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The Maude-NRL Protocol Analyzer Lecture 1: Introduction to Maude-NPA

Purpose of These Lectures

Introduce you to a particular protocol tool for crypto protocol
analysis, Maude-NPA

Tool for automatic analysis of crypto protocols that takes into
account equational theories of crypto operators
Based on unification and rewrite rules

On the way, point out connections between research on the
tool and open problems in crypto protocol analysis, rewriting
logic, and unification

Introduce you to two new related topics of research

Asymmetric Unification
Symbolic Indistinguishability
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Problem We’re Addressing

Example: Diffie-Hellman Without Authentication

1 A→ B : gNA

2 B → A : gNB

3 A and B compute gNA∗NB = gNB∗NA

Well-known attack

1 A→ IB : gNA

2 IA → B : gNI

3 B → IA : gNB

4 IB → A : gNI

A thinks she shares gNI ∗NA with B, but she shares it with I

B thinks he shares gNI ∗NA with A, but he shares it with I

Commutative properties of ∗ and fact that (GX )Y = GX∗Y

crucial to understanding both the protocol and the attack
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Problem We’re Addressing

What This Example Illustrates

There are many examples of cryptographic protocol failures
that occur even when the crypto algorithms used are secure

The attacks can be subtle and hard to find

Diffie and Hellman knew that their protocol would not be
secure against an active attacker without authentication, but
this particular attack was a surprise

The attacks can make use of algebraic properties of the
crypto-algorithm that are also needed to make the protocol
work
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Problem We’re Addressing

Some Properties a Protocol Should Have

Secrecy: If honest Alice thinks she has executed the protocol
with honest Bob, an intruder should not know any secrets
that were generated

Authentication: If honest Alice thinks she has executed the
protocol with honest Bob, then Bob should have executed the
protocol with Alice

Freshness: If honest Alice accepts a value as both fresh (not
been used before) and shared with honest Bob, then it should
not have been used before

All of the above defined in terms of intruder knowledge and
presence or absence of protocol executions

Unauthenticated Diffie-Hellman fails Secrecy and
Authentication, but satisfies freshness
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Problem We’re Addressing

”Dolev-Yao” Model for Automated Cryptographic
Protocol Analysis

Start with a signature, giving a set of function symbols and
variables

For each role, give a program describing how a principal
executing that role sends and receives messages

Give a set of inference rules the describing the deductions an
intruder can make

E.g. if intruder knows K and e(K ,M), can deduce M

Assume that all messages go through intruder who can

Stop or redirect messages
Alter messages
Create new messages from already sent messages using
inference rules

This problem well understood since about 2005
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Problem We’re Addressing

What We Know About Dolev-Yao

Important notion: the ”session”

A session is a single execution of a role in the protocol by a
legitimate principal
Legitimate execution of unauthenticated DH and attack both
involved two sessions
One for initiator and one for responder

Known results

Secrecy undecidable in standard Dolev-Yao model (Durgin et
al., 1998)
Secrecy NP-complete in standard DY model if number of
sessions are bounded (bounded session model) (Rusinowitch
and Turuani, 2001)
Similar results for authentication: both secrecy and
authentication can be expressed in terms of reachability of
states

9 / 58



The Maude-NRL Protocol Analyzer Lecture 1: Introduction to Maude-NPA

Problem We’re Addressing

Beyond the Free Algebra

Crypto protocol analysis with the standard free algebra model
(Dolev-Yao) well understood.

But, not adequate to deal with protocols that rely upon
algebraic properties of cryptosystems

1 Cancellation properties, encryption-decryption
2 Abelian groups
3 Diffie-Hellman (exponentiation, Abelian group properties)
4 Homomorphic encryption (distributes over an operator with

also has algebraic properties, e.g. Abelian group)
5 Etc. ..,

In many cases, a protocol uses some combination of these
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Problem We’re Addressing

State of the Art When We Started this Research (mid
2000’s)

Free algebra model well understood

Decidability results were beginning to appear for other
theories

Similar to work for other theories

Tools were beginning to appear that handled different theories

Next step needed

Approach equational theories in a systematic way
Support combination of theories to the greatest extent possible
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Problem We’re Addressing

Goal of Maude-NPA

Provide tool that

can be used to reason about protocols with different algebraic
properties in the unbounded session model

supports combinations of algebraic properties to the greatest
degree possible
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Problem We’re Addressing

Our approach

Use rewriting logic as general theoretical framework

crypto protocols are specified using rewrite rules
algebraic identities as equational theories

Use narrowing modulo equational theories as a symbolic
reachability analysis method

Combine with state reduction techniques of Maude-NPA’s
ancestor, the NRL Protocol Analyzer (grammars,
optimizations, etc.)

