
The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

The Maude-NRL Protocol Analyzer
Lecture 2: Controlling the Search Space and

Asymmetric Unification

Catherine Meadows

Naval Research Laboratory, Washington, DC 20375
catherine.meadows@nrl.navy.mil

Fifth Summer School on Formal Techniques, Menlo College,
Atherton, CA, May 17-22, 2015

1 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Outline

1 Controlling the Search Space
Learn-Only-Once and Grammars

Other Ways of Reducing the Search Space

2 Asymmetric Unification
Background and Motivation
A New Unification Paradigm: Asymmetric Unification

2 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Outline

1 Controlling the Search Space
Learn-Only-Once and Grammars

Other Ways of Reducing the Search Space

2 Asymmetric Unification
Background and Motivation
A New Unification Paradigm: Asymmetric Unification

3 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

How Maude-NPA Controls the Search Space

Left to itself, Maude-NPA will search forever

Must use techniques for ruling out redundant or provably
unreachable states to obtain finite search space

We have developed a number of different techniques for doing
this:

Intruder learns only once
Grammars
Subsumption
Super-Lazy Intruder

We will cover these in this lecture

4 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Important Assumptions

Equational theory is of the form E = R]∆

R is a set of rewrite rules and ∆ is regular

In any states produced by Maude-NPA t∈I, t /∈I, and
negative terms are R-irreducible

Furthermore, no substitutions produced by further search will
make these terms reducible

Reason: many of the checks made by Maude-NPA for state
space reduction rely on the presence of particular sub terms
Allowing these sub terms to vanish because of rewrite rules or
further substitutions will invalidate the checks
We will show how these assumptions are guaranteed in the
lecture on the asymmetric unification

5 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Learn-Only-Once and Grammars

Outline

1 Controlling the Search Space
Learn-Only-Once and Grammars

Other Ways of Reducing the Search Space

6 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Learn-Only-Once and Grammars

Two basic restrictions of the search space

Powerful tools:

1 Learn-only-once: any terms the intruder will learn in the future
can’t already be known

2 Grammars describing unreachable states: the intruder learns a
term in the language described by the grammar only if he/she
knew another term in the language in a past state

7 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Learn-Only-Once and Grammars

Motivating Example

Consider protocol with:
Two operators

e(K ,X) stands for encryption of message X with key K
d(K ,X) stands for decryption of message X with key K

Two regular strands: Two Intruder strands
(Dolev-Yao):

[−(X),+(d(k,X))] [−(K),−(X),+(d(K ,X))]
[+(e(k, r))] [−(K),−(X),+(e(K ,X))]

One equation

d(K , e(K ,X)) = X

8 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Learn-Only-Once and Grammars

A Partial (Backwards) Search Tree

t
��

{e(k , t)}
vvmmmm **UUUUU

{k, t}
��

{e(k , e(k, t))}

xxqqqqqqqqqq

((PPPPPPPPPPPP

stop

{e(k, t), k}
��

{e(k, e(k , e(k, t))}
��

stop · · ·
Powerful tools:

(1) Learn-only-once: terms the intruder will learn in the future
and doesn’t know in he past.

(2) Unreachable states: the intruder learns a term in a family only
if he/she knew another term in that family in a past state

9 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Learn-Only-Once and Grammars

(1) Learn-Only-Once Restriction

Suppose in looking for a term t, you find a state where the
intruder knows the same t, then cut the search space

t
��

{e(k, t)}
wwooo

{k, t}
��

stop

Can tell if intruder has not learned X by seeing if intruder will
learn X in the future

10 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Learn-Only-Once and Grammars

(2) Grammars characterizing unreachable states

Z�r
��

{e(K ,Z)}
**UUUU

{e(K , e(K ,Z))}
++XXXXX

{e(K , e(K , e(K ,Z))}
��
· · ·

Discover Grammars providing infinite set of terms intruder
can’t learn.

