Putting Numerical A
to Work: A Study ¢
Checking for (

Arnaud J.
Carnegie Mello

NASA Ames Rese
arnaud.j.venet(

This work was partially supported by the NSF Grant #1136008 and the SSAT p
Research Mission Directorate.

Abstract Interpretation

A theory of sound semantic approximation
introduced by Patrick & Radhia Cousot in the mid
70’s

First application to the computation of variable
ranges (1976)

Verification of the numerical algorithms in the
A380 flight software (2005)

Numerical abstract interpretation is an active field
of research

Roadmap

* The domain of convex polyhedra

* Application to array-bound checking:
— The buffer library of OpenSSH (700 LOC)

— The flight software of Mars Exploration Rovers (550
KLOC)

* Improving scalability: the gauge domain

The domain of

A simple example

for(i = 0; i < 10; i++) {
if (message[i] .kind == SHORT DATA)
allocate space (channel, 1000);
else

allocate space (channel, 2000) ;

What are the memory requirements?

Control flow graph

i<10 ?

/ v
message[i] .kind
/ <= SHORT CMD *?

allocate_space allocate_space

(channel, 1000) \\\\ f/// (channel, 2000)
i++

Abstract model of th

i<10 ?

== SHORT_CMD ?
allocate space<;\\ 411oca’ ‘spadecate_space

(channel, 1000) (channe,, 1ebepnel,; 2000)

M =M + 2000

-
-
S~ _———
~ - -
_—— ———————

Analyzing the moc

—————————————————————

i<10 ?

i
M = M + 1000 \M=M+2000

Initially

i<10 ?

O ;
M=M + 1000 / \M=M+2000

Loop initialization

—————————————————————

Loop entry

—————————————————————

i<10 ?

i
M = M + 1000 \M=M+2000

Analyzing a branc

—————————————————————

i<10 ?

M=M + 1000 / \M=M+2000

Analyzing a branch

=0 0 Mr---cr----y----71----n
1
1
1

1
. 1
i=20 1

1
1
1
1
‘____L____J.____J____JI
1
1
1
1
N
A
M- r——-1"==-1=-=-=1

‘ ____________________

Accumulating all pc

1 1 1 1
i <10 ? S S
1 1 1 1
1 1 1 1

i
M = M + 1000 \M=M+2000

Abstraction of point cl

We want the analysis to terminate in reasonable
time

We need a tractable representation of point clouds
in arbitrary dimensions

Convex polyhedra (Cousot & Halbwachs, 1978)

Compute the convex hull of a point cloud

Analyzing a branc

M=0 M ""'I'___"'___'l"__':
'----I'----T-_--'I--__'i
i=0
‘____L____J.____J.____J:
i< 10 ? :
i

A
M '__"I'___'T'___'l"__':
M = M + 2000 I
i

it++

Convex hull

i<10 ?
i
M = M + 1000 \M=M+2000

Iterating the loop a

'{/\

"""""""""""""""

—————————————————————

Building the loop i

————————————————————

i<10 ?

1

i
M = M + 1000 \M=M+2000

Analyzing a branc

————————————————————

i<10 ?

M=M + 1000 / \M=M+2000

1

Analyzing a branc

Convex hull

i<10 ?

i
M = M + 1000 \M=M+2000

Building the loop i

M=M + 1000 / \M=M+2000

""""

——————————

Keep iterating...

- .
{ o
A

——————————

Passing to the limit

* We want the analysis to terminate when analyzing
loops

e After a few iteration steps, we use a widening
operation at loop entry to enforce convergence

Widening V

* Leta,, a,, ...a,, ... be a sequence of polyhedra, then
thesequence

—W;=a

~ W =W, Vg,

is ultimately stationary
* The widening is a join operation:
CaVb & bC aVhb

Widening for interva
* [a,b] V]c, d] =

[if c < athen - else 3, if b < d then +x else b]

e Example:
[10, 20] V [11, 30] =[10, +00]

* We eliminate the faces of the computed convex
envelope that are not stable

* Convergence is reached in at most N steps where
N is the number of faces of the polyhedron at loop
entry

Widening

M =M + 1000

After the widenin

- .
{ o
A

——————————

Detecting convergence

* Abstract iteration sequence
— F, = P (initial polyhedron)
—F,. =F, if S(F,) € F,
F. V S(F,) otherwise
where S is the semantic transformer associated to
the loop body

* Theorem: if there exists N such that F,; € F, then
F.=F,forn>N.

Convergence

i<10 ?

M=M + 1000 M=M + 2000

it++

1

|

|

1

1
R DS
e I STy B

The computation has
converged

We are not done yet...

