
Formal Methods School, Menlo Park, 2012

Satisfiability Modulo Theories
Equalities + Uninterpreted Functions (EUF)

Linear Arithmetic

Summer School on Formal Techniques
Menlo Park, May 2012

Bruno Dutertre Leonardo de Moura

SRI International Microsoft Research

Formal Methods School, Menlo Park, 2012

Outline

SAT Solving: check satisfiability of Boolean formulas (propositional logic)

SMT Solving: extends SAT solving to first-order theories

Lecture Content:

◦ SMT: CDCL + Theory Solvers
◦ Theory Solvers for Equality + Uninterpreted Functions
◦ Theory Solvers for Linear Arithmetic

1

Formal Methods School, Menlo Park, 2012

SMT Solving:
CDCL + Theory Solver

2

Formal Methods School, Menlo Park, 2012

Decision Procedures

Definition

◦ Algorithm to determine whether a formula φ (in a first-order theory T) is
satisfiable.

Examples

◦ Congruence closure: for quantifier-free formulas, uninterpreted functions
◦ Simplex methods for quantifier-free linear arithmetic
◦ Cylindrical algebraic decomposition for real closed fields

More useful versions

◦ Decision procedures for combinations of theories:

2.car(x)− 3.cdr(x) = f (cdr(x))⇒
g(cons(4.car(x)− 2.f (cdr(x)), y)) = g(cons(6.cdr(x)), y)

3

Formal Methods School, Menlo Park, 2012

Dealing with Boolean Structure

Many decision procedures (e.g., congruence closure, simplex) work on
conjunctions of literals

They can still be applied to arbitrary formula φ. For example, write φ in DNF:

(a11 ∧ . . . ∧ a1n) ∨ . . . ∨ (am1 ∧ . . . ∧ amp)

Problem: this is highly inefficient

◦ DNF can explode
◦ If several conjuncts share identical literals, we prove the same thing many time:

(f (x, y) 6= f (y, x) ∧ z = 3x + 1 ∧ x = y ∧ z < 0) ∨
(t > g(y) ∧ x = y ∧ z + 3 6 0 ∧ f (x, y) 6= f (y, x)) ∨ . . .

Better approach: use a Boolean SAT solver to enumerate the conjuncts

◦ This is Satisfiability Modulo Theories: efficient combination of SAT solver and
decision procedures

4

Formal Methods School, Menlo Park, 2012

Basic SMT Solving

x + y > 0 ∧ (x = z ⇒ z + y = −1) ∧ z > 3t

1) Replace atoms by Boolean variables

a 7→ x + y > 0 b 7→ x = z

c 7→ z + y = −1 d 7→ z > 3t

2) Ask for a model of a ∧ (b⇒ c) ∧ d using a SAT solver

◦ Boolean model: {a, b, c, d}
◦ Convert the model back to arithmetic

x + y > 0 ∧ x = z ∧ z + y = −1 ∧ z > 3t

and check its consistency
Answer: not consistent
Explanation: Arithmetic |= ¬(x + y > 0 ∧ x = z ∧ z + y = −1)

5

Formal Methods School, Menlo Park, 2012

Basic SMT Solving (continued)

3) Feed the explanation to the SAT solver:

◦ add the clause (¬a ∨ ¬b ∨ ¬c)

4) Get a model of (a ∧ (b⇒ c) ∧ d) ∧ (¬a ∨ ¬b ∨ ¬c)

◦ Boolean model: {a,¬b, c, d}
◦ Convert back to arithmetic:

x + y > 0 ∧ ¬(x = z) ∧ z + y = −1 ∧ z > 3t

◦ Check consistency: satisfiable

x = 1, y = 1, z = −2, t = −1

Conclusion: The original formula is satisfiable

6

Formal Methods School, Menlo Park, 2012

Improvements to the Basic Approach

Make it incremental

◦ Don’t wait for a full Boolean model to check consistency: interleave Boolean
propagation and calls to the theory solver

Theory propagation

◦ Example: given partial model {a, d, c} (i.e., x + y > 0, z + y = −1, z > 3t)
the linear arithmetic solver can deduce that b must be false
(since Arithmetic |= x + y > 0 ∧ z + y = −1⇒ ¬(x = z))
◦ Theory propagation: detect this and assign ¬b in the SAT solver.