Implement in Maude programming environment

Rewriting logic gives us theoretical framework and
understanding
Maude implementation gives us tool support

13 / 58



The Maude-NRL Protocol Analyzer Lecture 1: Introduction to Maude-NPA

Problem We’re Addressing

Maude-NPA

A tool to find or prove the absence of attacks using backwards
search

Analyzes infinite state systems

Active intruder
No abstraction or approximation of nonces
Unbounded number of sessions

Intruder and honest protocol transitions represented using
strand space model.

So far supports a number of equational theories: cancellation
(e.g. encryption-decryption), AC, exclusive-or, Diffie-Hellman,
bounded associativity, homormorphic encryption over a free
theory, various combinations, working on including more
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Introduction to Rewriting Logic and Unification

A Little Background on Unification

Given a signature Σ and an equational theory E , and two terms s
and t built from Σ:

A unifier of s =E?t is a substitution σ to the variables in s and t
s.t. σs can be transformed into σt by applying equations from E to
σs and its subterms

Example: Σ = {d/2, e/2,m/0, k/0},E = {d(K , e(K ,X )) = X}.
The substitution σ = {Z 7→ e(T ,Y )} is a unifier of d(K ,Z ) and Y .

The set of most general unifiers of s =?t is the set Γ s.t. any unifier
σ is of the form ρτ for some ρ, and some τ in Γ.

Example: {Z 7→ e(T ,Y ),Y 7→ d(T ,Z )} mgu’s of d(T ,Z ) and Y .

Given the theory, can have:

at most one mgu (empty theory)
a finite number (AC)
an infinite number (associativity)

Unification problem in general undecidable
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Introduction to Rewriting Logic and Unification

Rewriting Logic in a Nutshell

A rewrite theory R is a triple R = (Σ,E ,R), with:

Σ a signature

(Σ,R) a set of rewrite rules of the form t → s
e.g. e(KA,NA;X )→ e(KB ,X )

E a set of equations of the form t = s
e.g. d(K , e(K ,Y )) = Y

Intuitively, R specifies a concurrent system,
whose states are elements of the initial algebra TΣ/E specified by
(Σ,E ), and
whose concurrent transitions are specified by the rules R.
Narrowing gives us the rules for executing transitions concurrently.
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Introduction to Rewriting Logic and Unification

Narrowing and Backwards Narrowing

Narrowing: t  σ,R,E s if there is

a non-variable position p ∈ Pos(t);
a rule l → r ∈ R;
a unifier σ (modulo E ) of t|p =E?l such that s = σ(t[r ]p).

Example:

R = { X → d(k ,X ) }, E = { d(K , e(K ,Y )) = Y }
e(k , t) ∅,R,E d(k , e(k , t)) =E t

Backwards Narrowing: narrowing with rewrite rules reversed
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Introduction to Rewriting Logic and Unification

A Warning About Narrowing

Full narrowing (narrowing in every possible non-variable
location) is often inefficient and even nonterminating

We need to construct our rewrite systems so that efficient
narrowing strategies can be chosen

Maude-NPA has led to some major advances in this area
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Introduction to Rewriting Logic and Unification

Narrowing Reachability Analysis

Narrowing can be used as a general deductive procedure for solving
reachability problems of the form

(∃~x) t1(~x)→∗ t ′1(~x) ∧ . . . ∧ tn(~x)→∗ t ′n(~x)

in a given rewrite theory, where the terms ti and t ′i denote sets of
states.

The terms ti and t ′i denote sets of states.

For what substitutions σ are ti (σx) reachable from t ′i (σx)

No finiteness assumptions about the state space.

