Satisfiability Modulo Theories

Bruno Dutertre

Leonardo de Moura

SRI International Microsoft Research

$$a>b+2$$
, $a=2c+10$, $c+b\leq 1000$

SAT

 $a=0$, $b=-3$, $c=-5$
 $0>-3+2$, $0=2(-5)+10$, $(-5)+(-3)\leq 1000$

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Array Theory

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Uninterpreted Functions

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

$$b + 2 = c$$
, $f(read(write(a,b,3), b+2-2)) \neq f(b+2-b+1)$

$$b + 2 = c$$
, $f(read(write(a,b,3), b+2-2)) \neq f(b+2-b+1)$

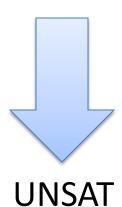
$$b + 2 = c$$
, $f(read(write(a,b,3), b)) \neq f(b+2-b+1)$

$$b + 2 = c$$
, $f(read(write(a,b,3), b)) \neq f(3)$

Array Theory Axiom

 $\forall a, i, v : read(write(a, i, v), i) = v$

$$b + 2 = c$$
, $f(3) \neq f(3)$



Applications

Test case
Generator

Is assertion X violated?

Program
Verifier

Is Formula F Satisfiable?

Test Case Generation

```
unsigned GCD(x, y) {
                                     (y_0 > 0) and
                                                                           x_0 = 2
 requires(y > 0);
                                     (m_0 = x_0 \% y_0) and
                                                                           y_0 = 4
 while (true) {
                          SSA
                                                             Solver
                                     not (m_0 = 0) and
                                                                           m_0 = 2
    unsigned m = x \% y;
                                     (x_1 = y_0) and
                                                                           x_1 = 4
    if (m == 0) return y;
                                     (y_1 = m_0) and
                                                                           y_1 = 2
    x = y;
                                     (m_1 = x_1 \% y_1) and
                                                                           m_1 = 0
    y = m;
                                     (m_1 = 0)
       We want a trace where the loop is
```

executed twice.

More Applications

Planning Scheduling Constraint Solving Systems Biology Invariant Generation Type Checking Model Based Testing Termination •••

Some Applications at Microsoft

SAGE

Validity

F is VALID iff $not\ F$ is UNSATISFIABLE

Prove that $x \ge 1, y \ge 1 \Rightarrow x + y \ge 2$

Is $x \ge 1, y \ge 1, not(x + y \ge 2)$ UNSAT?

Download

Yices

http://yices.csl.sri.com

Z3

http://research.microsoft.com/projects/z3

Available for Windows, OSX and Linux

SMT-Lib

http://www.smtlib.org

Online Tutorials

http://rise4fun.com/z3/tutorial

http://rise4fun.com/z3py/tutorial

Roadmap

Lecture 1: Introduction, SAT

Lecture 2: SMT, EUF, Linear Arithmetic

Lecture 3: Quantifiers

Lecture 4: Applications and Challenges

SAT Propositional Logic

CNF

$$p_1 \lor \neg p_2$$
, $\neg p_1 \lor p_2 \lor p_3$, p_3 $p_1 = true$, $p_2 = true$, $p_3 = true$

CNF is a set (conjunction) set of clauses
Clause is a disjunction of literals
Literal is an atom or the negation of an atom

$$CNF(p,\Delta) \ = \ \langle p,\Delta \rangle$$

$$CNF(\neg \phi,\Delta) \ = \ \langle \neg l,\Delta' \rangle, \text{ where } \langle l,\Delta' \rangle = CNF(\phi,\Delta)$$

$$CNF(\phi_1 \land \phi_2,\Delta) \ = \ \langle p,\Delta' \rangle, \text{ where }$$

$$\langle l_1,\Delta_1 \rangle = CNF(\phi_1,\Delta)$$

$$\langle l_2,\Delta_2 \rangle = CNF(\phi_2,\Delta_1)$$

$$p \text{ is fresh }$$

$$\Delta' = \Delta_2 \cup \{\neg p \lor l_1, \neg p \lor l_2, \neg l_1 \lor \neg l_2 \lor p\}$$

$$CNF(\phi_1 \lor \phi_2,\Delta) \ = \ \langle p,\Delta' \rangle, \text{ where } \dots$$

$$\Delta' = \Delta_2 \cup \{\neg p \lor l_1 \lor l_2, \neg l_1 \lor p, \neg l_2 \lor p\}$$