Benefit of these improvements: prune the SAT solver search space

7

Formal Methods School, Menlo Park, 2012

Approaches to SMT Solving

Eager Methods

◦ Convert SMT problem into an equisatisfiable SAT problem
◦ Example theories: bitvectors, difference logic, equality

Lazy Methods

◦ Close integration of a SAT solver and decision procedures
◦ More widely applicable that eager methods
◦ Most common approach: CDCL SAT solver combined with a theory solver

8

Formal Methods School, Menlo Park, 2012

Theory Solver

Notation

◦ We assume a theory T (quantifier-free for now)
◦ We use T ` A to denote that formula A is valid in T

Theory Solver

◦ A decision procedure for T specialized to interact with a CDCL SAT solver
◦ Implements two new rules T-Propagation and T-Conflict
◦ T-Conflict:

– given a set of literals M (i.e., a partial model), find a clause C such that
M |= ¬C and T ` C.

◦ T-Propagation:
– given a set of literals M , find C and ` such that ` is not assigned in M , and
M |= ¬C, and T ` C ∨ `.

9

Formal Methods School, Menlo Park, 2012

Abstract CDCL(T)

M ||F =⇒ M` ||F if
{
` or ` occurs in F
` unassigned in M

(Decide)

M ||F,C ∨ ` =⇒ M`C∨` ||F if
{
` unassigned in M
M |= ¬C (UnitPropagate)

M ||F =⇒ M`C∨` ||F if


` unassigned in M
` or ` occurs in F
T ` C ∨ `
M |= ¬C

(T -Propagate)

10

Formal Methods School, Menlo Park, 2012

Abstract CDCL(T) continued

M ||F,C =⇒ M ||F,C ||C if M |= ¬C (Conflict)

M ||F =⇒ M ||F ||C if
{
T ` C
M |= ¬C (T -Conflict)

M ||F ||C ′ ∨ ` =⇒ M ||F ||C ∨ C ′ if `C∨` ∈M (Resolve)

M ||F ||C =⇒ M ||F,C ||C if C 6∈ F (Learn)

M`0M
′ ||F ||C ∨ ` =⇒ M`C∨` ||F if

{
M |= ¬C
` unassigned in M

(Backjump)

M ||F ||2 =⇒ unsat (Unsat)

11

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r

12

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r

13

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r

3 < x︸ ︷︷ ︸
p

implies ¬x < 0︸ ︷︷ ︸
q

so T ` ¬p ∨ ¬q

14

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

p ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r

15

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

p ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
pp ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r

16

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

p ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r

17

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

p ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r

3 < x︸ ︷︷ ︸
p

∧x < y︸ ︷︷ ︸
r

∧ y < 0︸ ︷︷ ︸
s

is false so T ` ¬p ∨ ¬r ∨ ¬s

18

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

p ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (T-Conflict)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r ∨ ¬s

19

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

p ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (T-Conflict)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r ∨ ¬s ⇒ (Resolve)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r

20

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

p ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (T-Conflict)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r ∨ ¬s ⇒ (Resolve)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r ⇒ (Resolve)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p

21

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

p ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (T-Conflict)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r ∨ ¬s ⇒ (Resolve)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r ⇒ (Resolve)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ⇒ (Resolve)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || 2

22

Formal Methods School, Menlo Park, 2012

CDCL + Theory: Example

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

p ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)
p ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (T-Conflict)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r ∨ ¬s ⇒ (Resolve)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r ⇒ (Resolve)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ⇒ (Resolve)
p ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || 2 ⇒ (Unsat)

unsat

23

Formal Methods School, Menlo Park, 2012

More on Theory Propagation

T-Propagation is optional

◦ Without it, the Decide rule may branch the wrong way but this will lead to a
T-Conflict (detected later)

T-Propagation can be expensive

◦ There’s a tradeoff between the cost of theory propagation and the
search-space reduction it provides
◦ In practice, theory solvers use incomplete forms of theory propagation.

