Satisfiability Modulo Theories Applications and Challenges

Summer School on Formal Techniques Menlo Park, May 2012

Bruno DutertreLeonardo de MouraSRI InternationalMicrosoft Research

---- Formal Methods School, Menlo Park, 2012

Applications of SMT Solving

_ 1

Most Basic Solver: just gives a Yes/No answer (or Unknown)

Usage: theorem proving (e.g., for non-linear real arithmetic), abstraction

Standard Solver: produces a model if the answer is 'sat'

Many Applications: test generation, constraint solving, etc.

Proof-Producing Solver: generates a proof if the answer is 'unsat' Applications: system verification using interpolants, *paranoid* theorem proving

Unsat Core: (small) subset of the input formulas that's unsatisfiable Applications: optimization problems, diagnosis/debugging problems, etc.

SMT Applications in Software Engineering

Test Generation and Bug Finding

• Example tools: SAGE, PEX, YOGI, CREST, KLEE, etc.

Static Analysis

SMT solvers for predicate abstraction (e.g., SLAM)

Program Verification: SMT Solvers to discharge proof obligations

• Spec#, Boogie, etc.

• Why project; Frama-C, Krakatoa,

• ESC Java

Other: synthesis, symbolic execution, software model checking, termination proofs, compilation, type-checking, etc.

Model Checking with SMT Solvers

Applications

- Fault-tolerant systems and protocols
- Control systems and software
- Timed systems, hybrid systems

Example Tools

- Symbolic Analysis Laboratory (SAL)
- K-Induction based Model Checker (KIND)
- MCMT (Model-Checking Modulo Theories)
- Kratos. etc.

SMT Solvers as Proof Tools

Integrated in Generic Theorem Provers

- SledgeHammer: Isabelle/HOL (Z3 and other solvers as backends)
- Yices in PVS (also in Isabelle/HOL)

In Software Verification

- Spec#, Boogie, etc.
- Why project; Frama-C, Krakatoa,
- ESC Java

SMT Solvers as Constraint Solvers

Scheduling

- Communication Scheduling in Timed-Triggered Ethernet (Steiner)
- Control System Scheduler (Majumdar, et al.)

General Constraint Solving/Programming

- \circ Scala + Z3
- FlatZinc. etc.

Application 1: Scheduling for Timed-Triggered Ethernet

Ethernet for real-time, distributed systems:

- Guarantees for real-time messages: low jitter, predictable latency, no collisions
- All nodes are synchronized (fault-tolerant clock synchronization protocol)
- All communication and computation follow a system-wide, cyclic schedule

Computing a Communication Schedule

Input

- a set of virtual links: dataflows from one end system to one or more end systems
- the communication period

Constraints

- no contention: all frames on every link are in a different time slot
- o path constraints: relayed frames must be scheduled after they are received
- other constraints: limits on switch memory, application constraints, etc.

TTE Scheduling as an SMT Problem (Steiner, 2010)

Frames

- Messages are called frames in TTE
- A frame f is characterized by its period *f.period* and its length *f.length*
- Routing is static: we know a priori the source of *f*, all receivers, and the set of communication links that will transport *f*
- Given a link *i*, our goal is to compute when to send *f* over that link. The start of this transmission is denoted by $offset_{f,i}$

Simplification: in the simplest case, all frames have the same period (equal to the schedule cycle).

Example Scheduling Constraints

No Collisions: if distinct frames f and g use link i:

 $offset_{f,i} + f.length \leqslant offset_{g,i}$ Or $offset_{g,i} + g.length \leqslant offset_{f,i}$

Path Constraints: if a switch receives f on link i and relays it on link j

 $offset_{f,j} - offset_{f,i} \ge maxhopdelay$

End-to-End Latency: along a path i_0, i_1, \ldots, i_n

 $offset_{f,i_n} - offset_{f,i_0} \leq maxlatency$

Resulting SMT Problem

Large Difference Logic Problem (over the integers)

- \circ Typical size: 10000-20000 variables, 10^6 to 10^7 constraints
- This depends on the network topology and number of virtual links

Solving this with Yices

- Yices 1 can solve moderate size instances (about 120 virtual links) out of the box
- In Wilfried Steiner's RTSS 2010 paper: incremental approach using push/pop can solve much larger instances (up to 1000 virtual links)