Theorem: ϕ and $l \wedge \Delta$ are equisatisfiable, where $\mathit{CNF}(\phi, \emptyset) = \langle l, \Delta \rangle$.

$$CNF(\neg(\underline{q_1 \land (q_2 \lor \neg q_3)}), \emptyset)$$

$$CNF(\neg(\underline{q_1} \land \overbrace{(q_2 \lor \neg q_3)}^{p_1}), \emptyset)$$

$$CNF(q_2 \vee \neg q_3, \emptyset) = \langle p_1, \{\neg p_1 \vee q_2 \vee \neg q_3, \neg q_2 \vee p_1, q_3 \vee p_1\} \rangle$$

$$p_1 \Leftrightarrow q_2 \vee \neg q_3$$

$$CNF(q_1,\emptyset) = \langle q_1,\emptyset \rangle$$

$$CNF(\neg(q_1 \land (q_2 \lor \neg q_3)), \emptyset) = \frac{p_1}{p_2}$$

$$\langle \neg p_2, \{ \neg p_1 \lor q_2 \lor \neg q_3, \\ \neg q_2 \lor p_1, \\ q_3 \lor p_1, \\ \neg p_2 \lor q_1, \\ \neg p_2 \lor p_1, \\ \neg p_2 \lor p_1, \\ \neg q_1 \lor \neg p_1 \lor p_2 \} \rangle$$

Conversion to CNF: Improvements

Maximize sharing & canonicity in the input formula F.

Cache $\phi \mapsto l$, when $CNF(\phi, \Delta) = \langle l, \Delta' \rangle$.

Support for multiary \vee and \wedge .

. . .

Two procedures

Resolution	DPLL
Proof-finder	Model-finder
Saturation	Search

Resolution

$$C \vee l$$
, $D \vee \neg l \Rightarrow C \vee D$

$$l, \neg l \Rightarrow unsat$$

Improvements

Delete tautologies $l \lor \neg l \lor C$ Ordered Resolution Subsumption (delete redundant clauses) C subsumes $C \lor D$

. . .

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ r \rightarrow r, \$$

unsat

Resolution: Correctness

Progress: Bounded number of clauses. Each application of resolution generates a new clause.

Conservation: For any model M, if $M \models C \lor l$ and $M \models D \lor \bar{l}$, then $M \models C \lor D$.

Canonicity: Given an irreducible non-unsat state in the atoms p_1, \ldots, p_n with $p_i \prec p_{i+1}$, build a series of partial interpretations M_i as follows:

- 1. Let $M_0 = \emptyset$
- 2. If p_{i+1} is not the maximal atom in some clause that is not already satisfied in M_i , then $M_{i+1} = M_i[p_{i+1} := \textit{false}]$.
- 3. If some $p_{i+1} \vee C$ is not already satisfied in M_i , then $M_{i+1} = M_i[p_{i+1} := \textit{true}].$

Resolution: Correctness

Suppose C and D are false in M_i Let j=i+1 p_j is maximal in $p_j \vee C$, $\neg pj \vee D$

 $C \vee D$ is false in M_i

Resolution: Problem

Exponential time and space

Unit Resolution

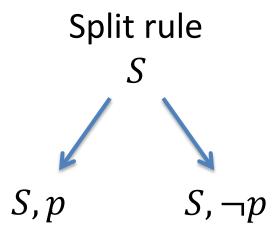
$$C \lor l, \neg l \Rightarrow C$$

$$C \lor l, \neg l \Rightarrow C$$
subsumes
$$C \lor l$$

Complete for Horn Clauses

$$\neg q_1 \lor \dots \lor \neg qn \lor p$$

DPLL



DPLL = Unit Resolution + Split rule

Pure Literals

A literal is pure if only occurs positively or negatively.

