
Stochastic λ-Calculi

Dana S. Scott

University Professor, Emeritus
Carnegie Mellon University

Visiting Scholar in Mathematics
University of California, Berkeley

September, 2013

(A report on work in progress.)

Church's λ-Calculus

Note that third axiom will be dropped in
favor of a theory employing properties

of a partial ordering.

α-conversion
 λX.[...X...] = λY.[...Y...]

! (λX.[...X...])(T) = [...T...]

 λX.F(X) = F

β-conversion

η-conversion

Definition. λ-calculus — as a formal theory — has
rules for the explicit definition of functions

via equational axioms:

The basic syntax has one binary operation
of application and one variable-binding operator

of abstraction. These are the "logical"
notions of the theory, but we can add other

constants for special operators.

The Graph Model

NOTE: This model could easily have been
defined in 1957, and it satisfies the rules of

α, β-conversion (but not η).
(Some historical comments can be found

at the end of these notes.)

Definition. The enumeration operator model is
given by these definitions on sets of integers:

Application

! F(X) = { m | ∃n ∈ X*.(n,m) ∈ F }

Abstraction

! λX.[...X...] =

! ! {0}∪{ (n,m) | m ∈ [... set(n)...] }

Definitions. (1). Pairing: (n,m) = 2n(2m+1).

(2). Sequence numbers:〈〉 = 0 and

 〈n0,n1,...,nk-1,nk〉= (〈n0,n1,...,nk-1〉, nk).

(3). Sets: set(0) = ∅ and set((n,m))= set(n)∪{ m }.

(4). Kleene star: X* = { n | set(n) ⊆ X }, for sets X ⊆ .

What is the Secret?

(1) The powerset P() = { X|X⊆ }is a topological
space with the sets Un = { X|n ∈ X*} as a basis for

the topology.

(2) Functions Φ:P()n ⟶ P() are continuous iff, for all
 integers, m ∈ Φ(X0,X1,…,Xn-1) iff there are ki ∈ Xi*
for all i<n, such that m ∈ Φ(set(k0),…, set(kn-1)).

(3) The application operation F(X) is continuous as a
function of two variables.

(4) If Φ(X0,X1,…,Xn-1) is continuous, then the
abstraction λX0.Φ(X0,X1,…,Xn-1) is continuous in all

of the remaining variables.

(5) If Φ(X) is continuous, then λX.Φ(X) is the largest
set F such that for all sets T, we have F(T)= Φ(T).

(6) And, note, therefore, that generally F ⊆ λX.F(X).

Some Lambda Properties

 Theorems.
 • All pure λ-terms define computable operators.

 • If Φ(X) is continuous and we let ∇ = λX.Φ(X(X)),
 then P = ∇(∇) is the least fixed point of Φ.
 • The least fixed point of a computable operator is
 always computable.

Definition. A continuous operator Φ(X0,X1,…,Xn-1)
is computable iff in the model this set is RE:

F = λX0λX1…λXn-1.Φ(X0,X1,…,Xn-1).

For all sets of integers F and G we have:

λX.F(X) ⊆ λX.G(X) ⟺ ∀X.F(X) ⊆ G(X),

λX.(F(X)∩ G(X)) = λX.F(X) ∩ λX.G(X),

and

λX.(F(X)∪ G(X)) = λX.F(X) ∪ λX.G(X).

 Succ(X)={n+1|n ∈ X }, Pred(X)={n|n+1 ∈ X }, and
 Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z },

 with λ-calculus, suffice for defining all RE sets.

Gödel Numbering

Lemma. There is a computable V = λX. V(X) where

 (i) V({0}) = λY.λX. Y,

	
 (ii) V({1}) = λZ.λY.λX. Z(X)(Y(X)),

 (iii) V({2}) = Test,
 (iv) V({3}) = Succ,

 (v) V({4}) = Pred, and

 (vi) V({4 + (n,m)}) = V({n})(V({m})).

Theorem. Every recursively enumerable set
is of the form V({n}).