Maude-NPA rewrite system supports topmost narrowing for
state reachability analysis

Rewrite rules apply to topmost position only, so narrowing
steps only need to be applied to entire state
Topmost narrowing complete
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Introduction to Rewriting Logic and Unification

E -Unification

In order to apply narrowing to search, need an E unification
algorithm
Two approaches:

1 Built-in unification algorithms for each theory
2 Hybrid approach with E = R ]∆

Hybrid Approach
∆ has built-in unification algorithm
R confluent, terminating, and coherent rules modulo B

Confluent: Always reach same normal form modulo B, no
matter in which order you apply rewrite rules
Terminating: Sequence of rewrite rules is finite
Coherent: Technical condition on equations needed to make
narrowing on representatives of B-equivalence classes complete
Non-coherent equational theories can often be made coherent
by adding extra (redundant) equations

Lets us use R,∆ narrowing as a general method for
E -unification
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Introduction to Rewriting Logic and Unification

How R ,∆ Narrowing Works for Unification

1 Start with a problem s =?t and U = ∅.
2 Find a set of ∆-mgu’s of s =?t add these to U.

3 For each non-variable position p in s =?t such that s =?t|p
and each rewrite rule r → ` ∈ R, find a set of ∆-mgu’s of
s|p =?r

4 For each unifier σ of s|p and r found in Step 3, create the
problem σs|p[`] = σr

5 Solve σs|p[`] = σr using Steps 1 through 4, for each unifier τ
found, add τσ to U.
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Introduction to Rewriting Logic and Unification

Example

Σ = {e/2, d/3}, R = {d(K , e(K ,X )→ X}, ∆ = ∅
d(W ,Z ) =?Y

First solution Y /d(W ,Z )

Second Solution: d(W ,Z ) unifies with d(K , e(K ,X )) via
σW /e(K ,X )

New problem is X =?Y , solution is τ = X/Y , given unifier
τσ = W /e(K ,Y )

Only variable positions left, so we are done with two unifiers

We were lucky: narrowing often doesn’t terminate!

Will later discuss theories for which narrowing can terminate
and strategies for achieving termination and soundness
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Uses Strand Space Notation

Strand spaces: popular model introduced by Thayer, Herzog,
and Guttman

Each local execution, or session of an honest principal
represented by sequence of positive and negative terms called
a strand.

Terms made up of variables and function symbols
Negative term stand for received message, positive terms stand
for sent messages
Example:
[+(pke(B,NA;A)), − (pke(A,NA;NB)), + (pke(B,NB))]

Each intruder computation also represented by strand

Example: [−(X ),+(pke(A,X ))]
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Basic Structure of Maude-NPA

Uses modified strand space model

Each local execution and each intruder action represented by
a strand, plus a marker denoting the current state

Searches backwards through strands from final state
Set of rewrite rules governs how search is conducted
Sensitive to past and future

Grammars used to prevent infinite loops

Learn-only-once rule says intruder can learn term only once

When an intruder learns term in a backwards search, tool
keeps track of this and doesn’t allow intruder to learn it again

Other optimization techniques used to reduce other infinite
behavior and to cut down size of search space
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

What We Need to Represent

Maude-NPA’s use of backwards search means we have
incomplete picture of what intruder learned in past. But we
need the concrete moment when the intruder learns
something:

Notion of the present

What the intruder knows in the present (i.e., t∈I)
Where the honest principals are in the present (strands)

Notion of the future

What terms the intruder will learn in the future (i.e., t /∈I)

←−−−−−−|−−−−−−
t /∈I t∈I
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

How Protocols Are Specified in Maude-NPA

Represent protocols and intruder actions using strands

Terms in strands obey an equational theory specified by the
user

Terms in strands of different sorts, mostly defined by user

Special sort Fresh

Terms of sort Fresh are always constant (used by nonces)
Strand annotated with fresh terms generated by the strand

:: r :: [+(pke(B, n(A, r);A)),−(pke(A, n(A, r);NB)),+(pke(B,NB))]
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

The Notion of State in NPA Strands

A state is a set of strands plus the intruder knowledge (i.e., a
set of terms)

1 Each strand is divided into past and future
[ m1

±, . . . , mi
± | mi+1

±, . . . , mk
± ]

2 Initial strand [ nil | m±
1 , . . . , m

±
k ], final strand

[ m±
1 , . . . , m

±
k | nil ]