Example:

$$\varphi = (\neg x_1 \lor x_2) \land (x_3 \lor \neg x_2) \land (x_4 \lor \neg x_5) \land (x_5 \lor \neg x_4)$$

\(\neg x_1\) and \(x_3\) are pure literals

Pure literal rule:

Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

$$\varphi_{\neg x_1,x_3}=(x_4\vee\neg x_5)\wedge(x_5\vee\neg x_4)$$

Preserve satisfiability, not logical equivalency!

DPLL

- Standard backtrack search
- ► DPLL(F):
 - Apply unit propagation
 - If conflict identified, return UNSAT
 - Apply the pure literal rule
 - If F is satisfied (empty), return SAT
 - Select decision variable x
 - ▶ If DPLL($F \land x$)=SAT return SAT
 - ▶ return DPLL($F \land \neg x$)

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$

$$(\neg b \lor \neg d \lor \neg e) \land$$

$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$

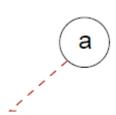
$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$

$$(\neg b \lor \neg d \lor \neg e) \land$$

$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$

$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$



$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$

$$(\neg b \lor \neg d \lor \neg e) \land$$

$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$

$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$
conflict

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land (\neg b \lor \neg d \lor \neg e) \land (a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land (a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land (\neg b \lor \neg d \lor \neg e) \land (a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land (a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

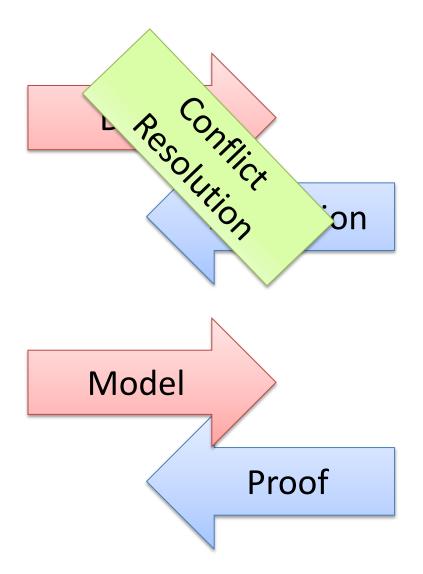
$$conflict$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land \\ (\neg b \lor \neg d \lor \neg e) \land \\ (a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land \\ (a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$conflict$$

$$conflict$$
solution

CDCL: Conflict Driven Clause Learning



CDCL: Conflict Driven Clause Learning

Modern SAT solvers are based on CDCL

Backjumping

Learning

Restarts

Indexing

Abstract CDCL/DPLL

 $M \parallel F$

Partial model

Set of clauses

Abstract CDCL/DPLL

$$M \parallel F$$

$$\implies M l \parallel F$$

$$M \parallel F, C \vee l$$

$$\implies M l_{C \vee l} \parallel F, C \vee l$$

$$\implies M \: l_{C \vee l} \: \| \: F, C \vee l \quad \text{if} \quad \left\{ \begin{array}{c} M \models \neg C, \\ l \text{ is undefined in } M \end{array} \right. \tag{UnitPropagate}$$

$$M \parallel F, C$$

$$\implies M \parallel F, C \parallel C$$

if
$$M \models \neg C$$

$$M\,\|\,F\,\|\,C\vee\bar{l}$$

$$\implies M \parallel F \parallel D \vee C$$

if
$$l_{D\vee l}\in M$$
,

$$M \parallel F \parallel C$$

$$\implies M \parallel F, C \parallel C$$

if
$$C \not\in F$$

$$M l' M' \parallel F \parallel C \lor l \implies M l_{C \lor l} \parallel F$$

$$\text{if } \left\{ \begin{array}{l} M \models \neg C, \\ l \text{ is undefined in } M \end{array} \right. \tag{Backjump}$$

$$M \parallel F \parallel \square$$

 $\parallel \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2}$

$$1 \ 2_{\overline{1}\vee 2} \ 3 \ 4_{\overline{3}\vee 4} \ 5 \ \overline{6}_{\overline{5}\vee \overline{6}} \ \parallel \quad F \qquad \qquad \parallel \quad 6 \vee \overline{5} \vee \overline{2}$$

$$6 \vee \overline{5} \vee \overline{2}$$

Abstract CDCL

- Support different strategies.
 - Example: learn 0 or several clauses per conflict.
- Does it terminate?
 - Each decision defines a new scope level.
 - Metric: number of assigned literals per level.