1 t∈L
2 Z∈L 7→ e(Y ,Z)∈L

1 Z /∈I, Z�r 7→ e(A,Z)∈L (Z�r means Z not subsumed by r)
2 Z∈L 7→ e(Y ,Z)∈L

If the intruder learns a term in the language, then he/she
must have learned another term in a state in the past.

11 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Learn-Only-Once and Grammars

Grammar Generation Is Automated

Start with initial grammar, giving a single term known by the
intruder, along with conditions on the term, such as some sub
term not yet known by the intruder

Maude-NPA uses function symbol definitions in protocol spec
as source for initial grammars
User can define own initial grammars if desired, either in
addition to or in place of Maude-NPA grammars

Maude-NPA finds the terms the intruder needed to know to
generate these terms
Checks if new terms are also in the language defined by the
grammar
If not, uses a set of heuristics to add new grammar rules
If no heuristic applies, adds an exception to the grammar rule
Repeats this process until it reaches a fixed point
In cases Maude-NPA fails to generate a grammar, it provides
the reasons for its failure

12 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Learn-Only-Once and Grammars

Status of Grammars

Grammar generation heuristics little changed from original
NRL Protocol Analyzer

Works well on most theories we’ve tried

Main exceptions are exclusive-or and Abelian groups: presence
of inverses causes unexpected behavior

Grammar generation heuristics rely on assumptions about term
on LHS of grammar rule being sub term of RHS of grammar
rule
Not satisfied by grammars produced by these theories
Have a partial work-around for exclusive-or

Currently planning to rethink grammars in order to address
this

13 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

Outline

1 Controlling the Search Space
Learn-Only-Once and Grammars

Other Ways of Reducing the Search Space

14 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

Other Ways of Reducing Search Space

Grammars can reduce infinite to finite, but may still need to
cut search space size for efficiency purposes

In some cases, grammars alone not enough to reduce infinite
to finite, and we need other techniques as well

We have developed a number of different techniques, and we
describe them now

Execute Rule 1 First
Subsumption Partial Order Reduction
Use Power of Strands to See Into Past and Future
Super-Lazy Intruder

15 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

Execute Rule 1 First

If there is a strand of the form [l1, u
− | l2] present, execute

the rule replacing it by [l1 | u−, l2] , u∈I first

If there are several fix an order and execute them all first, in
that order

Removes extra step introduced by converting negative terms
to intruder terms

Implementing this doubled the speed of the tool

Not surprising, because replaced two steps by one

16 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

Subsumption Partial Order Reduction

Partial order reduction standard idea in model checking, used
in a lot of protocol analysis tools, too

Identify when reachability of state S1 implies reachability of S2

and remove S1

In Maude-NPA, this happens, roughly, when S2 ⊆ S =B σS1

for some substitution σ
Can then eliminate S1

17 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

Using the Power of Strands

Strands allow you to see the past and the future of a local
execution

Helpful since Maude-NPA very sensitive to the past and future

Things we’ve done so far
If a term x /∈I and a strand [l1,−(x), l2 | l3] both appear in a
state, then the state is unreachable

Reaching it would require violation of intruder-learns-once

Let f and g be two terms containing n(A, r). If

f ∈I appears in a state, and;
[l1 | l2,+(g), l3,] also appears, with strand identifier
containing r and no n(A, r) term in l1;

Then reaching the state requires the intruder to learn a nonce
before it is generated and thus is unreachable.