They find some literals that are implied by the current assignment M , but not
necessarily all of them

24

Formal Methods School, Menlo Park, 2012

Minimal Explanations

T-Conflict

◦ the theory solver produces a clause C such that

M |= ¬C and T ` C

T-Propagate:

◦ the theory solver finds ` and C such that

M |= ¬C and T ` C ∨ `

Precise Explanations:

◦ In both cases, there may be several such clauses C
◦ If C contains irrelevant literals, then the rules are still sound, but performance is

worse
◦ For best pruning, the theory solver should produce minimal explanations C

25

Formal Methods School, Menlo Park, 2012

Ideal Properties of Theory Solver

Incrementality

◦ Theory solvers process successive sets of literals M0 ⊂M1 ⊂ . . . ⊂Mk

Should try to reuse work: save results from processing Mi to accelerate
processing of Mi+1

Fast Backtracking

Efficient Theory Propagation

Precise Theory Explanations

26

Formal Methods School, Menlo Park, 2012

Equality with Uninterpreted Functions

27

Formal Methods School, Menlo Park, 2012

Theory Solver for EUF

Equality Axioms

◦ Reflexivity: x = x

◦ Symmetry: x = y ⇒ y = x

◦ Transitivity: x = y ∧ y = z ⇒ x = z

◦ Congruence: x1 = y1 ∧ . . . ∧ xn = yn ⇒ f (x1, . . . , xn) = f (y1, . . . , yn)

Theory Solver

◦ Given a set M of equalities and disequalities between terms:
– Check whether M is consistent, if not find a minimal explanation
– Propagate implied equalities and disequalities

28

Formal Methods School, Menlo Park, 2012

A Simple Case: No Function Symbols

Union-Find Data Structure

◦ The theory solver state consists of
– a find structure F that maintains equivalence classes
– a set of disequalities D

◦ F defines a set of merge trees

t u

x

z

w

v s r
y

◦ F (x) = x if x is a root, otherwise F (x) is the parent of x

29

Formal Methods School, Menlo Park, 2012

Union-Find

Equivalence Relation

◦ Let F ∗(x) denote the root of the tree containing x, then
x and y are equal if F ∗(x) = F ∗(y) (i.e., x and y are in the same tree)

Union Operation

◦ Processing equality x = y amounts to merging the classes of x and y
◦ Let sz(F, x) denote the size of the equivalence class that contains x then

union(F, x, y) =


F if x′ = y′

F [x′ := y′] if x′ 6= y′ and sz(F, x) < sz(F, y)

F [y′ := x′] otherwise

where x′ = F ∗(x) and y′ = F ∗(y)

◦ Optimization: path compression, update F when computing F ∗(x).

30

Formal Methods School, Menlo Park, 2012

Theory Solver for Variable Equalities

State

◦ F : the find structure
◦ D: a set of disequalities

◦ Initially:
– F (x) = x for all x
– D = ∅

◦ The state is inconsistent iff there are x and y such that F ∗(x) = F ∗(y) and
(x 6= y) ∈ D

Operations

◦ addeq(x = y, F,D): add an equality

◦ addneq(x 6= y, F,D) : add a disequality

Both operations either report unsatisfiability or return a new state 〈F ′, D′〉

31

Formal Methods School, Menlo Park, 2012

Processing Equalities

addeq(x = y, F,D) := 〈F,D〉 if F ∗(x) = F ∗(y)

addeq(x = y, F,D) :=


unsat if F ′∗(u) ≡ F ′∗(v) for some

u 6= v ∈ D
〈F ′, D〉 otherwise

where F ∗(x) 6≡ F ∗(y) and F ′ = union(F, x, y)

32

Formal Methods School, Menlo Park, 2012

Processing Disequalities

addneq(x 6= y, F,D) := unsat if F ∗(x) ≡ F ∗(y)

addneq(x 6= y, F,D) := 〈F,D〉 if there is u 6= v ∈ D or v 6= u ∈ D
such that F ∗(x) = F ∗(u) and F ∗(y) = F ∗(v)

addneq(x 6= y, F,D) := 〈F,D ∪ {x 6= y}〉 otherwise

33

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x2, x3 7→ x3, x4 7→ x4, x5 7→ x5}
D = ∅

34

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x2, x3 7→ x3, x4 7→ x4, x5 7→ x5}
D = ∅

Merge classes of x1 and x2

35

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x3, x4 7→ x4, x5 7→ x5}
D = ∅

36

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x3, x4 7→ x4, x5 7→ x5}
D = ∅