3 The intruder knowledge contains terms m/∈I and m∈I
{ t1 /∈I, . . . , tn /∈I, s1∈I, . . . , sm∈I }

4 Initial intruder knowledge { t1 /∈I, . . . , tn /∈I },
final intruder knowledge { s1∈I, . . . , sm∈I }
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Specifying the Protocol: Sorts

--- Sort Information

sorts Name Nonce NeNonceSet Gen Exp Key

GenvExp Secret .

subsort Gen Exp < GenvExp .

subsort Name NeNonceSet GenvExp Secret Key < Msg .

subsort Exp < Key .

subsort Nonce < NeNonceSet .

subsort Name < Public . --- necessary

subsort Gen < Public . --- necessary

Sorts Msg, Fresh, and Public, are built-in

There always has to be a space before a period!
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Specifying the Protocol: Function Symbols

--- Nonce

op n : Name Fresh -> Nonce [frozen] .

--- Multiplication

subsort Nonce < NeNonceSet .

op _*_ : NeNonceSet NeNonceSet ->

NeNonceSet [frozen assoc comm] .

--- Concatenation

op _;_ : Msg Msg -> Msg [frozen gather (e E)] .

Note that associativity-commutativity must be specified with
the function symbol

Rewrite-Rule based theories are specified elsewhere

gather (e E) means the symbol is right-associative: e.g. a;b;c
= a;(b;c)

The term [frozen] must appear at the end of each definition
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Specifying the Protocol: Equational Theories

eq exp(exp(W:Gen,Y:NeNonceSet),Z:NeNonceSet)

= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [variant] .

eq e(K:Key,d(K:Key,M:Msg)) = M:Msg [variant] .

eq d(K:Key,e(K:Key,M:Msg)) = M:Msg [variant] .

The term [variant] needs to be after each equational rule

K:Key means that K is a variable of sort key

You can also declare the sort of K beforehand
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Specifying the Intruder (Doley-Yao) Rules

eq STRANDS-DOLEVYAO =

:: nil :: [ nil | -(M1 ; M2), +(M1), nil ] &

:: nil :: [ nil | -(M1 ; M2), +(M2), nil ] &

:: nil :: [ nil | -(M1), -(M2), +(M1 ; M2), nil ] &

:: nil :: [ nil | -(Ke), -(M), +(e(Ke,M)), nil ] &

:: nil :: [ nil | -(Ke), -(M), +(d(Ke,M)), nil ] &

:: nil :: [ nil | -(NS1), -(NS2), +(NS1 * NS2), nil ] &

:: nil :: [ nil | -(GE), -(NS), +(exp(GE,NS)), nil ] &

:: r :: [ nil | +(n(i,r)), nil ] &

:: nil :: [ nil | +(g), nil ] &

:: nil :: [ nil | +(A), nil ]

[nonexec] .

DY Rules specify how the intruder constructs and
deconstructs terms
DY rules separated by the symbol ”&”
In this example, sorts of variables declared beforehand
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Specifying the Intruder (Doley-Yao) Rules

vars NS1 NS2 NS3 NS : NeNonceSet . ...

eq STRANDS-DOLEVYAO =

:: nil :: [ nil | -(M1 ; M2), +(M1), nil ] &

:: nil :: [ nil | -(M1 ; M2), +(M2), nil ] &

:: nil :: [ nil | -(M1), -(M2), +(M1 ; M2), nil ] &

:: nil :: [ nil | -(Ke), -(M), +(e(Ke,M)), nil ] &

:: nil :: [ nil | -(Ke), -(M), +(d(Ke,M)), nil ] &

:: nil :: [ nil | -(NS1), -(NS2), +(NS1 * NS2), nil ] &

:: nil :: [ nil | -(GE), -(NS), +(exp(GE,NS)), nil ] &

:: r :: [ nil | +(n(i,r)), nil ] &

:: nil :: [ nil | +(g), nil ] &

:: nil :: [ nil | +(A), nil ]

[nonexec] .