18 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

Super-Lazy Intruder

Based on an idea of David Basin, plus a trick used by the old
NPA

If a term X∈I appears in a state, where X is a variable, we
assume that the intruder can easily find x , and so safe to drop
it

Super-lazy intruder: drop terms made out of variable terms,
e.g. X;Y and e(K,Y)

Need to revive variable terms if they later become instantiated

Solution: keep the term, and state it appears in, around as a
”ghost”

Revive the ghost, replacing current state by ghost term and
ghost state, but with current substitutions to variables if any
variable subterm becomes instantiated

19 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

Experimental Results 1

Protocol none Grammars %
NSPK 5 19 136 642 4021 4 12 49 185 758 81
NSL 5 19 136 642 4019 4 12 50 190 804 79

SecReT06 1 6 22 119 346 1 2 6 15 36 89
SecReT07 6 20 140 635 4854 6 17 111 493 3823 21

DH 1 14 38 151 816 1 6 14 37 105 87

Protocol none Input First %
NSPK 5 19 136 642 4021 11 123 1669 26432 N/A 0
NSL 5 19 136 642 4019 11 123 1666 26291 N/A 0

SecReT06 1 6 22 119 346 11 133 1977 32098 N/A 0
SecReT07 6 20 140 635 4854 11 127 3402 N/A N/A 0

DH 1 14 38 151 816 14 135 1991 44157 N/A 0

Protocol none Inconsistency %
NSPK 5 19 136 642 4021 5 18 95 310 650 83
NSL 5 19 136 642 4019 5 18 95 310 650 83

SecReT06 1 6 22 119 346 1 6 22 114 326 5
SecReT07 6 20 140 635 4854 6 18 107 439 3335 31

DH 1 14 38 151 816 1 12 12 56 128 84

20 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

Experimental Results 2

Protocol none Transition Subsumption %
NSPK 5 19 136 642 4021 5 15 61 107 237 94
NSL 5 19 136 642 4019 5 15 61 107 237 94

SecReT06 1 6 22 119 346 1 6 15 39 78 77
SecReT07 6 20 140 635 4854 6 15 61 165 506 89

DH 1 14 38 151 816 1 14 26 102 291 64

Protocol none Super-lazy Intruder %
NSPK 5 19 136 642 4021 5 19 136 641 3951 1
NSL 5 19 136 642 4019 5 19 136 641 3949 2

SecReT06 1 6 22 119 346 1 6 22 119 340 2
SecReT07 6 20 140 635 4854 6 16 44 134 424 91

DH 1 14 38 151 816 1 14 38 138 525 35

Protocol none All optimizations %
NSPK 5 19 136 642 4021 4 6 4 2 1 99
NSL 5 19 136 642 4019 4 7 6 2 0 99

SecReT06 1 6 22 119 346 2 3 2 - - 99
SecReT07 6 20 140 635 4854 5 1 1 1 - 99

DH 1 14 38 151 816 4 6 10 9 12 99

21 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

Infinite Behavior We Aren’t Able to Prevent

gn·X0

{{www X0 7→Y0·X1$$JJ

gn

��
gn·X1

���������
X1 7→Y1·X2

��::::::

stop

gn

��
gn·X2

��
stop · · ·

Different from rewrite-rule based grammar behavior, because
infinite behavior results from substitution

Root term grows larger instead of leaf terms

Behavior becomes more common as theories grow more
complex

Currently we can just cut off branch after a certain point

But, would like a method that guarantees completeness

22 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Controlling the Search Space

Other Ways of Reducing the Search Space

References

Escobar, Santiago, Catherine Meadows, and José Meseguer. .A

rewriting-based inference system for the NRL protocol analyzer and its
meta-logical properties.”Theoretical Computer Science 367.1 (2006):
162-202. Most thorough discussion of grammars

Santiago Escobar, Catherine Meadows, José Meseguer, Sonia Santiago:

State space reduction in the Maude-NRL Protocol Analyzer. Inf. Comput.

238: 157-186 (2014) Describes all other state space reduction techniques

in this talk.