Merge classes of x1 and x3

37

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}
D = ∅

38

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}
D = ∅

No change: x2 and x3 are already in the same class

39

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}
D = ∅

Add disequality

40

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}
D = {x2 6= x4}

41

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}
D = {x2 6= x4}

Merge classes of x4 and x5

42

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x4}
D = {x2 6= x4}

43

Formal Methods School, Menlo Park, 2012

Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x4}
D = {x2 6= x4}

Model Found

◦ domain E = {a, b} (two equivalence classes in F)
◦ M(x1) = M(x2) = M(x3) = a

◦ M(x4) = M(x5) = b

44

Formal Methods School, Menlo Park, 2012

General Case: Function Symbols

Congruence Closure

◦ The data structure must now define a congruence-closed equivalence relation
For any n-ary function F , we must have

x1 = y1, . . . , x1 = yn ⇒ f (x1, . . . , xn) = f (y1, . . . , yn)

Use Lists

◦ We add a new index to the solver state: π(t) is the set of terms that contain t or
any term in the same class as t
◦ Example:

{f (f (a)), g(a), a, g(b)} F = {b 7→ a, g(a) 7→ g(b), . . .}

π(a) = {f (a), g(a), g(b)} π(g(a)) = ∅
π(f (a)) = {f (f (a))} π(f (f (a))) = ∅

45

Formal Methods School, Menlo Park, 2012

Congruence Closure

Processing Equality

◦ When we merge the classes of s and t, we must do more than before
– Merge the use lists π(s′) and π(t′), where s′ = F ∗(s) and t′ = F ∗(t)

– Find equalities implied by s = t by congruence:
- Find u in π(s′) and v in π(t;) such that u and v are congruent in F
- Add u = v to a queue of equalities to process

– Process all equalities in the queue

46

Formal Methods School, Menlo Park, 2012

Possible Implementations of Use Lists

Circular Lists

◦ constant time merge and split

Vectors

◦ linear-time merge: add π(s′) to π(t′)

◦ constant-time split: shrink vector π(t′)

No Explicit Merge

◦ keep the use lists fixed
◦ scan the equivalence classes for finding congruent terms

47

Formal Methods School, Menlo Park, 2012

Implementation: Congruence Table

To quickly find congruent terms u and v, use a hash table

◦ Hash of f (t1, . . . , tn) is based on the term’s signature:

σ(f (t1, . . . , tn) = 〈f, F ∗(t1), . . . , F ∗(tn)〉

◦ Property: σ(u) = σ(v) iff u and v are congruent in F

◦ The hash table stores one term per signature
◦ When searching for congruences:

– scan π(s′)

– recompute the signature σ(u) for every u in π(s′)

– check whether there’s a term v with the same signature in the hash table
– if not add u to the hash table

48

Formal Methods School, Menlo Park, 2012

Theory Explanations for EUF

Problem: Given two terms u and v that are in the same equivalence class (i.e.,
F ∗(u) = F ∗(v)) find a set of equalities that imply u = v

For variable equalities

◦ Use the merge tree: find the shortest path between u and v
◦ This ensures that the explanation is non-redundant

General case

◦ Label edges in the merge tree with a local explanation: x = y may be asserted
or implied by congruence
◦ Explanation generation:

– find path between u and v
– collect edges and recursively build explanation for the congruence edges

◦ Issue: not guaranteed to generate minimal explanations

49

Formal Methods School, Menlo Park, 2012

Explanations: Example

Input Equalities
f1(x1) = x1 = x2 = f1(xn+1)

f2(x1) = x2 = x3 = f2(xn+1)
...

fn(x1) = xn = xn+1 = fn(xn+1)

Implied Equality

g(f1(x1), . . . , fn(x1)) = g(f1(xn+1), . . . , fn(xn+1))

50

Formal Methods School, Menlo Park, 2012

Extensions of the Basic Union-Find Techniques

Dynamic Ackermann Lemmas

◦ Ackermann Trick: if we explicitly add all instances of the congruence axiom,
then equality + Boolean reasoning are enough (no need for congruence
closure)
This is usually too expensive to be done eagerly
◦ But it helps to heuristically generate some instances and add them dynamically

during the search:

u1 = t1 ∧ . . . ∧ un = tn ⇒ f (t1, . . . , tn) = f (u1, . . . , un)

