Satisfiability Modulo Theories

Bruno Dutertre Leonardo de Moura
SRI International Microsoft Research

Satisfiability
a>b+ 2 a=2c+ 10, c+ b <1000

v Model
SAT

a =0, b = -3, c=-5
0>-3+2 0=2(-5)+10, (-5)+ (—3) <1000

Satisfiability

b+ 2=c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Satisfiability

b+ 2=c, f(read(write(a,b,3], c-2)) # f(c-b+1)

Arithmetic

Satisfiability

b+ 2=c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Array Theory

Satisfiability

b+ 2=c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Uninterpreted
Functions

Satisfiability

b+ 2=c, f(read(write(a,b,3), c-2)) #f(c-b+1)

Satisfiability

b+ 2=c, f(read(write(a,b,3), b+2-2)) £ f(b+2-b+1)

Satisfiability

b+ 2=c, f(read(write(a,b,3), b+2-2)) £ f(b+2-b+1)

Satisfiability

b+ 2=c, f(read(write(a,b,3), b)) # f(b+2-b+1)

Satisfiability

b+ 2=c, f(read(write(a,b,3), b)) #71(3)

Array Theory Axiom
va,i,v : read(write(a, 1, v), 1) = Vv

Satisfiability

b+2=c, f(3)£/(3)

A 4

UNSAT

Applications

|s execution path P feasible? |s assertion X violated?

~ ~
Test case} w L Program }

{ Generator Verifier

wouvumz2 -4 —

Is Formula F Satisfiable?

while (true) {

Test Case Generation

unsigned GCD(x,) {

requires(y > 0);

unsigned m =x % vy;
if (m ==0) return y;
X=Y;

y—=m,

SSA >

(y, > 0) and

(Mg =X, % Yy,) and

Yo =
Solver >
My =

not (m, = 0) and
(x1 = yo) and
(y1 = mo) and

(m, =x, %y,) and

We want a trace where the loop is

executed twice.

More Applications

Constraint Solving
Systems Biology
Invariant Generation
Type Checking
Model Based Testing

Termination

Some Applications at Microsoft

FORMULAY

Modeling Foundations.

Programming System

,m . ﬁ;s,.-.. } ot
Spec Explorer TE R M I N A TO E
——

* © Vigilante

Validity

F is VALID
ff
not F is UNSATISFIABLE

Prove that
x=21l,y=21=>x+y=2

v

IS
x=>1,y=>1not(x+y=2)

UNSAT?

Download

Yices
http://vices.csl.sri.com

/3
http://research.microsoft.com/projects/z3

Available for Windows, OSX and Linux

http://yices.csl.sri.com/
http://research.microsoft.com/projects/z3

SMT-Lib

http://www.smtlib.org

Online Tutorials
http://rise4fun.com/z3/tutorial
http://rise4fun.com/z3py/tutorial

http://www.smtlib.org/
http://rise4fun.com/z3/tutorial
http://rise4fun.com/z3py/tutorial

Roadmap

Lecture 1: Introduction, SAT
Lecture 2: SMT, EUF, Linear Arithmetic
Lecture 3: Quantifiers

Lecture 4: Applications and Challenges

SAT

Propositional Logic

CNF

pP1V Py, —pL VP, VDps P3

4

p, = true, p, = true, p,; = true

CNF is a set (conjunction) set of clauses
Clause is a disjunction of literals
Literal is an atom or the negation of an atom

Conversion to CNF

CNF(p,A) = (pA)
CNF(=¢,A) = (=, A"), where ([,A") = CNF(¢,A)
{
{

CNF(p1 Ao, A) = (p,A"), where

l1,A) CNF(¢1,A)
(12, Ag) = CNF (g, Ar)

=Ll
pis fresh P L

i i
A! = AQ J {—lp \/ lla —p \/ 52’ —lll N/ _IZQ N/ p}
CNF(¢1V o, A) = (p,A"), where...
A = Ay U{=pV i Vil Vp, -l Vp)

Theorem: ¢ and [A A are equisatisfiable, where CNF(, () = (I, A).

