= Formal Methods School, Menlo Park, 2012

Satisfiability Modulo Theories
Applications and Challenges

Summer School on Formal Techniques
Menlo Park, May 2012

Bruno Dutertre Leonardo de Moura
SRI International Microsoft Research

= Formal Methods School, Menlo Park, 2012

Applications of SMT Solving

= Formal Methods School, Menlo Park, 2012

What Can an SMT Solver Do?

FORMULA

'

Sat/Unsat

Most Basic Solver: just gives a Yes/No answer (or Unknown)

Usage: theorem proving (e.g., for non-linear real arithmetic), abstraction

= Formal Methods School, Menlo Park, 2012

What Can an SMT Solver Do?

FORMULA

'

Sat + Model Unsat

Standard Solver: produces a model if the answer is 'sat’
Many Applications: test generation, constraint solving, etc.

= Formal Methods School, Menlo Park, 2012

What Can an SMT Solver Do?

FORMULA

'

Sat + Model Unsat + Proof

Proof-Producing Solver: generates a proof if the answer is 'unsat’
Applications: system verification using interpolants, paranoid theorem proving

= Formal Methods School, Menlo Park, 2012

What Can an SMT Solver Do?

FORMULA(S)

v

Sat + Model Unsat + unsat core

Unsat Core: (small) subset of the input formulas that’s unsatisfiable
Applications: optimization problems, diagnosis/debugging problems, etc.

= Formal Methods School, Menlo Park, 2012

SMT Applications in Software Engineering

Test Generation and Bug Finding
o Example tools: SAGE, PEX, YOGI, CREST, KLEE, etc.
Static Analysis
o SMT solvers for predicate abstraction (e.g., SLAM)
Program Verification: SMT Solvers to discharge proof obligations
o Spec#, Boogie, etc.
o Why project; Frama-C, Krakatoa,
o ESC Java

Other: synthesis, symbolic execution, software model checking, termination
proofs, compilation, type-checking, etc.

= Formal Methods School, Menlo Park, 2012

Model Checking with SMT Solvers

Applications

o Fault-tolerant systems and protocols
o Control systems and software
o Timed systems, hybrid systems

Example Tools
o Symbolic Analysis Laboratory (SAL)
o K-Induction based Model Checker (KIND)
o MCMT (Model-Checking Modulo Theories)
o Kratos. etc.

= Formal Methods School, Menlo Park, 2012

SMT Solvers as Proof Tools

Integrated in Generic Theorem Provers

o SledgeHammer: Isabelle/HOL (Z3 and other solvers as backends)
o Yices in PVS (also in Isabelle/HOL)

In Software Verification

o Spec#, Boogie, etc.
o Why project; Frama-C, Krakatoa,
o ESC Java

= Formal Methods School, Menlo Park, 2012

SMT Solvers as Constraint Solvers

Scheduling

o Communication Scheduling in Timed-Triggered Ethernet (Steiner)
o Control System Scheduler (Majumdar, et al.)

General Constraint Solving/Programming

o Scala + Z3
o FlatZinc. etc.

= Formal Methods School, Menlo Park, 2012

Application 1: Scheduling for Timed-Triggered Ethernet

\‘\\\ Dat af | ow \
c RRREI

e

Switc

\
End
System

Ethernet for real-time, distributed systems:

o Guarantees for real-time messages: low jitter, predictable latency, no collisions
o All nodes are synchronized (fault-tolerant clock synchronization protocol)
o All communication and computation follow a system-wide, cyclic schedule

10

= Formal Methods School, Menlo Park, 2012

Computing a Communication Schedule

Input

o a set of virtual links: dataflows from one end system to one or more end
systems

o the communication period

Constraints

o no contention: all frames on every link are in a different time slot
o path constraints: relayed frames must be scheduled after they are received
o other constraints: limits on switch memory, application constraints, etc.

11

= Formal Methods School, Menlo Park, 2012

TTE Scheduling as an SMT Problem (Steiner, 2010)

Frames

o Messages are called frames in TTE
o A frame [is characterized by its period f.period and its length f.length

o Routing is static: we know a priori the source of f, all receivers, and the set of
communication links that will transport f

o Given a link 7, our goal is to compute when to send f over that link. The start of
this transmission is denoted by offser

Simplification: in the simplest case, all frames have the same period (equal to the
schedule cycle).

