ[M[[e]]σ/y ] ∈ M[[y := e]], for any state σ.
3 ψ1 ◦ σ ◦ ψ2 ∈ M[[S1;S2]] for ψ1 ◦ σ ∈ M[[S1]] and
σ ◦ ψ2 ∈ M[[S2]]

4 ψ ∈ M[[C ? S1 : S2]] if either M[[C ]]ψ[0] = > and ψ ∈ M[[S1]],
or M[[C ]]ψ[0] = ⊥ and ψ ∈ M[[S2]]

5 σ ◦ σ ∈ M[[while C do S ]] if M[[C ]]σ = ⊥
6 ψ1 ◦ σ ◦ ψ2 ∈ M[[while C do S ]] if M[[C ]](ψ1[0]) = >,
ψ1 ◦ σ ∈ M[[S ]], and σ ◦ ψ2 ∈ M[[while C do S ]]
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Soundness of Hoare Logic

{P}S{Q} is valid in a Σ-structure M if for every sequence
σ ◦ ψ ◦ σ′ ∈ M[[S ]] and any assignment ρ of values in dom(M)
to logical variables in X , either

1 M[[Q]]ρσ′ = >, or
2 M[[P]]ρσ = ⊥.

Informally, every computation sequence for S either ends in a
state satisfying Q or starts in a state falsifying P.

Demonstrate the soundness of the Hoare calculus.
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Completeness of Hoare Logic

The proof of a valid triple {P}S{Q} can be decomposed into
1 The valid triple {wlp(S)(Q)}S{Q}, and
2 The valid assertion P ⇒ wlp(S)(Q)

wlp(S)(Q) (the weakest liberal precondition) is an assertion
such that for any ψ ∈ M[[S ]] with |ψ| = n + 1 and ρ, either
M[[Q]]ρψn

= ⊥ or M[[wlp(S)(Q)]]ρψ0
= >.

Show that for any S and Q, the valid triple
{wlp(S)(Q)}S{Q} can be proved in the Hoare calculus.
(Hint: Use induction on S .)

First-order arithmetic over 〈+, ., 0, 1〉 is sufficient to express
wlp(S)(Q) since it can code up sequences of states
representing computations.
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Transition Systems: Mutual Exclusion

initially
try[1] = critical[1] = turn = false

transition
¬try[1] → try[1] := true;

turn := false;
¬try[2] ∨ turn → critical[1] := true;

critical[1] → critical[1] := false;
try[1] := false;∥∥

initially
try[2] = critical[2] = false

transition
¬try[2] → try[2] := true;

turn := true;
¬try[1] ∨ ¬turn → critical[2] := true;

critical[2] → critical[2] := false;
try[2] := false;
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Model Checking Transition Systems

A transition system is given as a triple 〈W , I ,N〉 of states W ,
an initialization predicate I , and a transition relation N.

Symbolic Model Checking: Fixpoints such as
µX .I t post(N)(X ) which is the set of reachable states can be
constructed as an ROBDD.

Bounded Model Checking: I (s0) ∧
∧k

i=0 N(si , si+1) represents
the set of possible (k + 1)-step computations and ¬P(sk+1)
represents the possible violations of state predicate P at the
state sk+1.

k-Induction: A variant of bounded model checking can be
used to prove properties:

Base: Check that P holds in the first k states of the
computation
Induction: If P holds for any sequence of k steps in a
computation, it holds in the k + 1-th state.

Prove the mutual exclusion property by k-induction.

N. Shankar Speaking Logic 2015 98/100



Interpolation-Based Model Checking

Interpolation: The unsatisfiability of the BMC query yields an
interpolant Q such that I (s0) ∧ N(s0, s1) and∧k

i=1 N(si , si+1) ∧ ¬P(sk+1) are jointly unsatisfiable.

The proof yields an interpolant Q(s1).

Let I ′(s0) be I (s0) ∨ Q(s0).

If I (s0) = I ′(s0) then this is an invariant. Otherwise, repeat
the process with I replaced by I ′.

Prove the mutual exclusion property using interpolation-based
model checking.
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Conclusions: Speak Logic!

Logic is a powerful tool for
1 Formalizing concepts
2 Defining abstractions
3 Proving validities
4 Solving constraints
5 Reasoning by calculation
6 Mechanized inference

The power of logic is when it is used as an aid to effective
reasoning.

Logic can become enormously difficult, and it would
undoubtedly be well to produce more assurance in its use.
. . . We may some day click off arguments on a machine
with the same assurance that we now enter sales on a
cash register.

Vannevar Bush, As We May Think

The machinery of logic has made it possible to solve large and
complex problems; formal verification is now a practical
technology.
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