23 / 42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

Outline

1 Controlling the Search Space
Learn-Only-Once and Grammars

Other Ways of Reducing the Search Space

2 Asymmetric Unification
Background and Motivation
A New Unification Paradigm: Asymmetric Unification

24/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

Background and Motivation

Outline

2 Asymmetric Unification
Background and Motivation
A New Unification Paradigm: Asymmetric Unification

25/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

Background and Motivation

The Problem

Protocol analysis tools often depend on syntactic properties of
terms that fail to be invariant under equational theories

Check for nonces appearing as subterms

Logical systems: CPSA, PCL, PDL, to determine which actions
should precede others
Maude-NPA: to rule out unreachable states

Depth of terms

ProVerif : option to ensure termination

Syntactic pattern matching

Maude-NPA : to rule out infinite search paths

In this lecture I’ll describe how we’re dealing with this problem
in Maude-NPA, and how we think our techniques could be
applied to other unification tools

26/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

Background and Motivation

An Example

Start with exclusive-or ⊕
⊕ is AC, with additional equations x ⊕ 0 = x and x ⊕ x = 0.

Consider the following protocol
1 A→ B : pke(B,NA)
2 B → A : NB ⊕ NA

A checks that the message she receives is Z ⊕NA for some Z

How it works in Maude-NPA
::r::[nil, +(pke(B,n(A,r))),-(Z [+] n(A,r)), nil]

Unify Z [+] n(A,r) with some term in the intruder’s

knowledge

So, what if Z = Y ⊕ NA?

27/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

Background and Motivation

How we handle this in Maude-NPA

Express equational theory as
R = {X ⊕ 0→ X ,X ⊕ X → 0,X ⊕ X ⊕ X → X}]∆ = AC

nonce containment invariant under AC
R is a set of rewrite rules convergent and terminating wrt AC

Find all the possible reduced forms of Z [+] n(A,r) wrt R
There are two:

< Z [+] n(A,r), id >

< Y, Z / Y [+] n(A,r) >

One strand for each reduced form
::r::[nil, +(pke(B,n(A,r))),-(Z [+] n(A,r)), nil]

::r::[nil, +(pke(B,n(A,r))),-(Y), nil]

Include constraints that negative terms in strands are
irreducible wrt R

Any further substitution made in the search process must
obey these constraints

28/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

Background and Motivation

Three Things we need to make this work

1 Characterize theories in which every term has a finite number
of reduced forms

We understand this: this is equivalent to the finite variant
property

2 Unification algorithms giving a set of mgu’s Σ x =?y such
that for all σ ∈ Σ, σy is irreducible

We call this asymmetric unification
Variant narrowing has this property, we are looking for more
efficient algorithms

3 Combine these into a sound and complete search strategy

29/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

Background and Motivation

Using Variant Narrowing to Satisfy Irreducibility
Constraints in Protocol Analysis

Recap from previous lecture

For each strand St in a specification, compute a most general
set of variants V of the the negative terms

For each variant (σ, t) create a new strand σSt

Each time a positive term s is unified what a term t in the
intruder knowledge, user asymmetric unification to find a
complete set of unifiers of s and t that leave t irreducible, as
well as all negative terms already present in the state

30/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Outline

2 Asymmetric Unification
Background and Motivation
A New Unification Paradigm: Asymmetric Unification

31/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Asymmetric Unification

Let (Σ,R]∆) be a an equational theory, where R is a set of
rewrite rules confluent, terminating and coherent wrt ∆.

A solution to an asymmetric unification problem
s1 =↓ t1 ∧ . . . ∧ sk =↓ tk is a substitution σ such that

1 For each i, σsi =∆ σti
2 For each i, σti is irreducible

A set Θ is a most general set of asymmetric unifiers of P if for
any asymmetric unifier there σ there is a θ ∈ Θ such that
σ =∆ τθ for some τ .