DY Rules specify how the intruder builds terms
DY rules separated by the symbol ”&”
In this example, sorts of variables declared beforehand

Scope is both Dolev-Yao and honest principal strands 35 / 58
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Specifying the Honest Principals

eq STRANDS-PROTOCOL =

:: r,r’ ::

[nil | +(A ; B ; exp(g,n(A,r))),

-(A ; B ; XE),

+(e(exp(XE,n(A,r)),sec(A,r’))), nil] &

:: r ::

[nil | -(A ; B ; XE),

+(A ; B ; exp(g,n(B,r))),

-(e(exp(XE,n(B,r)),Sr)), nil]

[nonexec] .

Fresh variables generated by a principal declared at beginning
Terms received by principal whose structure can’t be verified
represented by variables
If assume principal can verify sort, can specify variable to be
of desired sort
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Specifying Attack States

eq ATTACK-STATE(0)

= :: r ::

[nil, -(a ; b ; XE),

+(a ; b ; exp(g,n(b,r))),

-(e(exp(XE,n(b,r)),sec(a,r’))) | nil]

|| sec(a,r’) inI || nil || nil || never

*** Pattern for authentication

(:: R:FreshSet ::

[nil | +(a ; b ; XE),

-(a ; b ; exp(g,n(b,r))),

+(e(YE,sec(a,r’))), nil]

& S:StrandSet || K:IntruderKnowledge)

[nonexec] .

Attack states specify insecure states you want to prove
unreachable
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Anatomy of an Attack State

1 First part: Strands that are executed in the attack:

:: r :: [nil, -(a ; b ; XE), +(a ; b ; exp(g,n(b,r))),

-(e(exp(XE,n(b,r)),sec(a,r’))) | nil]}

2 Intruder knowledge section saying what terms the intruder
learns: sec(a,r’) inI

3 ”Never patterns” saying what strands should not be executed
in the attack

4 If a state contains an instance of a never pattern, it is
discarded as unreachable

never

*** Pattern for authentication

(:: R:FreshSet ::

[nil | +(a ; b ; XE), -(a ; b ; exp(g,n(b,r))),

+(e(YE,sec(a,r’))), nil]

& S:StrandSet || K:IntruderKnowledge)
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Two Uses of Never Patterns

1 To define authentication properties

To specify an authentication attack property: Can X happen
without Y happening first?
This was done in previous example

2 To narrow the search space

Tell Maude-NPA to ignore states that contain components
that lead to state explosion
If you have previously proven never pattern unreachable, this
does not affect completeness
If you have not, it can still help in searching for attacks
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How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Examples of State-Space Reduction Never Patterns

|| never(

*** Avoid infinite useless path

(:: nil ::

[ nil | -(exp(GE,NS1 * NS2)), -(NS3),

+(exp(GE,NS1 * NS2 * NS3)), nil ]

& S:StrandSet || K:IntruderKnowledge)

*** Pattern to avoid unreachable states

(:: nil ::

[nil | -(exp(#1:Exp, N1:Nonce)),

-(sec(A:Name, #2:Fresh)),

+(e(exp(#1:Exp, N2:Nonce),

sec(A:Name, #2:Fresh))), nil]

& S:StrandSet || K:IntruderKnowledge)

You can specify as many never patterns as you like
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How Maude-NPA Works
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How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics

How Maude-NPA Uses Narrowing

What We Need

A set of rewrite rules describing protocol execution
A narrowing strategy
A unification algorithm

To use in unifying left-hand side of rewrite rules with sub
terms
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How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics

Maude-NPA’s Strategy: Top-Most Narrowing

Essential idea - suppose the following:

If a rewrite rule `→ r can be applied to a term t, it can be
applied to the top of t (` unified with t)
Applying a rule to a proper subterm t is either not possible or
is redundant

Assume also E has a finite complete unification algorithm

In that case, (E ,R) top-most narrowing (left-hand side of
rewrite rule unified with the entire term) is sound and
complete

Moreover, narrowing only at the top is more efficient
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How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics

Terms of Sort State and Rewrite Rules in Maude-NPA

SS & s1 & . . . & sk& {m1∈I, . . . ,mn∈I, n1 /∈I, . . . , ns /∈I, IK}
& is AC and has arguments of sort Strand Space

, is AC and has arguments of sort Intruder Facts

Two types of rewrite rules

Those that describe how strands already in the state behave
Those that describe how new strands enter that state
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How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics

Protocol Rules and Their Execution With Strands
Already in State

To execute a protocol P associate to it a rewrite theory on sets of
strands as follows. Let I informally denote the set of terms known
by the intruder, and K the facts known or unknown by the intruder

1 [ L | M−, L′ ] & {M∈I,K} → [ L,M− | L′ ] & {M∈I,K}
Moves input messages into the past

2 [ L | M+, L′ ] & {K} → [ L,M+ | L′ ] & {K}
Moves output message that are not read into the past

3 [ L | M+, L′ ] & {M /∈I,K} → [ L,M+ | L′ ] & {M∈I,K}
Joins output message with term in intruder knowledge.

For backwards execution, just reverse
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How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics

Introducing New Strands

If we want an unbounded number of strands, need some way
of introducing new strands in the backwards search

Specialize rule r1 using each strand [ l1, u
+, l2 ] of the

protocol P:

[ l1 | u+] & {u /∈I,K} → {u∈I,K}

Gives us a natural way of switching between bounded and
unbounded sessions

Put a bound on the number of times r3 could be invoked with
non-intruder strands
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How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics

Reachability Analysis

Backwards narrowing protocol execution defines a
backwards reachability relation St  

∗
P St

′

In initial step, prove lemmas that identify certain states
unreachable

Specify a state describing the attack state, including a set of
final strands plus terms m/∈I and m∈I
Execute the protocol backwards to an initial state, if possible

For each intermediate state found, check if it has been proved
unreachable and discard if it is
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Unification in Maude-NPA: Variant Narrowing

Outline

1 Problem We’re Addressing

2 Introduction to Rewriting Logic and Unification

3 How Maude-NPA Works
Specifying Protocols and States in Maude-NPA
Backwards Narrowing and Rewrite Semantics

4 Unification in Maude-NPA: Variant Narrowing
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Unification in Maude-NPA: Variant Narrowing

What Is Needed in an E -Unification Algorithm for
Crypto Protocol Analysis

Should apply to a wide class of theories

In particular, should apply to AC theories: Abelian Groups,
Diffie-Hellman, exclusive-or

Should be easy to combine: protocols often combine different
algorithms that obey different equational theories

Should be reasonably efficient

The solution: variant unification
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Unification in Maude-NPA: Variant Narrowing

Variants

Let (Σ,R ]∆) be a an equational theory where

∆ is regular (if a variable appears on one side of an equation,
then it appears on the other
R is a set of rewrite rules confluent, terminating and coherent
wrt ∆.

Let t be a term. A variant of tt is a pair (θ, θt ↓).

A set of most general variants of t is a set of variants V such
that for every variant (θ, θt ↓) there is a variant (σt ↓) ∈ V
such that θt ↓= τ(σt ↓).

Example: Find a set of most general variants d(Y ,Z ) in
({e/2.d/2}, {d(K , e(K ,X ))→W }, ∅)

We already know how to do it : variant narrowing!
You find it by solving d(Y ,Z ) =?W using narrowing.
The set is {(ι, d(Y ,Z )), (Z/e(K ,X ),X )}
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Unification in Maude-NPA: Variant Narrowing

The Finite Variant Property

A theory decomposition (Σ,E = R ]∆) has the finite variant
property if

It satisfies all the conditions described on the previous slide
Every term has a finite most general set of variants.

Concept of variants and finite variants originally due to
(Comon and Delaune, 2005); we use a slightly stronger
definition of variant due to (Escobar, Sasse, Escobar, 2008)

Variants and the finite variant property originally introduced
to characterize theories for which there exist sound, complete,
and terminating narrowing strategies
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Unification in Maude-NPA: Variant Narrowing

What Has the Finite Variant Property, and What Hasn’t

Finite Variant Theories

Zn, ∆ = AC
R = {exp(exp(X ,Y ),Z )) = exp(X ,Y ∗ Z )} ,∆ = AC (for *)
Various forms of cancellation of encryption-decryption

Non Finite Variant Theory

h homomorphic over operator * (doesn’t matter whether it’s
free or AC)
If t = h(X ), then Σ = {ι,X/X1 ∗ X2,X/X1 ∗ X2 ∗ X3, . . .}