Conversion to CNF

P1
CNF(—(q1 A (q2V —g3)),0)
N ———
P2

Conversion to CNF

p1
e —

CNF(—(q1 A (q2V —g3)),0)
P2

CNF(q,V =q5®) = (p, {-P1V @2V =43, 7q, V P1, 45 V P1})

| J
|

P1 < 4,V Qs

CNF(qy, @) = {(q,, 0)

Conversion to CNF

P1
/_-/\-_.\

CNF(=(q1 N (g2 V —g3)),0) =
P2

(=po,{ —p1V gV —gs,
=g V Py,
q3 v P1,
—pa Vg4,
—pg V Py,

—q1 \/ —P1 \/ pg})

Conversion to CNF: Improvements

Maximize sharing & canonicity in the input formula £'.
Cache ¢ — [,when CN F' (¢, A) = (I, A').

Support for multiary \V and A.

Two procedures

DPLL

Proof-finder Model-finder
Saturation Search

Resolution

Cvl, Dv-al = CvD

[, —l = unsat

Improvements

Delete tautologies [V =l V C

Ordered Resolution

Subsumption (delete redundant clauses)
C subsumes CV D

Resolution: Example

D \/ —q \/ T, TP N/ q, p N/ r, r

Resolution: Example

D N/ —q \/ r, TP \/ q, p \/ r, r

D \/ —q \/ T, TP \/ q, p N/ r, r, ¢ \or

Resolution: Example

pNV ogNVr, opVg, pVor, r
D \/ —q \/ r, TP \/ q, p \/ r, r, 7q \ r

—pN -qgVr, opVg, pVr, or, gNVr, gV

Resolution: Example

pV gV, pVg, pVr, or =
—p \/ —q \/ T, TP N/ q, p N/ r, r, g \ r —
—p N/ —q \/ r, TP N/ q, p N/ r, r, g \/ r, g o7 —

D \/ —q \/ r, Tp N/ q, p N/ r, Tr, 1q \/ r, q \/ r, T

Resolution: Example

P \/ —q \/ T,
D \/ —q \/ T,
P \/ —q \/ T,
D \/ —q \/ T,

unsat

—p \/ q, p \/ T,
—p \/ q, p \/ T,
—p \/ q, p \/ T,
—p \/ q, p \/ T,

—-r
-r, gV
-r, gV T, gVr

-, gV T, gV, T

P4

Resolution: Correctness

Progress: Bounded number of clauses. Each application of resolution
generates a new clause.
Conservation: For any model M ,if M = C Viand M = D V1,
then M |=C V D.
Canonicity: Given an irreducible non-unsat state in the atoms
D1, ..., Py With p; < p,. 1, build a series of partial interpretations
M, as follows:
1. Let My = ()
2. If p; 14 is not the maximal atom in some clause that is not
already satisfied in M;, then M; 1 = M;|p;,, := false).
3. If some p; 1 V C' is not already satisfied in M, then

ﬂr’_ﬂ+1 — J‘fz [pz'—kl = TI'UE].

Resolution: Correctness

Suppose C and D are false in M,
letj =1+ 1
p; is maximal in

ijC, -pj VD

“

C VD isfalsein M,

Resolution: Problem

Exponential time and space

Unit Resolution

Cvl Al = C -
ﬁ subsumes

Cvl

Complete for Horn Clauses

—q,V ..V agqnVp

DPLL

Split rule

S
S,p S,—p

DPLL = Unit Resolution + Split rule

Pure Literals

A literal is pure if only occurs positively or
negatively.
Example :

p = (—1X1 \/Xg) /\ (X3 V —i){z) /N (X4 V —X5) /\ (X5 V —|X4)
—x1 and x3 are pure literals

Pure literal rule :
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

P-xixz = (X4 V 7x5) A (X5 V 7xs)

Preserve satisfiability, not logical equivalency !