Application 2: Verification of Timed Systems

SAT & SMT Solvers as backends to SAL

- SAL is a toolkit for modeling and verification of state-transition systems
- Specification language: guarded commands + extensions
- SAL supports both synchronous and asynchronous composition
- o Tools
 - BDD-based model checker: sal-smc
 - SAT-based bounded model checker: sal-bmc (for finite systems)
 - SMT-based bounded model checker: sal-inf-bmc (for infinite systems)
 - Test-case generation: sal-atg

Many timed systems can be modeled in SAL and verified using sal-inf-bmc (with an SMT solver as backend)

Example: Biphase Mark Protocol (BMP)

Biphase Mark: Physical layer protocol for data transmission (over serial links)

- o transmitter and receiver have independent clocks
- encoding merges transmitter clock + data into a single bit stream
- decoding goal: recover the data from the signal

BMP: Decoding Problem

Issues:

- jitter
- sampling uncertainties
- clock drift, phase shift

BMP: SAL Model

Output from the transmitter

```
TYPE = { Zero, One, ToZero, ToOne };
WIRE:
. . .
OUTPUT tdata : WIRE
. . .
    phase = Stable AND tstate = 1 - >
                  tdata' = ttoggle;
                  tstate' = 0;
  [] phase = Stable AND tstate = 0 -->
                  tdata' = IF (tbit = 1) THEN ttoggle ELSE tdata ENDIF;
                  tstate' = 1;
  [] phase = Settle -->
                  tdata' = IF tdata = ToOne THEN One
                            ELSIF tdata = ToZero THEN Zero
                            ELSE tdata
                            ENDIF;
```

Sampling

```
sample(w : WIRE) : [WIRE -> BOOLEAN] =
    IF (w = ToZero OR w = ToOne) THEN {Zero, One}
    ELSE {w}
    ENDIF;
```

SAL Model: Time and Clocks

Use a global real-valued time variable

Transmitter and receiver use *timeout* variables to schedule future discrete transitions:

```
INPUT time : TIME
OUTPUT tclk : TIME
INITIALIZATION
...
tclk IN {x : TIME | 0 <= x AND x <= TSTABLE};
TRANSITION
[ time = tclk AND phase = Stable -->
tclk' = time + TSETTLE;
phase' = Settle;
[] time = tclk AND phase = Settle -->
tclk' = time + TSTABLE;
phase' = Stable;
```

SAL Model: Properties

Correct Reception Theorem

Conversion to SMT

State-transition systems

 $\mathcal{M} = \langle X, I(X), T(X, X') \rangle$

 $\circ X$ set of state variables

 \circ formula I(X) defines the initial states

 \circ formula $T(X,X^{\prime})$ defines the transition relation

Traces

- \circ Sequences of states $x_0 \rightarrow x_1 \rightarrow x_2 \dots$ such that
 - x_0 satisfies I(X)
 - for every $t \in \mathbb{N}$, (x_t, x_{t+1}) satisfies T(X, X')

Bounded Model Checking

Goal

- Find counterexamples to a property
- \circ Usually the property is an invariant $\Box P$
- \circ The goal is then to find a reachable state that does not satisfy *P*.

Technique

- \circ Fix a bound k
- \circ Search for a state reachable in k steps that falsifies P
- o This is the same as checking the satisfiability of the formula

 $I(x_0) \wedge T(x_0, x_1) \wedge T(x_1, x_2) \wedge \ldots \wedge T(x_{k-1}, x_k) \wedge \neg P(x_k)$

Induction

Goal

 \circ Prove that *P* is invariant

Standard Induction

• Show that the following formulas are valid (their negation is not satisfiable)

$$I(x_0) \Rightarrow P(x_0)$$
$$P(x_0) \land T(x_0, x_1) \Rightarrow P(x_1)$$

• Limitations:

– This may fail even if P is invariant for \mathcal{M}

– If the induction fails, *P* must be strengthened:

find Q such that Q implies P and such that Q is an inductive invariant

k-induction

Generalizes induction to k steps

• Base case:

$$I(x_0) \wedge T(x_0, x_1) \wedge \ldots \wedge T(x_{k-1}, x_k) \Rightarrow P(x_0) \wedge \ldots \wedge P(x_k)$$

• Induction step:

$$T(x_0, x_1) \land \ldots \land T(x_k, x_{k+1}) \land P(x_0) \land \ldots \land P(x_k) \Rightarrow P(x_{k+1})$$

How good is it?