12

= Formal Methods School, Menlo Park, 2012

Example Scheduling Constraints

No Collisions: if distinct frames [and g use link i:
offset;; + f-length < offset,; Or offset,; + g.length < offset

gy

Path Constraints: if a switch receives f on link i and relays it on link j

offset; ; — offset;, = maxhopdelay

End-to-End Latency: along a path i, i1, . . ., i,

offset;,; — offset;,; < maxlatency

13

= Formal Methods School, Menlo Park, 2012

Resulting SMT Problem

Large Difference Logic Problem (over the integers)

o Typical size: 10000-20000 variables, 10° to 10" constraints
o This depends on the network topology and number of virtual links

Solving this with Yices

o Yices 1 can solve moderate size instances (about 120 virtual links) out of the
box

o In Wilfried Steiner's RTSS 2010 paper: incremental approach using push/pop
can solve much larger instances (up to 1000 virtual links)

14

= Formal Methods School, Menlo Park, 2012

Application 2: Verification of Timed Systems

SAT & SMT Solvers as backends to SAL

o SAL is a toolkit for modeling and verification of state-transition systems
o Specification language: guarded commands + extensions

o SAL supports both synchronous and asynchronous composition

o Tools

— BDD-based model checker: sal-smc

— SAT-based bounded model checker: sal-bmc (for finite systems)

— SMT-based bounded model checker: sal-inf-bmc (for infinite systems)
— Test-case generation: sal-atg

Many timed systems can be modeled in SAL and verified using sal-inf-bmc
(with an SMT solver as backend)

15

= Formal Methods School, Menlo Park, 2012

Example: Biphase Mark Protocol (BMP)

1 1 0 1 0 0 1 1 1 0 1 1
Data)) 1 | |
Clock | Ll
BMP L

Biphase Mark: Physical layer protocol for data transmission (over serial links)

o transmitter and receiver have independent clocks
o encoding merges transmitter clock + data into a single bit stream
o decoding goal: recover the data from the signal

16

= Formal Methods School, Menlo Park, 2012

BMP: Decoding Problem

s\ 00 L L L

Data

Issues:
o jitter
o sampling uncertainties
o clock drift, phase shift

17

= Formal Methods School, Menlo Park, 2012

BMP: SAL Model

Output from the transmitter

WIRE: TYPE = { Zero, One, ToZero, ToOne };

OUTPUT tdata : WIRE

phase = Stable AND tstate = 1 —-—>
tdata’ = ttoggle;
tstate’ = 0;
[] phase = Stable AND tstate = 0 ——>
tdata’ = IF (tbit = 1) THEN ttoggle ELSE tdata ENDIF;
tstate’ = 1;
[] phase = Settle ——>
tdata’ = IF tdata = ToOne THEN One
ELSIF tdata = ToZero THEN Zero
ELSE tdata
ENDIF;
Sampling
sample (w : WIRE) : [WIRE —> BOOLEAN] =
IF (w = ToZero OR w = ToOne) THEN {Zero, One}
ELSE {w}
ENDIF;

18

= Formal Methods School, Menlo Park, 2012

SAL Model: Time and Clocks

Use a global real-valued t ime variable

Transmitter and receiver use timeout variables to schedule future discrete
transitions:

INPUT time : TIME
OUTPUT tclk : TIME
INITIALIZATION

tclk IN {x : TIME | 0 <= x AND x <= TSTABLE};
TRANSITION
[time = tclk AND phase = Stable —-—>
tclk’ = time + TSETTLE;
phase’ = Settle;
[] time = tclk AND phase = Settle —--—>
tclk’ = time + TSTABLE;
phase’ = Stable;

= Formal Methods School, Menlo Park, 2012

SAL Model: Properties

Correct Reception Theorem

system : MODULE = clock [] rx [] tx;

BMP_Thm : THEOREM
system |- G(rstate = 1 AND time =
(time /= tclk) AND

rclk =>
(tstate

1)

AND X (rbit

tbhit));

20

= Formal Methods School, Menlo Park, 2012

Conversion to SMT

State-transition systems
M=(X1(X),T(X,X")

o X set of state variables
o formula I(X) defines the initial states
o formula T'(X, X') defines the transition relation

Traces

o Sequences of states o — =1 — x»... such that
— x satisfies (X))
—for every t € N, (x4, x441) satisfies T'(X, X')

21

= Formal Methods School, Menlo Park, 2012

Bounded Model Checking

Goal

o Find counterexamples to a property
o Usually the property is an invariant OP
o The goal is then to find a reachable state that does not satisfy P.

Technique

o Fix a bound &
o Search for a state reachable in & steps that falsifies P
o This is the same as checking the satisfiability of the formula

I(zo) N T(xg,21) AT (21, 22) Ao o AT (21,) A 2P (1)

22

= Formal Methods School, Menlo Park, 2012

Induction

Goal
o Prove that P is invariant
Standard Induction
o Show that the following formulas are valid (their negation is not satisfiable)
I(z) = P(x)
P(xo) AT (xg,21) = P(x1)
o Limitations:

— This may fail even if P is invariant for M

— If the induction fails, P must be strengthened:
find @ such that () implies P and such that @) is an inductive invariant

23

= Formal Methods School, Menlo Park, 2012

k-induction

Generalizes induction to k steps

o Base case:
I(xo) NT(xg,x1) Ao . AT ()1, 1) = P(xo) A ... A P(xy)
o Induction step:
T(xg,z1) N ... NT (2, xp11) A Plxg) Ao A P(zy) = Pagy)
How good is it?

o In most cases, k-induction is stronger than standard induction (when k& > 2)
OP is provable by k-induction iff O(P AoP A ... A o P) is provable by induction.

o There are counterexamples: For example, if T' is reflexive, then OP is provable
by k-induction iff OP is provable by standard induction.