◦ Benefit: this new lemma improves theory propagation
Example from f (x, y) 6= f (y, x), congruence closure can’t deduce x 6= y

but the SAT solver can do it, if we add the lemma

x = y ⇒ f (x, y) = f (y, x)

51

Formal Methods School, Menlo Park, 2012

Extensions of the Basic Union-Find Techniques

Offset Equalities

◦ Offset equalities are of the form x = y + c where c is a rational (or integer)
constant
◦ Union-Find + congruence closure algorithms can be extended to handle them

Array Theory

◦ Can be implemented on top of EUF: by instantiating the array axioms

read(write(a, i, v), i) = v

read(write(a, i, v), j) = read(a, j) if i 6= j

52

Formal Methods School, Menlo Park, 2012

Linear Arithmetic

53

Formal Methods School, Menlo Park, 2012

Linear Arithmetic Solvers

Linear Arithmetic

◦ Atoms are of the form a1x1 + . . . + anxn ./ b where
– a1, . . . , an and b are rational constants
– ./ is one of the predicates 6, <, =, etc.
– x1, . . . , xn are real or integer variables

◦ Variants:
– Difference Logic: atoms are of the form x− y 6 b

– Linear Integer Arithmetic: all variables are integer
– Linear Real Arithmetic: all variables are real
– Mixed Arithmetic: mixed both real and integer variables

54

Formal Methods School, Menlo Park, 2012

Algorithms for Linear Arithmetic Solvers

Difference Logic

◦ Graph-based algorithms (to detect negative circuits)

General Case

◦ Fourier-Motzkin Elimination: eliminate variables using rules such as
t1 6 ax, bx 6 t2 ⇒ bt1 6 at2 (provided a > 0 and b > 0)
◦ Simplex (generally more scalable than Fourier-Motzkin)

Main issue: how to adapt Simplex to SMT solving?

◦ efficiently support addition/retraction of constraints
◦ generate (precise) explanations
◦ support theory propagation

55

Formal Methods School, Menlo Park, 2012

Simplex in Standard Form

Standard Form:
Ax = b and x > 0

where A is a matrix, b is a constant vector and x is a vector of variables

limits of this form for SMT

◦ to solve incremental problems: add rows to A (expensive)
◦ slow backtracking (same issue: need to remove rows from A)
◦ no theory propagation

56

Formal Methods School, Menlo Park, 2012

Fast Linear Arithmetic Solver for SMT

Use Simplex in General Form

Algorithm is based on the Dual Simplex

Gives precise theory explanations

Efficient backtracking

Efficient theory propagation

Support strict inequalities (e.g., x > 0)

Allow presimplification step

To deal with integer problems: Gomory cuts, Branch & Bound, GCD test

57

Formal Methods School, Menlo Park, 2012

General Form Simplex

General Form: Ax = 0 and lj 6 xj 6 uj

We can always convert linear arithmetic problems to this form

Example:

x > 0, (x + y 6 2 ∨ x + 2y > 6), (x + y = 2 ∨ x + 2y > 4)

;

s1 = x + y, s2 = x + 2y,

x > 0, (s1 6 2 ∨ s2 > 6), (s1 = 2 ∨ s2 > 4)

Main Benefits

◦ The matrix A is fixed: no need to add or remove rows
◦ Incrementality means adding/removing bounds on variables (e.g., s1 6 2)
◦ Unconstrained variables can be eliminated before the search

58

Formal Methods School, Menlo Park, 2012

Tableau and Assignment

Tableau

◦ Simplex turns s Ax = 0 into the following form (called a tableau)

y1 = a11x1 + . . . + a1nxn
...

ym = am1x1 + . . . + amnxn

y1, . . . , ym are basic (or dependent) variables
x1, . . . , xn are non-basic (or independent) variables

Assignment

◦ An assignment (model) is a mapping from variables to values
◦ The value of dependent variables is computed form the assignment of

independent variables

59

Formal Methods School, Menlo Park, 2012

Algorithm Properties

The algorithm maintains an assignment that satisfies all equations and bounds

To process new constraints

◦ the assignment and tableau are updated using pivoting
◦ pivoting swaps one basic and one non-basic variable
◦ when pivoting fails to produce satisfying assignment, we get a conflict

explanation from one equation (one row of the tableau)

Backtracking is very cheap: just remove bounds (the assignment and tableau
don’t change)

