

Formal verification of medical user interface software in PVS

Paolo Masci

Queen Mary University of London

(paolo.masci@eecs.qmul.ac.uk)

Joint work with

Paul Jones, Yi Zhang (U.S. Food and Drug Administration – FDA)
Patrick Oladimeji, Harold Thimbleby (Swansea University)
Paul Curzon, Michael Harrison (QMUL)
Insup Lee, Oleg Sokolsky (UPenn)

SSFT14 - May 22nd, 2014

CHI+MED research project

www.chi-med.ac.uk

Long-term aim: to transform the design and use of medical devices so as to help clinicians avoid and recover from human error

Combining a variety of approaches

- Mathematical analysis of device designs
- Contextual studies in hospitals
- Lab-based experiments
- Understanding manufacturer's context
- Public engagement

Formal verification – key achievements within chi+med

1. User interface software

- Verification of safety requirements provided by regulators
- Verification of interaction design principles (e.g., consistency)

2. Socio-technical systems

- Analysis of contextual study data / field observations
- Analysis of incidents reports

3. Tool support for model-based prototyping

Validation of models, safety requirements, analysis results

4. Case studies based on real medical devices

 We identified previously undetected defects in medical devices in use in hospitals

Formal verification – key achievements within chi+med

1. User interface software

- Verification of safety requirements provided by regulators
- Verification of interaction design principles (e.g., consistency)

2. Socio-technical systems

- Analysis of contextual study data / field observations
- Analysis of incidents reports

3. Tool support for model-based prototyping

Validation of models, safety requirements, analysis results

4. Case studies based on real medical devices

 We identified previously undetected defects in medical devices in use in hospitals

PVSio-web – model-based prototyping in PVS

www.pvsioweb.org

Javascript front-end

(defines graphical layout + captures user actions)

User action (PVS expression)

Device response (evaluated PVS expression)

PVS back-end

(defines the behaviour of the modelled device)

Infusion pumps

Medical devices in use in hospitals to deliver fluids (drugs, nutrients) intravenously at precise rates and volumes.

Device recalls

Nearly 2,000,000 defective devices recalled in the last decade

 A recall is the removal or correction of a marketed product that regulators consider unsafe (e.g., due to several reported incidents)

Main causes of recalls

- Software defects
- User interface issues

Problems affect all manufacturers and all device models

Regulators concluded that issues are in the engineering process

Software defects in infusion pumps

Coding bugs

null pointers, invalid array index, ...

Interaction logic bugs

Our approach identifies these bugs

- unexpected device modes
- incorrect feedback
- inconsistent response to user inputs

Examples of interaction logic bugs

Interaction logic (as explained in the user manual)

In the Main Menu, open the rate with and set it with ...

(from the user manual)

An accurate specification of the interaction logic

Obtained in our labs by reverse-engineering the real device

Ref: "A case study on the predictability of drug infusion pumps", P. Masci et al, in Innovations in Systems and Software Engineering, Springer-Verlag London, 2013

Subtle differences in interaction logic

Pump 1

Pump 2

Example task: enter 950mL volume

Key presses:

Ignored key presses

Decimal point erroneously ignored

The key sequence

is registered as 1001

Devices from different manufacturers have similar problems

The key sequence

1 0 0 1

is registered as 1001 (the value is fortunately rejected in this device because the pump configuration limits the rate value to 999 mL per hr)

ill-formed values

Integer values with leading zeros (they might be easily misread as fractional values)

Patient monitors have similar problems

Discarded values

Discarded values

Entered values are <u>discarded</u> without any warning when input not terminated with "OK"

Ventilators have the same problem

Datex-Ohmeda

Mindray

Wrong feedback / Non-informative

Lessons learned

Existing formal tools are effective for the analysis of user interfaces

• We don't need new formal tools for the analysis of user interfaces, but new front-ends for existing tools!

Model-based prototyping allowed us to engage with key stakeholders

- Clinicians
- Medical device trainers
- Regulators
- Engineers

Key references

"Formal Verification of Medical Device User Interfaces Using PVS."

P. Masci, Y. Zhang, P. Jones, P. Curzon, H. Thimbleby In **ETAPS/FASE2014**, Grenoble, France, April 5 -- 13, 2014

"Model-based development of the Generic PCA infusion pump",

P Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, H. Thimbleby in **SAFECOMP2013**, , Intl. Conference on Computer Safety, Reliability and Security, 2013

"Verification of interactive software for medical devices"

P Masci, A. Ayoub, P. Curzon, M.D. Harrison, I. Lee, H. Thimbleby in **EICS2013**, ACM SIGCHI Symposium on Engineering Interactive Systems, 2013

"PVSio-web: a tool for rapid prototyping device user interfaces in PVS"

P. Oladimeji, P. Masci, P. Curzon, H. Thinbleby in FMIS2013, 5th workshop on Formal Methods for Interactive Systems http://www.pvsioweb.org

Paolo Masci

0

Patrick Oladimeji

(p.oladimeji@swansea.ac.uk)