24

= Formal Methods School, Menlo Park, 2012

BMP Verification

Proof Process

o The correctness property is not invariant (for any reasonable k)
o We need auxiliary lemmas:

10 : LEMMA system |- G(phase = Settle OR tdata = One OR tdata = Zero);
11 : LEMMA system |- G(phase = Stable => (tclk <= (time + TSTABLE)));
12 : LEMMA system |- G(phase = Settle => (tclk <= (time + TSETTLE)));

o The full proof requires four auxiliary lemmas, the main one is proved by &
induction for k = 5.

o All proofs run in a few seconds.

Much Easier than Previous Proofs of BMP

o Vaandrager and de Groot, 2004, use PVS and Uppaal
Difficult proof: need 37 invariants, 4000 proof steps, hours to run

25

= Formal Methods School, Menlo Park, 2012

Application 3: Computational Biology

Flux Balance Analysis

o Technique for modeling and analysis of metabolic pathways based on
stoichiometry

o For an individual reaction:

D-ribose + ATP — D-ribose-5-phosphate + ADP + 2H™

Let p denote the reaction rate, then the molecule quantities vary according to

d[D-ribose] d[ATP]

a a7
d[D-ribose-5-phosphate] d|ADP]
dt - a7
H+
awy

dt

26

= Formal Methods School, Menlo Park, 2012

Flux Balance Analysis (cont’d)

If a molecule (say H") is involved in n reactions, then we get
dH"]
dt

where p;s are reaction rates and a; are integer constants (a; is positive if reaction i
produces H' and negative if reaction : consumes H").

= aip1+ ...+ appn

Doing this for a full set of molecules, we get a stoichiometry matrix S and an
equation
d|C]
—— = SR
dt

where R is a vector of reaction rates and C'is a vector of molecule quantities

27

= Formal Methods School, Menlo Park, 2012

Flux Balance Analysis (cont’d)

Flux balance analysis: looks for possible reaction rates when the system is at an

equilibrium (more or less)

o At equilibrium 4 — g

o So we search for solutions to the linear system: SR =0

Which solutions?

o The system is underdetermined (many more reactions than chemical
components)
o There'’s always a trivial solution: R = 0, but it's not interesting
o SO more constraints are added to get solution that are “biologically interesting”
— add bounds on rates
— search for solutions that maximize some objective functions (i.e., biomass)
Beyond Flux-Balance Analysis
o add/search for missing reactions (i.e., errors in the pathway models): can be
formulated as a MILP optimization problem with 0-1 variables.

28

= Formal Methods School, Menlo Park, 2012

Solving FBA and Related Problems

Off-the-shelf LP and MILP solvers

o Typical problem size is about 10,000s reaction, 1,000s components
o CPLEX, SCIP solve them without much problems

Using SMT Solver?
o Motivation for trying Yices: it does exact arithmetic, off-the-shelf solvers have
licensing restrictions
o But: results are disappointing.

— Yices can’t solve many of the MILP problems that are easy for SCIP.
— Poor convergence of the pivoting heuristics used by Yices
— Encoding using 0-1 variables is suboptimal for Yices

29

= Formal Methods School, Menlo Park, 2012

Problems and Challenges in SMT Solving

30

= Formal Methods School, Menlo Park, 2012

Challenges: Better SMT Solving

New Theories/Better Solvers for Hard Theories

o First-Order Logic

— efficient/refutationally complete solvers?
— conversely: model finding solvers
— SMT + rewriting

o Beyond Linear Arithmetic

— polynomial constraints and more (rational functions, trigonometry, log, etc.)
— floating point verification

o Beyond Resolution

— Resolution is at the core of CDCL but it has limitations (some problems have
no short resolution proofs)

31

= Formal Methods School, Menlo Park, 2012

Challenges: Better SMT Solving

Parallelization

o state of the art: portfolio approaches

o is there hope of better performance using lower-grain parallelism or other
approaches?

32

= Formal Methods School, Menlo Park, 2012

Challenges: Optimization using SMT-like Techniques

Optimization Problems

o Minimize/maximize some objective function subject to some constraints
o Many applications
o Challenge: Can SMT solvers (or variants) beat known techniques?

33