Theory propagation: use bounds and equations to derive new bounds on
variables

◦ Example: x = y − z, y 6 2, z > 3 ; x 6 −1

60

Formal Methods School, Menlo Park, 2012

Main Procedure

Solver State

◦ Equations (i.e., tableau)

y1 = a11x1 + . . . + a1nxn
...

ym = am1x1 + . . . + amnxn

◦ Bounds: li 6 x1 6 ui and l′j 6 yj 6 uj

◦ Assignment: M assigns values to x1, . . . , xn and y1, . . . , ym

◦ Invariant: all bounds on x1. . . . , xn are satisfied

Procedure

◦ Assume some of the bounds on are violated by M : say M(y1) < l′1
◦ How do we fix the tableau and assignment?

61

Formal Methods School, Menlo Park, 2012

Main Procedure

First row in the tableau

y1 = a11x1 + . . . + a1nxn

To satisfy l′1 6 M(y1), we want to increase M(y1)

◦ If a1i > 0 and M(xi) < ui then M(xi) can increase and this makes M(y1)

increase
◦ If a1i < 0 and M(xi) > li then M(xi) can decrease and this makes M(yi)

increase

In either cases, we can pivot xi and y:

◦ Rewrite the first row to

xi =
1

a1i
y − a11

a1i
x1 − . . .−

a1n

a1i
xn

◦ Update the assignment by setting M(y1) := l′1

Then we check if some other bounds is violated and iterate

62

Formal Methods School, Menlo Park, 2012

Conflict and Theory Explanation

If there’s no suitable xi

y1 = a11x1 + . . . + a1nxn

◦ We must have a1i > 0 ⇒ M(xi) = ui and a1i < 0 ⇒ M(xi) = li

◦ Then

M(y1) = (
∑
a1i>0

a1iui) + (
∑
a1i<0

ai1li)

and we have M(y1) < l′1

We have found a contradiction:∨
ai1>0

(xi 6 ui) ∨
∨
ai1<0

(xi > li) ⇒ (y1 < l′1)

This gives us a theory explanation

63

Formal Methods School, Menlo Park, 2012

How to Handle Strict Inequalities

In the general form, all bounds are non-strict (e.g,, x 6 2)

For integer problems, that’s not an issue:
strict inequalities can be converted to non-strict (e.g., x < 1 ; x 6 0)

For real or rational problems:

◦ introduce a symbolic, infinitesimal parameter δ
◦ convert x < c to x 6 c− δ, and x > c to x > c + δ)
◦ now the assignment maps variables to values of the form c + dδ, where c and d

are rational
◦ we use the following ordering relation on these values

c1 + d1δ 6 c2 + d2δ iff c1 < c2 or (c1 = c2 and d1 < d2)

64

Formal Methods School, Menlo Park, 2012

Example

Initial state

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

s = x + y

u = x + 2y

v = x− y

65

Formal Methods School, Menlo Park, 2012

Example

Asserting s > 1

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

s = x + y

u = x + 2y

v = x− y

66

Formal Methods School, Menlo Park, 2012

Example

Asserting s > 1: the assignment does not satisfy the new bound

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

s = x + y

u = x + 2y

v = x− y

s > 1

67

Formal Methods School, Menlo Park, 2012

Example

Asserting s > 1: pivot s and x

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

s = x + y

u = x + 2y

v = x− y

s > 1

68

Formal Methods School, Menlo Park, 2012

Example

Asserting s > 1: pivot s and x

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

x = s− y
u = x + 2y

v = x− y

s > 1

69

Formal Methods School, Menlo Park, 2012

Example

Asserting s > 1: pivot s and x

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

x = s− y
u = s + y

v = s− 2y

s > 1

70

Formal Methods School, Menlo Park, 2012

Example

Asserting s > 1: update the assignment for s

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 0

M(s) = 1

M(u) = 0

M(v) = 0

x = s− y
u = s + y

v = s− 2y

s > 1

71

Formal Methods School, Menlo Park, 2012

Example

Asserting s > 1: update the dependent variables value

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y
u = s + y

v = s− 2y

s > 1

72

Formal Methods School, Menlo Park, 2012

Example

Asserting x > 0

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y
u = s + y

v = s− 2y

s > 1

73

Formal Methods School, Menlo Park, 2012

Example

Asserting x > 0: nothing to do. The bound is satisfied by M

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y
u = s + y

v = s− 2y

s > 1

x > 0

74

Formal Methods School, Menlo Park, 2012

Example

Case split: ¬(y 6 1)