Definition. Modify the definition of V via finite approximations:

 (i) Vk({n}) = V({n})∩{i|i < k} for n < 5, and
 (ii) Vk({4 + (n,m)}) = Vk({n})(Vk({m})).

Theorem. Each Vk({n}) ⊆ Vk+1({n}) is finite,

the predicate j ∈ Vk({n}) is recursive, and we have:

 V({n}) = ⋃ Vk({n}).
 k < ∞

Theorem. The sets L0 and L1 are recursively enumerable,

disjoint, and recursively inseparable:

 L0 = {n|∃ j [0 ∈ Vj({n})({n}) ∧ 1 ∉ Vj({n})({n})]}

 L1 = {n|∃ k [1 ∈ Vk({n})({n}) ∧ 0 ∉ Vk({n})({n})]}

How to Randomize?

• This last definition is the beginning of putting
a Boolean-valued Logic on random variables

using the complete Boolean algebra of
measurable sets modulo sets of measure zero.

NOTE: This new model gives us a programming
language with randomized parameters.

Definition. By a random variable we mean a function

X:[0,1] ⟶ P(),

where, for n ∈ , the set { t ∈ [0,1] |n ∈ X(t)}

is always Lebesgue measurable.

Definition. For random variables X,Y:[0,1] ⟶ P(),

⟦ X⊆Y ⟧ ={ t ∈ [0,1] |∀n ∈ X(t).n ∈ Y(t)}/Null.

Theorem. The random variables over P() form
a Boolean-valued model for the λ-calculus —

expanding the two-valued model P().

Randomized Coin Tossing

The problem with using a coin-tossing process T
is that once Fst(T) has been looked at, then

that toss should be discarded, and only the coins
from Snd(T) should be used in the future.

Definition. A coin flip is a random variable
F:[0,1] ⟶ {{0},{1}},

It is fair iff μ⟦ F = {0} ⟧ = 1/2.

Definition. Pairing functions for sets in P() can be

defined by these enumeration operators:

Pair(X)(Y)={2n|n ∈ X }∪{2m+1|m ∈ Y }

Fst(Z)={n|2n ∈ Z } and Snd(Z)={m|2m+1 ∈ Z }.

Definition. A tossing process is a random variable

T where Fst(T)is a fair coin flip and where
Snd(T) is another tossing — with the

successive flippings all being mutually independent.

A Prototype Algorithm Language

Perhaps a solution is always to evaluate
programs in the order in which expressions are
written. Let's try a very sparse language.

 Vi — a variable
 M(N) — an application

 λVi.M — an abstraction

 M⨁N — a stochastic choice

 Let Vi= M in N — a direct valuation

The idea here is that the text M is evaluated
in an environment giving the values of free
variables. Then the result is passed on to a
continuation. In case a random choice is
needed, the tossing process is called.

We will try to employ a continuation semantics
where the denotation of a program uses the
λ-calculus formulation:

⦉ M ⦊(env)(cont)(toss)

The Semantical Equations

• ⦉ Vi ⦊(E)(C)(T) =

! C(E({i}))(T)

• ⦉ M(N) ⦊(E)(C)(T) =

! ⦉ M ⦊(E)(λX.⦉ N ⦊(E)(λY.C(X(Y))))(T)

• ⦉λVi.M ⦊(E)(C)(T) =

! C(λX.⦉ M ⦊(E[X/{i}]))(T)

• ⦉ M⨁N ⦊(E)(C)(T) =

! Test(Fst(T))(⦉ M ⦊(E))(⦉ N ⦊(E))(C)(Snd(T))

• ⦉ Let Vi= M in N ⦊(E)(C)(T) =

! ⦉ N ⦊(E[⦉ M ⦊(E)/{i}])(C)(T)

Running a (closed) program means evaluating:

⦉ M ⦊(∅)(λX.λY.X)(T)

The semantics and model as presented here,
however, are only sketches. Examples of

randomized algorithms need to be worked out,
as well as good methods of proving
probabilistic properties of programs.