Sufficient and/or necessary conditions studied by Escobar,
Sasse, and Meseguer, 2008

A method for using narrowing to compute a most general set
of variants, guaranteed to terminate for theories with the
finite variant property, is given in (Escobar, Sasse, and
Meseguer, JLAP 2011)
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Unification in Maude-NPA: Variant Narrowing

Variant Unification

Suppose E with a finite variant decomposition (∆,R)

To find a most general set of unifiers s =E?t:

First find a complete set of R-variants σ1s ↓, . . . , σks of s and
τ1t, . . . , τnt of t
Then find find a most general set of unifiers of σi s =∆ τj t
The set of solutions will be {. . . , ρijkσiτj . . .}, where the ρijk
are the solutions of σi s =∆ τj t
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Unification in Maude-NPA: Variant Narrowing

Using Narrowing to Find Variants

Let (Σ,E ,X ) be an algebra where E = (R ]∆)

To find all the R variants of a term t, construct a narrowing
tree for (t, ι)

For each leaf in the tree (σ, s) find each substitution ρ and
term r such that s  ρ r

′

If (ρσ, r) doesn’t already appear in the tree, add it as a child
of (σ, s)

If E has the finite variant property, then this will terminate
with all variants found (Escobar et al., 2011)
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Unification in Maude-NPA: Variant Narrowing

Example : Solve X ⊕ a =?Y ⊕b where ⊕ = exclusive-or

X ⊕ a/Y ⊕ b (X ⊕ a, ι) (Z ,X 7→ Z ⊕ a) (a,X 7→ 0) (0,X 7→ a)

(Y ⊕ b, ι) X 7→ Y Z 7→ Y ⊕ b none none

(W ,Y 7→W ⊕ b) W 7→ X ⊕ a W 7→ Z W 7→ a W 7→ 0

(b,Y 7→ 0) none Z 7→ b none none

(0,Y 7→ b) none Z 7→ 0 none none

Table : AC-unifiers of variants

X ⊕ a/Y ⊕ b (X ⊕ a, ι) (Z ,X 7→ Z ⊕ a) (a,X 7→ 0) (0,X 7→ a)

(Y ⊕ b, ι) X 7→ Y X 7→ Y ⊕ a⊕ b none none

(W ,Y 7→W ⊕ b) Y 7→ Y 7→ Z ⊕ b, X 7→ 0, X 7→ a,
X ⊕ a⊕ b X 7→ Z ⊕ a Y 7→ a⊕ b Y 7→ b

(b,Y 7→ 0) none X 7→ a⊕ b none none
Y 7→ 0

(0,Y 7→ b) none X 7→ a,Y 7→ b none none

Table : Solutions to X ⊕ a =?Y ⊕ b derived from AC-unifiers of variants
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Unification in Maude-NPA: Variant Narrowing

Limitations of Variant Unification

Variant (R,∆) unification generates many ∆ unification
problems

Many of these don’t have solutions

Many have equivalent solutions

So you waste a lot of time checking redundant and unsolvable
problems

In the next lecture we’ll talk about a possible better way
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Maude-NPA References

Maude-NPA 2.0 and relevant papers available at
http://maude.cs.uiuc.edu/tools/Maude-NPA/ . We are using an
advance version of Maude-NPA 3.0 that has additional features and
improved performance.

S. Escobar, C. Meadows, J. Meseguer. Maude-NPA: Cryptographic
Protocol Analysis Modulo Equational Properties. FOSAD
2007/2008/2009 Tutorial Lectures, LNCS 5705, pages 1-50.
Springer-Verlag, 2009.
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Unification in Maude-NPA: Variant Narrowing

Variant Unification References

H. Comon-Lundh and S. Delaune. The finite variant property: How to
get rid of some algebraic properties. In RTA’05, LNCS 3467, pages
294-307. Springer, 2005.

Santiago Escobar, José Meseguer, Ralf Sasse. Effectively Checking or
Disproving the Finite Variant Property In proceedings of 19th
International Conference on Rewriting Techniques and Applications (RTA
2008), LNCS 5117, pages 79-93. 2008.

Santiago Escobar, Ralf Sasse, José Meseguer. Folding variant narrowing
and optimal variant termination. The Journal of Logic and Algebraic
Programming, 2011.
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