The analyzer has just proven that

1000 * i <M <2000 * i
But we have lost all information about the termination
condition0< 1 <10

Since we have obtained a superset of all possible values of
the variables, if we run the computation again we still get

a superset
This new envelope may be smaller

This refinement step is called narrowing

Refinement

Analyzing a branc

Convex hull

M=0
i=20
i< 10 ?

9 i
M = M + 1000 \M=M+2000

-,
{ b
.

Narrowing

2 |
s | i
@ " i
M =M + 1000 / \M=M+2000 i
10 1
i++

Refined loop inva

M=0
i=20
i< 10 ?

M = M + 1000 \M=M+2000

Invariant at loop

® -
‘ i=0 M
20,000 [Tt
i<10 ?
10,000 |-----------a

i= 10 10 1
M = M + 1000 M = M + 2000

Static array-

The problem

double
for (1

}

i=10—— |a[i] =

[10];
0; i < 10; i++) {

1.0; v
.0; &

n n o

o

* Do all array access operations occur within
bounds?

* Requires the computation of numerical invariants

Why is it important?

Most critical applications are written in C (flight
software, SSH, BIND)

No runtime checks
The memory is silently corrupted

— Source of nondeterminism
— Vulnerability to malicious attacks
— Standard test practices are of little help

About 50% of all CERT reports originate from a
buffer overflow

Arrays or pointers?

* In C, every memory access goes through a pointer:

a[i] = *(a + 1)

* Tracking a pointer p requires
— A symbolic address p. = &A, malloc(...)
— A numerical offset p 4 expressed in bytes

* |tis not safe to rely on the type information in C
- s.f.qg istranslated into <ss, off(f) + off(g)>

Example

struct bytes {
unsigned char b[4];

}i

int i;

struct bytes *p = (struct bytes *)&i;
p->b[1l] = 0x03;

* This comes from a real embedded application
e Byte-level granularity is required

Taxonomy (l)

e |deal case: static allocation and bounded offsets

double a[1l0];

for (1 = 0; i < 10; i++) {
a[i] = 1.0;

}

a[i] = 0.0;

e Usually occurs at the function level
— Local manipulations on stack allocated buffers

* |n practice it is a small fraction of all array accesses

Taxonomy (ll)

* |Interprocedural pointers and bounded offsets

v
void f(struct S *p) {

int 1i;
for (1 = 0; i < 8; i++) {
p->a[i] = ...;
}
}

f (&big struct.s);

* Very common in embedded code

* MATLAB/Simulink autocode falls under this
category

Taxonomy (lil)

e Offsets and pointers are intertwined

v
void f(double *p, int n) {
int i;
«ee for (1 = 0; i < n; i++) {
f(&S[3], 8); p[i] = ...;
}

}

* This is the worst case and is also very common

 Complex, critical codes:

— Mars Exploration Rovers mission control software
— Intelligent flight controllers

— Security-sensitive applications (SSH, BIND)

What analysis to use?

* Typel:
— Intervals at the function level
* Typelll:

— Separate pointer analysis: field sensitive, flow-insensitive,
context-sensitive

— Intervals at the function level
— 99% accuracy on MATLAB/Simulink autocode

* Type lll:
— Relational numerical domain

— Inline function calls and/or compute function summaries
— Scalability is an issue

Roadmap

* There are many numerical domains available in the
literature

* How to put the existing domains to work on real
applications:
— The buffer library of OpenSSH (700 LOC)

— The flight software of Mars Exploration Rovers (550
KLOC)

 We may need different types of abstractions:
— The gauge domain

OpenSSH

* Description
— Open-source implementation of utilities based on the
SSH protocol (ssh, scp, sftp, etc.)

— Widely used, security sensitive

* Implementation

— OpenSSH uses a single data structure to represent
buffers

— Cryptographic keys, deciphered messages, etc. are all
stored in buffers

— Good target for verification by static analysis

Buffer structure

typedef struct {
u_char *buf;
u_int alloc;
u_int offset;
u_int end;
} Buffer

| -

append

Characteristics

Standard FIFO queue
700 LOC

Lots of Boolean logic added for fault tolerance

The queue expands by increments if there is not
enough space

— The most complex algorithm in the library
— “Weird” implementation using a backward goto

Expansion algorithm

void *

limffer_append_space(Buffer *buffer, u_int len) (Add data Of Iength len

u_int newlen;
void *p;

if (len > BUFFER_MAX_CHUNK)
fatal ("buffer_ append_space: len %u not supported”, len);

/* If the buffer is empty, start using it from the beginning. */
if (buffer->offset == buffer->end) {

buffer->offset = 0;
buffer->end = 0;