Some Background References

There are many approaches to modeling λ-calculus, and expositions and
historical references can be found in Cardone-Hindley [2009]. In 1972 Plotkin
wrote an AI report at the University of Edinburgh entitled "A set-theoretical
definition of application" which remained unpublished until it was incorporated
into the more extensive paper Plotkin [1993], which discusses many kinds of
models. Scott developed his model based on the powerset of the integers
subsequently, but he only later realized it was basically the same as Plotkin's
model. See Scott [1976] for further details where he called the idea The Graph
Model.

• F. Cardone and J.R. Hindley. Lambda-Calculus and Combinators in the 20th
Century. In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M.
Gabbay and John Woods eds., North-Holland/Elsevier Science, 2009.

• Gordon D. Plotkin. Set-theoretical and other elementary models of the λ-
calculus. Theoretical Computer Science, vol. 121 (1993), pp. 351-409.

• Dana S. Scott. Data types as lattices. SIAM Journal on Computing, vol. 5 (1976),
pp. 522-587.

Much earlier, enumeration reducibility was introduced by Rogers in lecture notes
and mentioned by Friedberg-Rogers [1959] as a way of defining a positive
reducibility between sets. Enumeration degrees are discussed at length in Rogers
[1967]. There is now a vast literature on the subject. Enumeration operators are
also studied in Rogers [1967] as well. Earlier, Myhill-Shepherdson [1955] defined
functionals on partial functions with similar properties. Neither team saw that
their operators possessed an algebra that would model λ-calculus, however.

• John Myhill and John C. Shepherdson, Effective operations on partial recursive
functions, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
vol. 1 (1955), pp. 310-317.

• Richard M. Friedberg and Hartley Rogers jr., Reducibility and Completeness for
Sets of Integers. Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125. Some
of the results of this paper are presented in abstract, Journal of Symbolic Logic,
vol. 22 (1957), p. 107.

• Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967, xix + 482 pp.

More Background References

Some historical remarks on the notion of partial equivalence relations (PERs) as
an interpretation of types are given by Bruce et al. [1990], where we learn that
they were introduced by Myhill and Shepherdson [1955] for types of first-order
functions, and then extended to simple types by Kreisel [1959]. Scott took the use
of partial equivalence relations from the work of Kreisel and collaborators.

 • K. Bruce, A. A. Meyer, and J. C. Mitchell. The semantics of second-order
lambda calculus. In G. Huet, editor. Logical Foundations of Functional
Programming, pp. 273–284. Addison-Wesley, 1990.

• G. Kreisel. Interpretation of analysis by means of constructive functionals of
finite type. In A. Heyting, editor, Constructivity in Mathematics, pp. 101–128.
North-Holland Co., Amsterdam, 1959.

Two papers about introducing random features in λ-calculus are Deliguoro-
Piperno [1995] and Dal Lago-Zorzia [2012]. Both of those articles have many
historical references. Thanks to Thomas F. Icard III for pointing out these two
references in connection with work on his Stanford Ph.D. thesis.

• U. Deliguoro and A. Piperno. Nondeterministic Extensions of Untyped λ-
Calculus. Information and Computation, vol. 122 (1995), pp. 149–177.

• Ugo Dal Lago and Margherita Zorzia. Probabilistic operational semantics for the
lambda calculus. RAIRO - Theoretical Informatics and Applications, vol. 46
(2012), pp. 413-450.

There is a very large literature on probabilistic powerdomains, and many technical
details, as well as background and historical references can be found in the recent
papers of Michael Mislove (see his WWW site). Connections between random
variables and domains of distributions are also explained in these papers.

• Michael Mislove. Discrete Random Variables over Domains. Theoretical
Computer Science, vol. 380 (2007), pp. 181-198.

• Michael Mislove. Anatomy of a Domain of Continuous Random Variables I.
Submitted to TCS (2013), 19 pp. and Anatomy of a Domain of Continuous
Random Variables II. Springer LNCS, vol. 7860 (2013), pp. 225-245.

