Piecewise Affine Models from Input-Output Data

Rajeev AlurNimit SinghaniaUniversity of Pennsylvania

Summer School on Formal Techniques 2014 Menlo College

Problem

- To represent real valued Input-Output Data *D* succinctly using a piecewise linear function
- A piecewise linear function
 - Input domain partitioned into regions
 - Each region mapped to a linear function
 - Region represented by a guard condition

Example

 $(10, 10) \rightarrow 25$ $(0, 0) \rightarrow 0$ $(20, -20) \rightarrow 17$

Example

Example

• Piecewise Linear Function *f*:

else if $(x1 \le -5 \land x2 \le -5) \lor (5 \le x1 \land 5 \le x2)$ then

x1 + x2 + 5

0

else

Solution

- In 2 phases
 - Find a set of *linear functions L*
 - Find guard condition for each linear function in L
- Optimal solutions to both problems are NP-Hard
 - Only best effort solution

Finding Linear Functions

- To find a set of linear functions *L* such that
 - each (x, y) in **D** is represented by a linear function in L
- Learn *L* iteratively
 - Pick a random point p in **D**
 - Find a linear function that represents points in the neighborhood of p and add it to L
 - Remove the covered points from **D** and repeat

Finding Linear Functions

- Say 3 linear functions found for the example
 - I1: x1 3
 - I2: x1 + x2 + 5
 - I3: 0
- Every point in *D* represented by a linear function

30	- 0	0	0	0			-
20	- 0	0	0	0	•	۰	•
10	- 0	0	0	0	•	۰	•
× [~] 0	- 0	0	0	0	0	0	•
-10	- 🛛	•	•	0	0	0	۰ -
-20	- 🛛	•	•	0	0	\$	۰ -
-30	- 🗖	•	•	0	٥	٥	٠ -
	-30	-20	-10	0 x ₁	10	20	30

Finding Guards

- To find guard condition Φ for the linear function *I* in *L*
 - marks the region where / is defined
 - ϕ is *true* on points represented by *I*, marked **positive**
 - ϕ is *false* on points *not* represented by *I*, marked **negative**
 - ϕ needs to separate **positive** and **negative** points
- Problem of learning a precise *binary classifier*
- Problem of learning *interpolant*

Guard for I1

Guard for I2

Precise Classifiers

- Find *groups* of positive and negative points
- Each positive and negative group can be separated by a linear inequality
- Combine inequalities so that all positive groups can be separated from negative groups

Guard for 12

Precise Classifiers

- Use counter example guided approach to learn these groups
 - Start with a single positive and negative point as positive and negative group.
 - Iteratively update groups using counter examples until correct classifier is found
- Based on interpolant learning technique
 - "Beautiful Interpolants" by Albarghouthi et. al in CAV 2013.

Conclusion

- Presented a technique to represent input-output data using piecewise linear functions
- Combined use of machine learning and verification techniques
- One potential application in modeling hybrid systems
- Questions?