32/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Some Examples from XOR

1 c =?X ⊕ Y , S-unifiable, but not A-unifiable
2 a + b =?X ⊕ Y

σ = [X 7→ Y ⊕ a⊕ b] is a most general S-unifier, but not an
A-unifier
[X 7→ a,Y 7→ b], [X 7→ b,Y 7→ a] is a set of most general
A-unifiers

3 X =?Y ⊕ X

[Y 7→ X ⊕ Z] an a most general S-unifier but not an A-unifier
[X 7→ Y ⊕ Z] is equivalent, but is an A-unifier

4 Z =?X1 ⊕ X2,Z =?Y1 ⊕ Y2

σ = [X1 7→ Z ⊕ X2,Y1 7→ X ⊕ Y2] is a most-general S-unifier,
but not an A-unifier
σ = [Z 7→ X1 ⊕ V ⊕ Y2,X2 ⊕ V ⊕ Y2,Y1 ⊕ X1 ⊕ V] is
equivalent and an A-unifier

33/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Using Variant Narrowing to Find Most General Set of
Asymmetric Unifiers

Let (Σ,R]∆) be a an equational theory, where R is a set of
rewrite rules confluent, terminating and coherent wrt ∆.

Furthermore, assume that (R]∆) has the finite variant
property

Given a problem s =↓ t
1 Use variant narrowing to find a set of most general variants V

of s.
2 Discard any (σ, σs ↓) ∈ V such that σt is reducible
3 For each remaining (σ, σs ↓) find set of mgu’s of σs ↓=E?σt.
4 Discard any unifier θ such that θσt is reducible
5 Remaining set is a set of most general asymmetric unifiers

Can we do better (e.g. faster)?

34/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Next Step: Asymmetric Unification (AU) as a Problem
in its Own Right

As far as we can tell, no-one has studied this before
Narrowing only algorithm we know of that can achieve this
What we do have found so far

AU at least as hard as symmetric unification (SU)
Any SU problem s =?t can be turned into AU problem
s =?X , t =?X .

AU strictly harder than SU - XOR without any other symbols
is in P for SU but NP-complete for AS
SU can be unitary while AU is not (XOR)
There exist theories for which SU is decidable but AU is not

We are working on a general approach for converting
equational unification algorithms to asymmetric unification
algorithms
Have applied it to unification in XOR theory (ACU +
cancellation)

35/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Outline for a General Procedure

Start with a decomposition R] Delta and a unification
algorithm

GIven a problem x =?y , find a complete set of unifiers Σ
using the symmetric algorithm

For each σ ∈ Σ
1 If σ is an A-unifier, keep it
2 If not, see if there is an equivalent A-unifier σ′ and if so,

replace σ with σ′

3 If not, apply 1) and 2) to more completely instantiated
versions σ and replace σ′ with those

4 If none of those work, discard σ

Application to exclusive-or given in Ertabur et al. 2012 and
2013.

Papers also includes experimental results

36/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Experimental Results: Unification

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
NS1 ⊕ NS2 =↓ NS3 ⊕ NA 153 12 153 1 0 91

NS1 ⊕ NA =↓ NS2 ⊕ NS3 137 5 121 1 11 80

NS1 ⊕ NS2 =↓ NS3 ⊕ NS4 ⊕ NS5 286 54 116 1 59 98

NS1 ⊕ NS2 =↓ NS3 ⊕ NS4 ⊕ NA 159 36 115 1 27 97

NS1 ⊕ NS2 =↓ NA 127 4 114 1 10 75

NS1 ⊕ NS2 =↓ null 128 1 105 1 17 0

NS1 ⊕ NS2 =↓ null ⊕ NS3 130 7 105 1 20 85

M1 ⊕ M2 =↓ M3 ⊕ pair(V1,M4) 51 12 44 1 13 91

pair(V , rc4(V1, kAB) ⊕ ([NA, c(NA)]))
=↓ pair(V1,M1) 30 1 29 1 3 0

M1 ⊕ M2 =↓ M3 ⊕ V1 33 12 32 1 3 91

M1 ⊕ M2 =↓ M3 ⊕ ([N1, c(N2)]) 34 12 30 1 11 91

M1 ⊕ M2 =↓ M3 ⊕ pair(V1, pair(V2,M4)) 36 12 30 1 16 91

T. A-V , # A-V = time and number of unifiers, resp. of
variant unification
T. D-A, # D-A = time and number of unifiers, resp. of
asymmetric algorithm
% T. and % # = improvement represented as percentage of
A-V score