- In most cases, *k*-induction is stronger than standard induction (when $k \ge 2$) $\Box P$ is provable by *k*-induction iff $\Box (P \land \circ P \land \ldots \land \circ^k P)$ is provable by induction.
- There are counterexamples: For example, if *T* is reflexive, then $\Box P$ is provable by *k*-induction iff $\Box P$ is provable by standard induction.

BMP Verification

Proof Process

- \circ The correctness property is not invariant (for any reasonable k)
- We need auxiliary lemmas:
 - 10 : LEMMA system |- G(phase = Settle OR tdata = One OR tdata = Zero); 11 : LEMMA system |- G(phase = Stable => (tclk <= (time + TSTABLE))); 12 : LEMMA system |- G(phase = Settle => (tclk <= (time + TSETTLE)));</pre>
- The full proof requires four auxiliary lemmas, the main one is proved by k induction for k = 5.
- All proofs run in a few seconds.

Much Easier than Previous Proofs of BMP

Vaandrager and de Groot, 2004, use PVS and Uppaal
 Difficult proof: need 37 invariants, 4000 proof steps, hours to run

Application 3: Computational Biology

Flux Balance Analysis

- Technique for modeling and analysis of metabolic pathways based on stoichiometry
- \circ For an individual reaction:

D-ribose + ATP
$$\longrightarrow$$
 D-ribose-5-phosphate + ADP + 2H⁺

Let ρ denote the reaction rate, then the molecule quantities vary according to

$$\frac{d[\text{D-ribose}]}{dt} = \frac{d[\text{ATP}]}{dt} = -\rho$$
$$\frac{d[\text{D-ribose-5-phosphate}]}{dt} = \frac{d[\text{ADP}]}{dt} = \rho$$
$$\frac{d[\text{H}^+]}{dt} = 2\rho$$

Flux Balance Analysis (cont'd)

If a molecule (say H^+) is involved in *n* reactions, then we get

$$\frac{d[\mathbf{H}^+]}{dt} = a_1\rho_1 + \ldots + a_n\rho_n$$

where ρ_i s are reaction rates and a_i are integer constants (a_i is positive if reaction *i* produces H⁺ and negative if reaction *i* consumes H⁺).

Doing this for a full set of molecules, we get a stoichiometry matrix \boldsymbol{S} and an equation

$$\frac{d[C]}{dt} = SR$$

where R is a vector of reaction rates and C is a vector of molecule quantities

Flux Balance Analysis (cont'd)

Flux balance analysis: looks for possible reaction rates when the system is at an equilibrium (more or less)

- At equilibrium $\frac{d[C]}{dt} = 0$
- \circ So we search for solutions to the linear system: SR = 0

Which solutions?

- The system is underdetermined (many more reactions than chemical components)
- \circ There's always a trivial solution: R = 0, but it's not interesting
- o So more constraints are added to get solution that are "biologically interesting"
 - add bounds on rates
 - search for solutions that maximize some objective functions (i.e., biomass)

Beyond Flux-Balance Analysis

 add/search for missing reactions (i.e., errors in the pathway models): can be formulated as a MILP optimization problem with 0-1 variables.

Solving FBA and Related Problems

Off-the-shelf LP and MILP solvers

- Typical problem size is about 10,000s reaction, 1,000s components
- CPLEX, SCIP solve them without much problems

Using SMT Solver?

- Motivation for trying Yices: it does exact arithmetic, off-the-shelf solvers have licensing restrictions
- But: results are disappointing.
 - Yices can't solve many of the MILP problems that are easy for SCIP.
 - Poor convergence of the pivoting heuristics used by Yices
 - Encoding using 0-1 variables is suboptimal for Yices

----- Formal Methods School, Menlo Park, 2012

Problems and Challenges in SMT Solving

Challenges: Better SMT Solving

New Theories/Better Solvers for Hard Theories

- First-Order Logic
 - efficient/refutationally complete solvers?
 - conversely: model finding solvers
 - SMT + rewriting

• Beyond Linear Arithmetic

- polynomial constraints and more (rational functions, trigonometry, log, etc.)
- floating point verification

• Beyond Resolution

 Resolution is at the core of CDCL but it has limitations (some problems have no short resolution proofs)

Challenges: Better SMT Solving

Parallelization

- state of the art: portfolio approaches
- is there hope of better performance using lower-grain parallelism or other approaches?

Challenges: Optimization using SMT-like Techniques

Optimization Problems

- Minimize/maximize some objective function subject to some constraints
- Many applications
- Challenge: Can SMT solvers (or variants) beat known techniques?