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Church's λ-Calculus

Note that third axiom will be dropped in 
favor of a theory employing properties 

of a partial ordering.

α-conversion
 λX.[...X...] = λY.[...Y...]

! (λX.[...X...])(T) = [...T...]

  λX.F(X) = F

β-conversion

η-conversion

   

Definition.  λ-calculus — as a formal theory — has 
rules for the explicit definition of functions 

via equational axioms:

   

The basic syntax has one binary operation 
of application and one variable-binding operator

of abstraction.  These are the "logical"
notions of the theory, but we can add other

constants for special operators.



The Graph Model

   

NOTE: This model could easily have been 
defined in 1957, and it satisfies the rules of  

α, β-conversion (but not η). 
(Some historical comments can be found 

at the end of these notes.)

    

Definition.  The enumeration operator model is 
given by these definitions on sets of integers:
 

Application
     

! F(X) = { m | ∃n ∈ X*.(n,m) ∈ F }
     

Abstraction
     

! λX.[...X...] = 

! ! {0}∪{ (n,m) | m  ∈ [... set(n)...] }

    

Definitions. (1). Pairing: (n,m) = 2n(2m+1).

(2).  Sequence numbers:〈〉 = 0 and 

  〈n0,n1,...,nk-1,nk〉= (〈n0,n1,...,nk-1〉, nk).

(3). Sets: set(0) = ∅ and  set((n,m))= set(n)∪{ m }.  

(4). Kleene star: X* = { n | set(n) ⊆ X }, for sets X ⊆ .



What is the Secret?
  

(1)  The powerset  P( )  = { X|X⊆  }is a topological 
space with the sets  Un = { X|n ∈ X*} as a basis for 
    

the topology.
   

(2)  Functions Φ:P( )n ⟶  P( ) are continuous iff, for all
 integers, m ∈ Φ(X0,X1,…,Xn-1) iff there are ki ∈ Xi* 
for all i<n, such that m ∈ Φ(set(k0),…, set(kn-1)).

   
   

(3)  The application operation F(X) is continuous as a 
function of two variables. 
   

(4)  If  Φ(X0,X1,…,Xn-1) is continuous, then the 
abstraction λX0.Φ(X0,X1,…,Xn-1) is continuous in all 

of the remaining variables. 
      
(5)  If Φ(X) is continuous, then λX.Φ(X) is the largest 
set  F such that for all sets T,  we have F(T)= Φ(T).

(6)  And, note, therefore, that generally  F ⊆ λX.F(X).



Some Lambda Properties

     

  Theorems.
  •  All pure λ-terms define computable operators.

  •  If Φ(X) is continuous and we let ∇ = λX.Φ(X(X)), 
     then P = ∇(∇) is the least fixed point of Φ.
  •  The least fixed point of a computable operator is  
     always computable.

Definition.  A continuous operator Φ(X0,X1,…,Xn-1) 
is computable iff in the model this set is RE: 

F = λX0λX1…λXn-1.Φ(X0,X1,…,Xn-1).

    

For all sets of integers F and G we have:

λX.F(X) ⊆ λX.G(X) ⟺  ∀X.F(X) ⊆ G(X),
   

λX.(F(X)∩ G(X)) = λX.F(X) ∩ λX.G(X),  

and 

λX.(F(X)∪ G(X)) = λX.F(X) ∪ λX.G(X). 

       

  Succ(X)={n+1|n ∈ X }, Pred(X)={n|n+1 ∈ X }, and
 Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z },  

 with λ-calculus, suffice for defining all RE sets.



Gödel Numbering
   

Lemma.  There is a computable V = λX. V(X) where

  (i)    V({0}) =  λY.λX. Y,

	
 (ii)   V({1}) =  λZ.λY.λX. Z(X)(Y(X)),

 (iii)  V({2}) =  Test,
 (iv)  V({3}) =  Succ,

 (v)    V({4}) =  Pred,  and

 (vi)   V({4 + (n,m)})  =  V({n})(V({m})).

Theorem. Every recursively enumerable set 
is of the form V({n}).