DPLL

» Standard backtrack search

» DPLL(F) :
» Apply unit propagation
» |If conflict identified, return UNSAT
» Apply the pure literal rule
» If F is satisfied (empty), return SAT
» Select decision variable x

» If DPLL(F A x)=SAT return SAT
» return DPLL(F A —x)

DPLL : Example

p = (av—-bvd)A(aVv-bVe)A

(b V dV—e)A
(avbvevd)A(aVvbVveVv—d)n
(

avbVv-cve)A(aVbV-cV—e)

DPLL : Example

p = (av-bvd)A(av-bVe)A
bV —dV—e)A
avbvecvd)AN(avVbVecVvad)A

avVbVvV-ocVve)A(aVbV-cV—e)

(
(=
(
(

DPLL : Example

e = VabVvd)A(aV—abVe)A

bV —dV —e)A
avbvevd)A(aVvbVveVv-ad)n
avVbV-cVve)A(aVbV-cV—e)

(a
(=
(
(

conflict

DPLL : Example

;o —_—

¢ = (av-bvd)An(aVv-bVve)A
(=bV —dV -—e)A
(avbvevd)A(aVvbVcVd)A
(

avVbVvV-cVve)A(aVbV-cV —e)

conflict

DPLL : Example

o) —

o =

(av—-bvd)An(aV—-bVe)A @
(—bV—dV—e)A f
(avbVvecvd)A(aVvbVeV-d)A
(avbV-cVe)A(aVbV-cV —e)

AS

DPLL : Example

aVvV-bvd)An(aVv-bVe)A

(2
(mbV —dV —e)A

(avbveVvd)A(avbVvecVad)A 4 ~
(aVbV-cVe)A(aVbV-cV —e) i i

.
(o)
IKG

conflict solution

-

CDCL: Conflict Driven Clause Learning

Model

Proof

CDCL: Conflict Driven Clause Learning

Modern SAT solvers are based on CDCL
Backjumping

_earning

Restarts

ndexing

Abstract CDCL/DPLL

M| F

[B mﬁ &f clauses }

Abstract CDCL/DPLL

M|F

M|F,CVI

M| F,C
M|F|CvVvi

M|F|C

MUM |F|CVl

M| F|O

—

|

|

|

MIL|F

Moy |F,C Vi

M|F,C|C
M|F|DvC

M|F,C|C

Mlicvi | F

unsat

if

if

if

l or [occurs in F,

<
[is undefined in M

\

(

M |: -,
[is undefined in M

\

M = —C
lpvi € M,

CgF

M # -C,
l is undefined in M

(Decide)

(UnitPropagate)

(Conflict)

(Resolve)

(Learn)

(Backjump)

(Unsat)

Abstract CDCL : Example

| 1Tv2,3v4, 5V6 6V5V2

Abstract CDCL : Example

| 1Tv2 3v4,5V6,6V5V2 = (Decide)
1] 1v2 3v4,5VvV6 6VvV5V2

Abstract CDCL : Example

(Decide)
(UnitProp)

127, 1Vv2 3Vv4,5V6, 6Vv5V

Abstract CDCL : Example

1Vv2 3v4,5V6, 6V5Vv2 = (Decide)

1 1Vv2 3v4, 5V6, 6V5V2 = (UnitProp)
127, 1v2 3v4,5V6, 6V5Vv2 = (Decide)
127,53 1Vv2 3v4,5V6, 6V5V2

Abstract CDCL : Example

1Vv2 3v4,5Vv6, 6V5Vv2 = (Decide)

1 1v2, 3v4, 5V6, 6V5V2 = (UnitProp)

127, 1v2 3v4,5v6, 6V5Vv2 = (Decide)

127,53 1v2 3v4,5v6,6V5V2 = (UnitProp)
127,345, | 1Vv2 3Vv4, 5Vv6 6V5V2

Abstract CDCL : Example

1Vv2 3v4,5V6, 6V5V2 = (Decide)

1 1v2 3v4, 5V6, 6V5V2 = (UnitProp)

127, 1Vv2 3v4,5V6,6V5V2 = (Decide)

127, 3 1Vv2 3Vv4,5V6, 6V5V2 = (UnitProp)

