
Formal Methods School, Menlo Park, 2012

Satisfiability Modulo Theories
Applications and Challenges

Summer School on Formal Techniques
Menlo Park, May 2012

Bruno Dutertre Leonardo de Moura

SRI International Microsoft Research

Formal Methods School, Menlo Park, 2012

Applications of SMT Solving

1

Formal Methods School, Menlo Park, 2012

What Can an SMT Solver Do?

SMT SOLVER

FORMULA

Sat/Unsat

Most Basic Solver: just gives a Yes/No answer (or Unknown)

Usage: theorem proving (e.g., for non-linear real arithmetic), abstraction

2

Formal Methods School, Menlo Park, 2012

What Can an SMT Solver Do?

SMT SOLVER

FORMULA

Sat + Model Unsat

Standard Solver: produces a model if the answer is ’sat’

Many Applications: test generation, constraint solving, etc.

3

Formal Methods School, Menlo Park, 2012

What Can an SMT Solver Do?

SMT SOLVER

FORMULA

Sat + Model Unsat + Proof

Proof-Producing Solver: generates a proof if the answer is ’unsat’

Applications: system verification using interpolants, paranoid theorem proving

4

Formal Methods School, Menlo Park, 2012

What Can an SMT Solver Do?

SMT SOLVER

FORMULA(S)

Sat + Model Unsat + unsat core

Unsat Core: (small) subset of the input formulas that’s unsatisfiable

Applications: optimization problems, diagnosis/debugging problems, etc.

5

Formal Methods School, Menlo Park, 2012

SMT Applications in Software Engineering

Test Generation and Bug Finding

◦ Example tools: SAGE, PEX, YOGI, CREST, KLEE, etc.

Static Analysis

◦ SMT solvers for predicate abstraction (e.g., SLAM)

Program Verification: SMT Solvers to discharge proof obligations

◦ Spec#, Boogie, etc.
◦ Why project; Frama-C, Krakatoa,
◦ ESC Java

Other: synthesis, symbolic execution, software model checking, termination
proofs, compilation, type-checking, etc.

6

Formal Methods School, Menlo Park, 2012

Model Checking with SMT Solvers

Applications

◦ Fault-tolerant systems and protocols
◦ Control systems and software
◦ Timed systems, hybrid systems

Example Tools

◦ Symbolic Analysis Laboratory (SAL)
◦ K-Induction based Model Checker (KIND)
◦ MCMT (Model-Checking Modulo Theories)
◦ Kratos. etc.

7

Formal Methods School, Menlo Park, 2012

SMT Solvers as Proof Tools

Integrated in Generic Theorem Provers

◦ SledgeHammer: Isabelle/HOL (Z3 and other solvers as backends)
◦ Yices in PVS (also in Isabelle/HOL)

In Software Verification

◦ Spec#, Boogie, etc.
◦ Why project; Frama-C, Krakatoa,
◦ ESC Java

8

Formal Methods School, Menlo Park, 2012

SMT Solvers as Constraint Solvers

Scheduling

◦ Communication Scheduling in Timed-Triggered Ethernet (Steiner)
◦ Control System Scheduler (Majumdar, et al.)

General Constraint Solving/Programming

◦ Scala + Z3
◦ FlatZinc. etc.

9

Formal Methods School, Menlo Park, 2012

Application 1: Scheduling for Timed-Triggered Ethernet

End
System

End
System

Switch

Switch

Switch

Dataflow

Ethernet for real-time, distributed systems:

◦ Guarantees for real-time messages: low jitter, predictable latency, no collisions
◦ All nodes are synchronized (fault-tolerant clock synchronization protocol)
◦ All communication and computation follow a system-wide, cyclic schedule

10

Formal Methods School, Menlo Park, 2012

Computing a Communication Schedule

Input

◦ a set of virtual links: dataflows from one end system to one or more end
systems
◦ the communication period

Constraints

◦ no contention: all frames on every link are in a different time slot
◦ path constraints: relayed frames must be scheduled after they are received
◦ other constraints: limits on switch memory, application constraints, etc.

11

Formal Methods School, Menlo Park, 2012

TTE Scheduling as an SMT Problem (Steiner, 2010)

Frames

◦ Messages are called frames in TTE
◦ A frame f is characterized by its period f.period and its length f.length

◦ Routing is static: we know a priori the source of f, all receivers, and the set of
communication links that will transport f

◦ Given a link i, our goal is to compute when to send f over that link. The start of
this transmission is denoted by offsetf,i

Simplification: in the simplest case, all frames have the same period (equal to the
schedule cycle).