}

restart:

A A /* If there is enough space to store all data, store it now. */
if (buffer->end + len < buffer->alloc) {
p = buffer->buf + buffer->end; < end + len < alloc
buffer->end += len;

X return p; 9 done

/*
* If the buffer is quite empty, but all data is at the end, move the

* data to the beginning and retry.
*/

if (buffer->offset > MIN(buffer->alloc, BUFFER_MAX CHUNK)) {& Try to paCk data

memmove (buffer->buf, buffer->buf + buffer->offset,

buffer->end - buffer->offset);

buster->ena = ttor sostses to the left and retry

}

/* Increase the size of the buffer and retry. */

newlen = buffer->alloc + len + 32768; <€ Expand Size by

if (newlen > BUFFER_MAX_LEN)
fatal ("buffer_append_space: alloc %u not supported",

nelon increment and retry

buffer->buf = xrealloc(buffer->buf, newlen);
buffer->alloc = newlen;

— gOtO restart;

/* NOTREACHED */

goto restart;

Appending data to t

void
buffer append(Buffer *buffer, const void *data, u_int len)
{

void *p;

p = buffer append space(buffer, len);

memcpy (p, data, len);

} A

Automatically prove that the operation
stays within the bounds of the buffer

Design of the analysis

* The expressive power of convex polyhedra is
required

* Inlining the library into the OpenSSH code is not
conceivable

 Modular approach:

— We build a simplified model of a client of the library on
one buffer

— The client nondeterministically calls functions of the
library on the buffer with consistent arguments

— We inline the library code into the client and analyze it

The client

volatile u_int random;
Buffer buffer;

buffer init(&buffer);
for (random) {
switch(random) {
case 0: {

u_int len = random;
u_char *data = malloc(len);
buffer append(buffer, data, len);
break;

First try

* Settings
— Polyhedral domain: Bertrand Jeannet’s New Polka
— C front-end: CIL
— Fixpoint iterator: Bourdoncle’s algorithm

* Running the analysis:

— Failure

— The widening operation on polyhedra crashes because
there are too many variables

Optimizations

* The front-end generates a lot of auxiliary variables,
which weigh on the polyhedral domain

* Inlining also introduces lots of redundancy
 We run initial passes that perform:

— Constant propagation
— Copy propagation
— Dead variable elimination

 The number of variables is greatly reduced
* New run: Crash!

A bit of head scratching

* The crash always occurs during the widening
* We make two observations:

— The invariants contain a lot of linear equalities

— Most of these equalities are common to both operands
of the widening

 We decide to remove the common equalities from

the invariants, apply the widening and add them
back to the result

It works!

The analysis runs in few seconds

But all the nontrivial checks are flagged as
warnings...

It finally scales but now it’s not precise enough

The problem comes from the logic inserted to
make the library robust

Example

int
buffer consume_ret (Buffer *buffer, u_int bytes)

{
if (bytes > buffer->end - buffer->offset) {

error ("buffer consume ret: trying to get more bytes
than in buffer");
return (-1);

) \ NP
buffer->offset += bytes; Join of invariants

return (0); - Loss of precision
}
void
buffer consume(Buffer *buffer, u_int bytes)
{
if (buffer_ consume_ ret(buffer, bytes) == -1)

fatal ("buffer consume: buffer error");

Solution

* We could use trace partitioning techniques (Rival
& Mauborgne)

— Dramatically complicates the analysis
 We are only interested in execution traces that do
not abort

— We model the fatal function as bottom

— We perform an iterated forward/backward analysis
between the beginning and the end of each library
operation

* Full verification is achieved in 35 seconds!

Observations

* |f we turn off the initial optimizations the analyzer
crashes

 How far can we push the scalability with the
optimized widening?

* Not very far
— We added one variable to the main loop of the client

— The analyzer crashes

 The approach based on a general-purpose
expressive domain seems very brittle

Mars Exploration Rovers

e Large flight software (550+ KLOC)
* Developed with an object-oriented approach
 Thousands of small generic functions

* QOur approach:
— Compute function summaries

— No loops in summaries, just numerical invariants and
symbolic pointer constraints

— Use a weakly relational numerical domain to achieve
scalability: difference-bound matrices (DBMs)

Example

void assign(double *p, double *qg, int n) {

int i;
for (1 = 0; i < n; 1i++) {
pli] = q[i];

}
}
P < X S pst Sn

* Not expressible in the domain of DBMs or even
octagons

Templates for pointer a

 We introduce a symbolic expression based on the
syntax of the pointer expression from the AST:

plil[j] wmw) b +k,0,+k,0,

* Constraints on the parameters of the template are

expressible as DBMs:

b = Poff
k, = 64

— 0;=1
k,=8

027

Scalability

* We can express general linear inequalities at the
price of a larger number of variables

* First experiments are a disaster

— |t takes hours to analyze a single function

— The DBMs were supposed to scale better (cubic in the
worst case)

 The problem is that the upper complexity bound is
always attained!