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y
u = s + y

v = s− 2y

s > 1

x > 0

75

Formal Methods School, Menlo Park, 2012

Example

Case split: ¬(y 6 1): the assignment does not satisfy the new bound

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y
u = s + y

v = s− 2y

s > 1

x > 0

y > 1

76

Formal Methods School, Menlo Park, 2012

Example

Case split: ¬(y 6 1): update the assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 1 + δ

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y
u = s + y

v = s− 2y

s > 1

x > 0

y > 1

77

Formal Methods School, Menlo Park, 2012

Example

Case split: ¬(y 6 1): update dependent variables

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = −δ
M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1− 2δ

x = s− y
u = s + y

v = s− 2y

s > 1

x > 0

y > 1

78

Formal Methods School, Menlo Park, 2012

Example

Bound violation

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = −δ
M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1− 2δ

x = s− y
u = s + y

v = s− 2y

s > 1

x > 0

y > 1

79

Formal Methods School, Menlo Park, 2012

Example

Bound violation: pivot x and s

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = −δ
M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1− 2δ

s = x + y

u = s + y

v = s− 2y

s > 1

x > 0

y > 1

80

Formal Methods School, Menlo Park, 2012

Example

Bound violation: pivot x and s

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = −δ
M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1− 2δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y > 1

81

Formal Methods School, Menlo Park, 2012

Example

Bound violation: update the assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1− 2δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y > 1

82

Formal Methods School, Menlo Park, 2012

Example

Bound violation: update dependent variable values

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y > 1

83

Formal Methods School, Menlo Park, 2012

Example

Theory propagation: x > 0, y > 1 ; u > 2

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y > 1

84

Formal Methods School, Menlo Park, 2012

Example

Theory propagation: x > 0, y > 1 ; u > 2

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y > 1

u > 2

85

Formal Methods School, Menlo Park, 2012

Example

Theory propagation: u > 2 ; ¬u 6 1

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y > 1

u > 2

86

Formal Methods School, Menlo Park, 2012

Example

Boolean propagation: v > 2 must be true

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y > 1

u > 2

87

Formal Methods School, Menlo Park, 2012

Example

Theory propagation: v > 2 ; ¬(v 6 −2)

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y > 1

u > 2

88

Formal Methods School, Menlo Park, 2012

Example

Conflict: empty clause

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y > 1

u > 2

89

Formal Methods School, Menlo Park, 2012

Example

Backtracking

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

90

Formal Methods School, Menlo Park, 2012

Example

Asserting y 6 1

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

91

Formal Methods School, Menlo Park, 2012

Example

Asserting y 6 1: the assignment does not satisfy the new bound

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y 6 1

92

Formal Methods School, Menlo Park, 2012

Example

Asserting y 6 1: update the assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1− δ

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y 6 1

93

Formal Methods School, Menlo Park, 2012

Example

Asserting y 6 1: update dependent variable values

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y 6 1

94

Formal Methods School, Menlo Park, 2012

Example

Theory propagation: x > 0, y 6 1 ; v > −1

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y 6 1

95

Formal Methods School, Menlo Park, 2012

Example

Theory propagation: x > 0, y 6 1 ; v > −1

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y 6 1

v > −1

96

Formal Methods School, Menlo Park, 2012

Example

Theory propagation: v > −1 ; ¬(v 6 −2)

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y 6 1

v > −1

97

Formal Methods School, Menlo Park, 2012

Example

Boolean propagation: v > 0 must be true

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y 6 1

v > −1

98

Formal Methods School, Menlo Park, 2012

Example

Boolean propagation: v > 0 must be true

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y 6 1

v > 0

99

Formal Methods School, Menlo Park, 2012

Example

Bound violation: the assignment does not satisfy the new bound

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

s = x + y

u = x + 2y

v = x− y

s > 1

x > 0

y 6 1

v > 0

100

Formal Methods School, Menlo Park, 2012

Example

Bound violation: pivot v and x then update the assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