12

Formal Methods School, Menlo Park, 2012

Example Scheduling Constraints

No Collisions: if distinct frames f and g use link i:

offsetf,i + f.length 6 offsetg,i or offsetg,i + g.length 6 offsetf,i

Path Constraints: if a switch receives f on link i and relays it on link j

offsetf,j − offsetf,i > maxhopdelay

End-to-End Latency: along a path i0, i1, . . . , in

offsetf,in − offsetf,i0 6 maxlatency

13

Formal Methods School, Menlo Park, 2012

Resulting SMT Problem

Large Difference Logic Problem (over the integers)

◦ Typical size: 10000-20000 variables, 106 to 107 constraints
◦ This depends on the network topology and number of virtual links

Solving this with Yices

◦ Yices 1 can solve moderate size instances (about 120 virtual links) out of the
box
◦ In Wilfried Steiner’s RTSS 2010 paper: incremental approach using push/pop

can solve much larger instances (up to 1000 virtual links)

14

Formal Methods School, Menlo Park, 2012

Application 2: Verification of Timed Systems

SAT & SMT Solvers as backends to SAL

◦ SAL is a toolkit for modeling and verification of state-transition systems
◦ Specification language: guarded commands + extensions
◦ SAL supports both synchronous and asynchronous composition
◦ Tools

– BDD-based model checker: sal-smc
– SAT-based bounded model checker: sal-bmc (for finite systems)
– SMT-based bounded model checker: sal-inf-bmc (for infinite systems)
– Test-case generation: sal-atg

Many timed systems can be modeled in SAL and verified using sal-inf-bmc
(with an SMT solver as backend)

15

Formal Methods School, Menlo Park, 2012

Example: Biphase Mark Protocol (BMP)

1 1 1 1 1 1 1 10 0 0 0

Data

Clock

BMP

Biphase Mark: Physical layer protocol for data transmission (over serial links)

◦ transmitter and receiver have independent clocks
◦ encoding merges transmitter clock + data into a single bit stream
◦ decoding goal: recover the data from the signal

16

Formal Methods School, Menlo Park, 2012

BMP: Decoding Problem

1 1 1 1 1 1 1 10 0 0 0

Data

Signal

Issues:

◦ jitter
◦ sampling uncertainties
◦ clock drift, phase shift

17

Formal Methods School, Menlo Park, 2012

BMP: SAL Model

Output from the transmitter
WIRE: TYPE = { Zero, One, ToZero, ToOne };
...
OUTPUT tdata : WIRE
...

phase = Stable AND tstate = 1 -->
tdata’ = ttoggle;
tstate’ = 0;

[] phase = Stable AND tstate = 0 -->
tdata’ = IF (tbit = 1) THEN ttoggle ELSE tdata ENDIF;
tstate’ = 1;

[] phase = Settle -->
tdata’ = IF tdata = ToOne THEN One

ELSIF tdata = ToZero THEN Zero
ELSE tdata
ENDIF;

Sampling
sample(w : WIRE) : [WIRE -> BOOLEAN] =

IF (w = ToZero OR w = ToOne) THEN {Zero, One}
ELSE {w}
ENDIF;

18

Formal Methods School, Menlo Park, 2012

SAL Model: Time and Clocks

Use a global real-valued time variable

Transmitter and receiver use timeout variables to schedule future discrete
transitions:

INPUT time : TIME
OUTPUT tclk : TIME

INITIALIZATION
...
tclk IN {x : TIME | 0 <= x AND x <= TSTABLE};

TRANSITION
[time = tclk AND phase = Stable -->

tclk’ = time + TSETTLE;
phase’ = Settle;

[] time = tclk AND phase = Settle -->
tclk’ = time + TSTABLE;
phase’ = Stable;

19

Formal Methods School, Menlo Park, 2012

SAL Model: Properties

Correct Reception Theorem

system : MODULE = clock [] rx [] tx;

BMP_Thm : THEOREM
system |- G(rstate = 1 AND time = rclk =>

(time /= tclk) AND (tstate = 1) AND X(rbit = tbit));

20

Formal Methods School, Menlo Park, 2012

Conversion to SMT

State-transition systems

M = 〈X, I(X), T (X,X ′)〉

◦ X set of state variables
◦ formula I(X) defines the initial states
◦ formula T (X,X ′) defines the transition relation

Traces

◦ Sequences of states x0 → x1 → x2 . . . such that
– x0 satisfies I(X)

– for every t ∈ N, (xt, xt+1) satisfies T (X,X ′)

21

Formal Methods School, Menlo Park, 2012

Bounded Model Checking

Goal

◦ Find counterexamples to a property
◦ Usually the property is an invariant 2P

◦ The goal is then to find a reachable state that does not satisfy P .

Technique

◦ Fix a bound k
◦ Search for a state reachable in k steps that falsifies P
◦ This is the same as checking the satisfiability of the formula

I(x0) ∧ T (x0, x1) ∧ T (x1, x2) ∧ . . . ∧ T (xk−1, xk) ∧ ¬P (xk)

22

Formal Methods School, Menlo Park, 2012

Induction

Goal

◦ Prove that P is invariant

Standard Induction

◦ Show that the following formulas are valid (their negation is not satisfiable)

I(x0)⇒ P (x0)

P (x0) ∧ T (x0, x1)⇒ P (x1)

◦ Limitations:
– This may fail even if P is invariant forM
– If the induction fails, P must be strengthened:

find Q such that Q implies P and such that Q is an inductive invariant

23

Formal Methods School, Menlo Park, 2012

k-induction

Generalizes induction to k steps

◦ Base case:

I(x0) ∧ T (x0, x1) ∧ . . . ∧ T (xk−1, xk)⇒ P (x0) ∧ . . . ∧ P (xk)

◦ Induction step:

T (x0, x1) ∧ . . . ∧ T (xk, xk+1) ∧ P (x0) ∧ . . . ∧ P (xk)⇒ P (xk+1)

How good is it?