127,345, | 1Vv2 3v4, 5V6 6V5V2 = (Decide)
127,,3435,,5 | 1v2 3Vv4, 5V6 6V5V2

Abstract CDCL : Example

1v2 3v4,5Vv6, 6V5V2 =

1 1v2 3v4,5V6 6V5V2 =

127, | IV2,3V4,5V6 6VEV2 =

127,53 1v2, 3Vv4,5Vv6 6VEV2 =

127,343, | 1Vv2 3v4,5V6,6V5V2 =

127,,343,,5 | 1v2 3Vv4,5VvV6 6VEV2 =
127,5345,,56:5 | 1VvV2 3Vv4,5V6, 6V5V2

Abstract CDCL : Example

1v2 3v4,5v6, 6V5EV2 =

1| 1v2 3v4, 5V6 6VEV2 =

127, | 1Vv2, 3v4,5V6 6V5V2 =

127,3] 1Vv2 3v4,5Vv6 6V5Vv2 =
127,345, | 1Vv2 3v4,5VvV6 6V5V2 =
127,,345,,5 | 1v2 3Vv4,5Vv6 6V5EV2 =
127,9343,,56:05 | 1VvV2 3v4,5V6, 6V5V2 =
127,,345,,56z | 1Vv2 3V4,5Vv6 6V5V2 |

Abstract CDCL : Example

1v2 3v4,5v6, 6VEV2 =

1 1v2 3v4, 5V6 6V5EV2 =

127, | IVv2 3Vv4,5V6 6VEV2 =

127,,3 | 1Vv2 3V4,5V6 6V5V2 =
127,343, | 1Vv2 3v4,5V6,6V5V2 =
127,343,,5 | 1Vv2 3v4, 5V6 6VEV2 =
1279345, 56:5 | 1V2 3V4,5V6 6V5V2 =
127,345, 5655 | ITv2 3Vv4, 5VE6 6V5v2 |

4

Abstract CDCL : Example

127,345, 5655 | F | 6v5Vv2

Abstract CDCL : Example

1 27,5 3 45,4 56505 |
1 279 3 45,4 5 6505 |

y

—Ps V TP

F H
F H

—ps V p,

6VEV2 =
5v2 ||

hd
6V iP5 V P,

(Resolve)

Abstract CDCL : Example

127,345, 5 6z5 F 6V5V2 = (Resolve)
1275 343,, 56506 | F 5V 2 = (Learn)
127,345,556z | F,5Vv2 5V2

Abstract CDCL : Example

127,345, 56:5 | F 6V5V2 = (Resolve)
1272345, 56:5 | F 5V 2 = (Learn)
127,345, 56:5 | F,5V2 5Vv2 = (Resolve)
127,9345,,56s5 | F.5Vv2 5V 1

Abstract CDCL : Example
125, 345, 5 655 F 6V5V2 = (Resolve)
1279 345,, 5655 | F 5V 2 = (Learn)
125,345, 5 65,5 F,5VvV2 5Vv2 = (Resolve)
1 25,5 3 43,4 5 65,5 F. 5V2 5v1 = (Backjump)
19:,5-+ | F.5V32

Abstract CDCL

» Support different strategies.

» Example: learn O or several clauses per conflict.

» Does it terminate?
» Each decision defines a new scope level.

» Metric: number of assigned literals per level.

1275343045655 — (2,2,2)

127, 557 — (3)

» Decide, UnitPropagate, and Backjump increase the metric.
» It can not increase forever (finite number of variables).

» Conflict resolution rules (Conflict, Resolve, Learn) are also

terminating.

Abstract CDCL : Strategy

» Abstract DPLL is very flexible.

» Basic Strategy:
» Only apply Decide if UnitPropagate and Conflict cannot be
applied.
» Conflict Resolution:

» Learn only one clause per conflict (the clause used in

Backjump).

» Use Backjump as soon as possible (FUIP).

Abstract CDCL : Decision Strategy

» Decision heuristic:
» Associate a score with each boolean variable.

» Select the variable with highest score when Decide is used.
» Increase by ¢ the score of var(l) when Resolve is used:
M|F|Cvi — M| F|DvC if Ip, € M, (Resolve)

» Increase the score of every variable in the clause C' \V [when
Backjump is used:

M = -C,
MUM'|F|Cv]l = Mlgy | F' if (Backjump)
[is undefined in M

) After each conflict: slightly increase the value of 0.

» From time to time renormalize the scores and ¢ to avoid

overflows.

Abstract CDCL : Phase Selection

» Assume p was selected by a decision strategy.

Should we assign p or —p in Decide?
Always False Guess —p (works well in practice).
Always True Guess p.

Score Associate a score with each literal instead of each variable.

Pick the phase with highest score.