$$1 \ 2_{\overline{1}\vee 2} \ 3 \ 4_{\overline{3}\vee 4} \ 5 \ \overline{6}_{\overline{5}\vee \overline{6}} \quad \mapsto \quad (2,2,2)$$
$$1 \ 2_{\overline{1}\vee 2} \ \overline{5}_{\overline{5}\vee \overline{1}} \quad \mapsto \quad (3)$$

- Decide, UnitPropagate, and Backjump increase the metric.
- It can not increase forever (finite number of variables).
- Conflict resolution rules (Conflict, Resolve, Learn) are also terminating.

Abstract CDCL: Strategy

- Abstract DPLL is very flexible.
- Basic Strategy:
 - Only apply Decide if UnitPropagate and Conflict cannot be applied.
- Conflict Resolution:
 - Learn only one clause per conflict (the clause used in Backjump).
 - Use Backjump as soon as possible (FUIP).

Abstract CDCL: Decision Strategy

- Decision heuristic:
 - Associate a score with each boolean variable.
 - Select the variable with highest score when Decide is used.
 - Increase by δ the score of $\mathit{var}(l)$ when **Resolve** is used:

$$M \, \| \, F \, \| \, C \vee \bar{l} \qquad \Longrightarrow \quad M \, \| \, F \, \| \, D \vee C \qquad \text{ if } \quad l_{D \vee l} \in M, \tag{Resolve}$$

Increase the score of every variable in the clause $C \vee l$ when **Backjump** is used:

$$M \ l' \ M' \ \| \ F \ \| \ C \lor l \ \implies M \ l_{C \lor l} \ \| \ F' \qquad \qquad \text{if} \ \left\{ \begin{array}{l} M \models \neg C, \\ l \ \text{is undefined in} \ M \end{array} \right. \tag{Backjump}$$

- After each conflict: slightly increase the value of δ .
- From time to time renormalize the scores and δ to avoid overflows.

Abstract CDCL: Phase Selection

Assume p was selected by a decision strategy.

Should we assign p or $\neg p$ in **Decide**?

Always False Guess $\neg p$ (works well in practice).

Always True Guess p.

Score Associate a score with each literal instead of each variable. Pick the phase with highest score.

Caching Caches the last phase of variables during conflict resolution. Improvement: except for variables in the last decision level.

Greedy Select the phase that satisfies most clauses.

Abstract CDCL: Extra Rules

Extra rules:

$$M \parallel F, C \implies M \parallel F$$
 if C is a learned clause (Forget)
$$M \parallel F \implies \parallel F$$
 (Restart)

- Forget in practice:
 - Associate a score with each learned clause C.
 - Increase by δ_c the score of $D \vee l$ when **Resolve** is used. $M \parallel F \parallel C \vee \bar{l} \implies M \parallel F \parallel D \vee C \quad \text{if } l_{D \vee l} \in M,$ (Resolve)
 - From time to time use Forget to delete learned clauses with low score.

Abstract CDCL: Restart Strategies

No restarts

Linear Restart after every k conflicts, update $k := k + \delta$.

Geometric Restart after every k conflicts, update $k := k \times \delta$.

Inner-Out Geometric "Two dimensional pattern" that increases in both dimensions.

- Initially k:=x, the inner loop multiplies k by δ at each restart.
- When k > y, k := x and $y := y \times \delta$.