Explanation

e Range constraints in DBMs (or octagons) are
expressed using a special variable Z that is

semantically equal to O
* x=[a, b]isexpressedasx—72<bandZ—-x<-a
* Variables in a program are always initialized
(hopefully)

 The graph of unitary relations over the program
variables is then strongly connected

— Worst case for the closure algorithm

Variable packing

* A solution is to only consider relations over small
sets of variables like in ASTREE

e Problem:

— A good packing can be determined statically in ASTREE
because of the specificities of the code considered

— In our case we have a fairly general C program
* QOur approach:
— Dynamic variable packing at analysis time

— Variables appearing in a statement are put together

Technicalities

* Doing dynamic packing is not straightforward as
partitions must be merged on the fly:

— Complex domain structure (cofibered domain)

* Implicit relations must be taken into account:

for(..) {
i++; |
j++;

}

e Variables modified within a loop are put in the
same pack

-
Il
l_l

Outcomes

* The whole MER flight software can be analyzed in
less than 24 hours

* The precision is over 80%

* Downsides of the approach:

— Scalability is achieved at the price of a careful and
complex engineering

— There isn’t much margin left to improve on the
precision

Scalability

The gauge domain

 The domain of polyhedra is expressive enough but
doesn’t scale

* Weakly relational domains scale better
(somewhat) but are not expressive enough

* Design a specialized domain for a certain type of
invariants: the gauge domain

— Focuses on finding implicit loop invariants among
variables

From Intervals to Gaug

* |Intuitively, a gauge is an integer interval that
inearly varies across the iteration space

* |Interval:

as<x<b
* Gauge:
Qpt+a M t..tah Sx<by+b A +..+b A
— Ny ey Ay 20
—a,<b

|
— The parameters A, denote the iteration counters of all

enclosing loops

Exposing Loop Counter

* We label each loop with a fresh counter A

* We introduce operations on the A’s to model the
semantics of loop iterations

i=0; i = 0; new),
while (i < 10) { A;: while (i < 10) {
j = 0; j = 0; newA,

while (j < i) { A,: while (j < i) {

j++; j++; inch,
} } forgetA,
it++; i++; inch,
} } forget A,

* This is an entirely automated process

How do we compu

A: for (1 = 0; 1 < 10; i++) {
ﬁif (..) {

j += 2;
} else {
j += 3;
}
} .
Linear 1+ 3
14 Interpolation 74 14920
4
3
1 1
> >

Computational Comple

Variables| =n
Loop Depth| =k
e Joins and widenings: O(kn)

e Arithmetic operations: O(k)
* Loop operations (new, forget, inc): O(kn)
* |f kis assumed bounded:

— Linear complexity for domain operations

— Constant complexity for semantic transformers
— It is the same complexity as the domain of intervals

Experimental Resul

* Buffer-overflow analysis performed on an intelligent flight
control system developed at NASA

e 144 KLOC of C
* Complex adaptive avionics

* Analyses run on a laptop
— Commercial tool: high-end server with 32 cores and 64GB memory

AnalysisTime | Precision __

Intervals + Complete Inlining 41 min 79%
Commercial Tool 5 hours 91%
Octagons > 27 hours N/A

Gauges 10 min 91%

Unexpected benefits

* Some loops in the MATLAB/Simulink autocode

have an unusual control structure:
p = &a[0];
i= 10;
while (1 != 0) {
*pH+ = ..
i--;

}

* This is bad for static analysis where only
inequalities can be analyzed precisely T

— The 1% not resolved by intervals

Gauges can help

e Relation between variables and loop counters

p = &a[0];

i = 10;

while (i != 0) {_ i=10-A
*p++ = ..; P=47\~
i-—j;

}

* Since counters are monotonic and positive, we can
automatically replace the test withi > 0

 We obtain 100% precision

Limitations of gauges

* The domain only provides information inside loops

— The A’s are loop counters
e QOutside of loops gauges are mere intervals

* Gauges have to be combined with other domains
using the reduced product

D = Gauge x D1 x D2 x ...

Perspectives

 There are many numerical domains available but
few have been applied to real code

* We believe in combining simpler, specialized and
efficient abstract domains over using a monolithic
approach

 We are still a long way from being to able to
automatically verify security-sensitive applications,
even small ones