Caching Caches the last phase of variables during conflict
resolution. Improvement: except for variables in the last

decision level.

Greedy Select the phase that satisfies most clauses.

Abstract CDCL : Extra Rules

» Extra rules:

M| F,C — M| F if C'is alearned clause (Forget)

M| F — | F (Restart)

» Forget in practice:

» Associate a score with each learned clause C'.

» Increase by 0. the score of DD \/ [when Resolve is used.
M|F|Cwvi — M| F|DvC i lp, €M, (Resolve)

» From time to time use Forget to delete learned clauses with

low score.

Abstract CDCL : Restart Strategies

No restarts
Linear Restart after every k conflicts, update k := k + 9.
Geometric Restart after every k conflicts, update k& := k X 0.

Inner-Out Geometric “Two dimensional pattern” that increases in both

dimensions.
» Initially & := z, the inner loop multiplies k& by 0 at each restart.

» Whenk >y, k:=xandy :=y X 0.

Luby Restarts are performed according to the following series:
1,1,2,1,1,2,4,1,1,2,1,1,.2,4,8, ..., multiplied by a constant
¢ (e.g., 100, 256, 512).

_ 2k—1 if Jk. i =2k — 1
luby(i) = _ok—1 | - - k—1 <« ; ko
luby(i — 2 + 1), ifdk.2 <i<2F -1

Abstract CDCL : Indexing

» Indexing techniques are very important.
» How to implement UnitPropagate and Conflict?
» Scanning the set of clauses will not scale.

» Simple index: mapping from literals to clauses (occurrences).
v watch(l) = {C,.....C,}, wherel € C;
» If [is assigned, check each clause C' € watch(l) for
UnitPropagate and Conflict.
» Most of the time C' has more than one unassigned literal.

» Improvement: associate a counter u with each clause (number

of unassigned literals).

» Problem: counters must be decremented when literals are

assigned, and restored during Backjump.

Abstract CDCL : Indexing

» Indexing techniques are very important.
» How to implement UnitPropagate and Conflict?
» Scanning the set of clauses will not scale.

» Simple index: mapping from literals to clauses (occurrences).
v watch(l) = {C,.....C,}, wherel € C;
» If [is assigned, check each clause C' € watch(l) for
UnitPropagate and Conflict.
» Most of the time C' has more than one unassigned literal.

» Improvement: associate a counter u with each clause (number

of unassigned literals).

» Problem: counters must be decremented when literals are

assigned, and restored during Backjump.

Indexing : Two watch literal

» Insight:

» No need to include clause C' in every set watch(l) where

[C.
» It suffices to include C' in at most 2 such sets.

» Invariant;

If some literal [in C' is not assigned to false, then

C' € watch(l") of some !’ that is not assigned to false.

Indexing : Two watch literal

» Maintain 2-watch invariant:
» Whenever [is assigned.

» For each clause C' € watch(l)
» If the other watch literal I’ (C' € watch(l")) is assigned to
true, then do nothing.

» Else if some other literal [’ is true or unassigned
watch(l') = watch(l') U {C'}
watch(l) = watch(l) \ {C}

» Else if all literals in ' are assigned to false, then Backjump.

» Else (all but one literal in C' is assigned to false) Propagate.

CDCL: Conflict Driven Clause Learning

DPLL

Resolution

Model

Proof

Preprocessing & Inprocessing

» Preprocessing step is very important for industrial benchmarks.

» Formula ~~ CNF (already covered).
» Subsumption: C' subsumes D if C' C D.

» Resolution: eliminate cheap variables.
» occs(l) = {clauses that contain [}
» |oces(p)| * |oces(—p)| < k
» |oces(p)| = 1or |oces(—p)| = 1

Homework

Install Yices & Z3 in your notebook

http://yices.csl.sri.com

http://research.microsoft.com/projects/z3

Yices input language:

http://vices.csl.sri.com/language.shtml

Online tutorials:
http://rise4fun.com/z3/tutorial SMT 2.0
http://rise4fun.com/z3py/tutorial Python

http://yices.csl.sri.com/
http://research.microsoft.com/projects/z3
http://yices.csl.sri.com/language.shtml
http://rise4fun.com/z3/tutorial
http://rise4fun.com/z3py/tutorial