    

Definition.  Modify the definition of V via finite approximations:
    

 (i)    Vk({n})  =  V({n})∩{i|i < k}  for n < 5,  and
 (ii)    Vk({4 + (n,m)})  =  Vk({n})(Vk({m})). 

    

Theorem. Each Vk({n}) ⊆ Vk+1({n}) is finite, 

the predicate j ∈ Vk({n}) is recursive, and we have:

   V({n}) = ⋃ Vk({n}).
    k < ∞ 

   
Theorem. The sets L0 and L1 are recursively enumerable, 

disjoint, and recursively inseparable:
    

  L0 = {n|∃ j [0 ∈ Vj({n})({n}) ∧ 1 ∉ Vj({n})({n})]}

 L1 = {n|∃ k [1 ∈ Vk({n})({n}) ∧ 0 ∉ Vk({n})({n})]}



How to Randomize?

• This last definition is the beginning of putting
a Boolean-valued Logic on random variables

using the complete Boolean algebra of
measurable sets modulo sets of measure zero.

   

NOTE: This new model gives us a programming 
language with randomized parameters.

    

Definition. By a random variable we mean a function 

X:[0,1] ⟶  P( ),

where, for n ∈ , the set { t ∈ [0,1] |n ∈ X(t)}

is always Lebesgue measurable.

Definition. For random variables X,Y:[0,1] ⟶  P( ),
       

⟦ X⊆Y ⟧ ={ t ∈ [0,1] |∀n ∈ X(t).n ∈ Y(t)}/Null.

Theorem. The random variables over P( ) form
a Boolean-valued model for the λ-calculus —

expanding the two-valued model P( ).



Randomized Coin Tossing

The problem with using a coin-tossing process T
is that once Fst(T) has been looked at, then

that toss should be discarded, and only the coins
from Snd(T) should be used in the future.

Definition. A coin flip is a random variable 
F:[0,1] ⟶ {{0},{1}},

It is fair  iff  μ⟦ F = {0} ⟧ = 1/2.

Definition. Pairing functions for sets in P( ) can be

defined by these enumeration operators:
   

Pair(X)(Y)={2n|n ∈ X }∪{2m+1|m ∈ Y }
   

Fst(Z)={n|2n ∈ Z }  and  Snd(Z)={m|2m+1 ∈ Z }.

Definition.  A tossing process is a random variable 

T where Fst(T)is a fair coin flip and where
Snd(T) is another tossing — with the 

successive flippings all being mutually independent.



A Prototype Algorithm Language
   

Perhaps a solution is always to evaluate 
programs in the order in which expressions are 
written.  Let's try a very sparse language.

   
    

                  Vi — a variable
                  M(N) — an application

                  λVi.M — an abstraction

                  M⨁N — a stochastic choice

                  Let Vi= M in N — a direct valuation
   

         

The idea here is that the text M is evaluated 
in an environment giving the values of free 
variables.  Then the result is passed on to a 
continuation.  In case a random choice is 
needed, the tossing process is called.
   

We will try to employ a continuation semantics
where the denotation of a program uses the 
λ-calculus formulation:

    

⦉ M ⦊(env)(cont)(toss)



The Semantical Equations
   

• ⦉ Vi ⦊(E)(C)(T) = 

! C(E({i}))(T)

• ⦉ M(N) ⦊(E)(C)(T) = 

! ⦉ M ⦊(E)(λX.⦉ N ⦊(E)(λY.C(X(Y))))(T)

• ⦉λVi.M ⦊(E)(C)(T) = 

! C(λX.⦉ M ⦊(E[X/{i}]))(T)

• ⦉ M⨁N ⦊(E)(C)(T) =

! Test(Fst(T))(⦉ M ⦊(E))(⦉ N ⦊(E))(C)(Snd(T))

• ⦉ Let Vi= M in N ⦊(E)(C)(T) =

! ⦉ N ⦊(E[⦉ M ⦊(E)/{i}])(C)(T)

Running a (closed) program means evaluating:
   

⦉ M ⦊(∅)(λX.λY.X)(T)
   

The semantics and model as presented here, 
however, are only sketches.  Examples of 

randomized algorithms need to be worked out, 
as well as good methods of proving 
probabilistic properties of programs.
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