s = v + 2y

u = v + 3y

x = v + y

s > 1

x > 0

y 6 1

v > 0

101

Formal Methods School, Menlo Park, 2012

Example

Boolean propagation: u 6 −1 must be true

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

s = v + 2y

u = v + 3y

x = v + y

s > 1

x > 0

y 6 1

v > 0

102

Formal Methods School, Menlo Park, 2012

Example

Boolean propagation: u 6 −1 must be true

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

s = v + 2y

u = v + 3y

x = v + y

s > 1

x > 0

y 6 1

v > 0

u 6 −1

103

Formal Methods School, Menlo Park, 2012

Example

Bound violation

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

s = v + 2y

u = v + 3y

x = v + y

s > 1

x > 0

y 6 1

v > 0

u 6 −1

104

Formal Methods School, Menlo Park, 2012

Example

Bound violation: pivot u and y then update the assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = −1

3

M(y) = −1
3

M(s) = −2
3

M(u) = −1

M(v) = 0

s = 2
3u + 1

3v

y = 1
3u−

1
3v

x = 1
3u + 1

3v

s > 1

x > 0

y 6 1

v > 0

u 6 −1

105

Formal Methods School, Menlo Park, 2012

Example

Bound violations

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = −1

3

M(y) = −1
3

M(s) = −2
3

M(u) = −1

M(v) = 0

s = 2
3u + 1

3v

y = 1
3u−

1
3v

x = 1
3u + 1

3v

s > 1

x > 0

y 6 1

v > 0

u 6 −1

106

Formal Methods School, Menlo Park, 2012

Example

Bound violations: pivot s and v then update assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = −1

3

M(y) = −1
3

M(s) = −2
3

M(u) = −1

M(v) = 0

s = 2
3u + 1

3v

y = 1
3u−

1
3v

x = 1
3u + 1

3v

s > 1

x > 0

y 6 1

v > 0

u 6 −1

107

Formal Methods School, Menlo Park, 2012

Example

Bound violations: pivot s and v then update assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = −1

3

M(y) = −1
3

M(s) = −2
3

M(u) = −1

M(v) = 0

v = 3s− 2u

y = 1
3u−

1
3v

x = 1
3u + 1

3v

s > 1

x > 0

y 6 1

v > 0

u 6 −1

108

Formal Methods School, Menlo Park, 2012

Example

Bound violations: pivot s and v then update assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = −1

3

M(y) = −1
3

M(s) = −2
3

M(u) = −1

M(v) = 0

v = 3s− 2u

y = −s + u

x = 2s− u

s > 1

x > 0

y 6 1

v > 0

u 6 −1

109

Formal Methods School, Menlo Park, 2012

Example

Bound violations: pivot s and v then update assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 3

M(y) = −2

M(s) = 1

M(u) = −1

M(v) = 5

v = 3s− 2u

y = −s + u

x = 2s− u

s > 1

x > 0

y 6 1

v > 0

u 6 −1

110

Formal Methods School, Menlo Park, 2012

Example

Success: found a satisfying assignment

s > 1, x > 0

(y 6 1 ∨ v > 2), (v 6 −2 ∨ v > 0), (v 6 −2 ∨ u 6 −1)

Model Equations Bounds
M(x) = 3

M(y) = −2

M(s) = 1

M(u) = −1

M(v) = 5

v = 3s− 2u

y = −s + u

x = 2s− u

s > 1

x > 0

y 6 1

v > 0

u 6 −1

111

Formal Methods School, Menlo Park, 2012

Other Techniques used for Linear Arithmetic SMT

Opportunistic Equality Propagation

◦ xi is fixed if li = ui

◦ propagating this in other rows leads to simple method for detecting some
implied variable equalities (i.e., xj = yk)
◦ this is efficient but not complete

Extension to Linear Integer Arithmetic

◦ Use techniques from integer programming: GCD test, Gomory Cuts, Branch &
Bound

112

Formal Methods School, Menlo Park, 2012

Summary

CDCL + Theory Solver: generic framework for SMT Solving

Example Theory Solvers

◦ Equality + Uninterpreted Function: congruence closure algorithms
◦ Linear Arithmetic: Simplex-based

Main Issues

◦ Incrementality, Fast backtracking, Good explanations, Theory propagation

Other Relevant Topics

◦ How to combine multiple theories: Nelson-Oppen method and variants
◦ Solvers for arrays, recursive datatypes, etc.

113