◦ In most cases, k-induction is stronger than standard induction (when k > 2)
2P is provable by k-induction iff 2(P ∧ ◦P ∧ . . . ∧ ◦kP) is provable by induction.

◦ There are counterexamples: For example, if T is reflexive, then 2P is provable
by k-induction iff 2P is provable by standard induction.

24

Formal Methods School, Menlo Park, 2012

BMP Verification

Proof Process

◦ The correctness property is not invariant (for any reasonable k)
◦ We need auxiliary lemmas:

l0 : LEMMA system |- G(phase = Settle OR tdata = One OR tdata = Zero);
l1 : LEMMA system |- G(phase = Stable => (tclk <= (time + TSTABLE)));
l2 : LEMMA system |- G(phase = Settle => (tclk <= (time + TSETTLE)));

◦ The full proof requires four auxiliary lemmas, the main one is proved by k
induction for k = 5.
◦ All proofs run in a few seconds.

Much Easier than Previous Proofs of BMP

◦ Vaandrager and de Groot, 2004, use PVS and Uppaal
Difficult proof: need 37 invariants, 4000 proof steps, hours to run

25

Formal Methods School, Menlo Park, 2012

Application 3: Computational Biology

Flux Balance Analysis

◦ Technique for modeling and analysis of metabolic pathways based on
stoichiometry
◦ For an individual reaction:

D-ribose + ATP −→ D-ribose-5-phosphate + ADP + 2H+

Let ρ denote the reaction rate, then the molecule quantities vary according to

d[D-ribose]

dt
=

d[ATP]

dt
= −ρ

d[D-ribose-5-phosphate]

dt
=

d[ADP]

dt
= ρ

d[H+]

dt
= 2ρ

26

Formal Methods School, Menlo Park, 2012

Flux Balance Analysis (cont’d)

If a molecule (say H+) is involved in n reactions, then we get

d[H+]

dt
= a1ρ1 + . . . + anρn

where ρis are reaction rates and ai are integer constants (ai is positive if reaction i
produces H+ and negative if reaction i consumes H+).

Doing this for a full set of molecules, we get a stoichiometry matrix S and an
equation

d[C]

dt
= SR

where R is a vector of reaction rates and C is a vector of molecule quantities

27

Formal Methods School, Menlo Park, 2012

Flux Balance Analysis (cont’d)

Flux balance analysis: looks for possible reaction rates when the system is at an
equilibrium (more or less)

◦ At equilibrium d[C]
dt = 0

◦ So we search for solutions to the linear system: SR = 0

Which solutions?

◦ The system is underdetermined (many more reactions than chemical
components)
◦ There’s always a trivial solution: R = 0, but it’s not interesting
◦ So more constraints are added to get solution that are “biologically interesting”

– add bounds on rates
– search for solutions that maximize some objective functions (i.e., biomass)

Beyond Flux-Balance Analysis

◦ add/search for missing reactions (i.e., errors in the pathway models): can be
formulated as a MILP optimization problem with 0-1 variables.

28

Formal Methods School, Menlo Park, 2012

Solving FBA and Related Problems

Off-the-shelf LP and MILP solvers

◦ Typical problem size is about 10,000s reaction, 1,000s components
◦ CPLEX, SCIP solve them without much problems

Using SMT Solver?

◦ Motivation for trying Yices: it does exact arithmetic, off-the-shelf solvers have
licensing restrictions
◦ But: results are disappointing.

– Yices can’t solve many of the MILP problems that are easy for SCIP.
– Poor convergence of the pivoting heuristics used by Yices
– Encoding using 0-1 variables is suboptimal for Yices

29

Formal Methods School, Menlo Park, 2012

Problems and Challenges in SMT Solving

30

Formal Methods School, Menlo Park, 2012

Challenges: Better SMT Solving

New Theories/Better Solvers for Hard Theories

◦ First-Order Logic
– efficient/refutationally complete solvers?
– conversely: model finding solvers
– SMT + rewriting

◦ Beyond Linear Arithmetic
– polynomial constraints and more (rational functions, trigonometry, log, etc.)
– floating point verification

◦ Beyond Resolution
– Resolution is at the core of CDCL but it has limitations (some problems have

no short resolution proofs)

31

Formal Methods School, Menlo Park, 2012

Challenges: Better SMT Solving

Parallelization

◦ state of the art: portfolio approaches
◦ is there hope of better performance using lower-grain parallelism or other

approaches?

32

Formal Methods School, Menlo Park, 2012

Challenges: Optimization using SMT-like Techniques

Optimization Problems

◦ Minimize/maximize some objective function subject to some constraints
◦ Many applications
◦ Challenge: Can SMT solvers (or variants) beat known techniques?

33