37/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Experimental Results: Protocol Analysis

states/seconds 1 step 2 steps 3 steps 4 steps 5 steps

RP - Standard 2/0.08 5/0.16 13/0.86 49/3.09 267/17.41
RP - Asymmetric 1/0.03 45/1.08 114/2.26 1175/37.25 13906/4144.30

WEPP - Standard 5/0.09 9/0.42 26/1.27 106/5.80 503/ 34.76
WEPP - Asymmetric 4/0.05 9/0.12 26/0.64 257/144.65 2454/612.08

TMN - Standard 5/0.11 15/ 0.55 99/3.82 469/ 25.68 timeout
TMN - Asymmetric 4/0.06 24/0.53 174/3.63 1079/170.29 9737/1372.55

Protocol analysis experiments with regular XOR unification
algorithm vs using asymmetric XOR unification algorithm.

A pair n/t means: n = number of states, and t = time in
seconds

38/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Asymmetric Unification Over Combinations of Theories
: Strategy 1

Suppose that E1 = (R1]∆1) and E2 = (R2]∆2) have
asymmetric unification algorithms A∞,A∈
How do we find an asymmetric algorithm A for
E = ((R1 ∪ R2)] (∆1 ∪∆2))?

(R1]∆1) and (R2]∆2) are both finite variant
decompositions, and a unification algorithm exists for
∆1 ∪∆2

If ((R1 ∪R2)] (∆1∆2)) is FVP, then can use variant narrowing
Although this is not decidable, tools and semi decision
procedures exist

39/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Asymmetric Unification Over Combinations of Theories:
Strategy 2

If both A∞ and A∈ satisfy a condition known as linear
constant restriction than a general combination procedure
exists (Erbatur et al., 2014), based on Baader-Schwarz
method (1996)

Linear constant restriction basically means algorithm still works
with additional free constants added to theory
Needed for Baader-Schwarz result to

A highly nondeterministic, but may be able to adapt known
optimization techniques

Both strategies result in inefficient algorithms: can we do
better?

40/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Conclusion

We’ve described a way of decomposing and attacking
unification problems that we originally adopted for
convenience in Maude-NPA

We found that it also makes it much easier to apply state
space reduction techniques that rely upon syntactic checking

We believe that this has applications, not only to
Maude-NPA, but to other tools and approaches as well

With that in mind, we are starting to investigate this
approach in a more general and systematic way

41/42

The Maude-NRL Protocol Analyzer Lecture 2: Controlling the Search Space and Asymmetric Unification

Asymmetric Unification

A New Unification Paradigm: Asymmetric Unification

Asymmetric Unification References

Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu,
Christopher Lynch, Catherine Meadows, José Meseguer, Paliath
Narendran, Sonia Santiago, Ralf Sasse. Effective Symbolic Protocol
Analysis via Equational Irreducibility Conditions.. In Proceedings of
ESORICS 2012, Springer-Verlag, 2012.

Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu,
Christopher Lynch, Catherine Meadows, José Meseguer, Paliath
Narendran, Sonia Santiago, Ralf Sasse. Asymmetric unification: A new
unification paradigm for cryptographic protocol analysis. In proceedings of
CADE 2013, Springer-Verlag, 2013.

Serdar Erbatur, Deepak Kapur, Andrew M. Marshall, Catherine Meadows,
Paliath Narendran, Christophe Ringeissen: On Asymmetric Unification
and the Combination Problem in Disjoint Theories. FoSSaCS 2014.

42/42

	Controlling the Search Space
	 Learn-Only-Once and Grammars
	Other Ways of Reducing the Search Space

	Asymmetric Unification
	Background and Motivation
	A New Unification Paradigm: Asymmetric Unification