Luby Restarts are performed according to the following series: $1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,\ldots$, multiplied by a constant c (e.g., 100,256,512).

$$\mathit{luby}(i) = \left\{ \begin{array}{ll} 2^{k-1}, & \text{if } \exists k. \ i = 2^k - 1 \\ & \mathit{luby}(i - 2^{k-1} + 1), & \text{if } \exists k. \ 2^{k-1} \leq i < 2^k - 1 \end{array} \right.$$

Abstract CDCL: Indexing

- Indexing techniques are very important.
- How to implement UnitPropagate and Conflict?
- Scanning the set of clauses will not scale.
- Simple index: mapping from literals to clauses (occurrences).
 - watch $(l) = \{C_1, \ldots, C_n\}$, where $\bar{l} \in C_i$
 - If l is assigned, check each clause $C \in \mathit{watch}(l)$ for UnitPropagate and Conflict.
 - lacktriangle Most of the time C has more than one unassigned literal.
 - Improvement: associate a counter u with each clause (number of unassigned literals).
 - Problem: counters must be decremented when literals are assigned, and restored during Backjump.

Abstract CDCL: Indexing

- Indexing techniques are very important.
- How to implement UnitPropagate and Conflict?
- Scanning the set of clauses will not scale.
- Simple index: mapping from literals to clauses (occurrences).
 - watch $(l) = \{C_1, \ldots, C_n\}$, where $\bar{l} \in C_i$
 - If l is assigned, check each clause $C \in \mathit{watch}(l)$ for UnitPropagate and Conflict.
 - lacktriangle Most of the time C has more than one unassigned literal.
 - Improvement: associate a counter u with each clause (number of unassigned literals).
 - Problem: counters must be decremented when literals are assigned, and restored during Backjump.

Indexing: Two watch literal

Insight:

- No need to include clause C in every set $\mathit{watch}(l)$ where $\bar{l} \in C$.
- It suffices to include C in at most 2 such sets.

Invariant:

If some literal l in C is not assigned to false, then $C \in \mathit{watch}(l')$ of some l' that is not assigned to false.

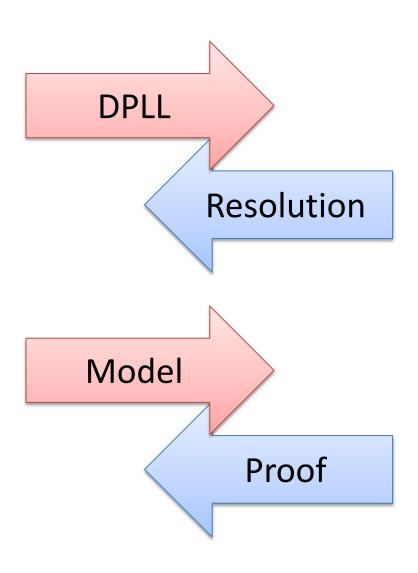
Indexing: Two watch literal

- Maintain 2-watch invariant:
 - Whenever l is assigned.
 - For each clause $C \in \mathit{watch}(l)$
 - If the other watch literal l' ($C \in watch(l')$) is assigned to true, then do nothing.
 - lacktriangle Else if some other literal l' is true or unassigned

```
\mathit{watch}(l') := \mathit{watch}(l') \cup \{C\}
\mathit{watch}(l) := \mathit{watch}(l) \setminus \{C\}
```

- \blacktriangleright Else if all literals in C are assigned to false, then **Backjump**.
- \blacktriangleright Else (all but one literal in C is assigned to false) **Propagate**.

CDCL: Conflict Driven Clause Learning



Preprocessing & Inprocessing

- Preprocessing step is very important for industrial benchmarks.
- Formula → CNF (already covered).
- Subsumption: C subsumes D if $C \subseteq D$.
- Resolution: eliminate cheap variables.
 - $occs(l) = \{ clauses that contain l \}$
 - $|occs(p)| * |occs(\neg p)| < k$
 - $|occs(p)| = 1 \text{ or } |occs(\neg p)| = 1$

Homework

Install Yices & Z3 in your notebook

http://yices.csl.sri.com

http://research.microsoft.com/projects/z3

Yices input language:

http://yices.csl.sri.com/language.shtml

Online tutorials:

http://rise4fun.com/z3/tutorial SMT 2.0

http://rise4fun.com/z3py/tutorial Python