
© 2010 Carnegie Mellon University

Incremental Verification and

Validation of System

Architecture for Software

Reliant Systems Using AADL

(Architecture Analysis &

Design Language)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Bruce Lewis (US Army), Peter H Feiler (SEI)

Layered Assurance Workshop, Dec 6, 2010

2

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Gravity of the Issue Today

System Complexity is Growing Rapidly...

July 09

Acronyms:

SLOC: source lines of code

COCOMO II: COnstructive COst MOdel II

3

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Late Discovery of System-Level Problems

5x

Software

Architectural

Design

System

Design

Component

Software

Design

Code

Development

Unit

Test

System

Test

Integration

Test

Acceptance

Test

Requirements

Engineering

110x

Where faults are introduced

Where faults are found

The estimated nominal cost for fault removal

20.5%

1x

20%, 16%

10%, 50.5%

0%, 9% 40x

70%, 3.5%
16x

Sources:

NIST Planning report 02-3, The Economic Impacts of Inadequate

Infrastructure for Software Testing, May 2002.

D. Galin, Software Quality Assurance: From Theory to Implementation,

Pearson/Addison-Wesley (2004)

B.W. Boehm, Software Engineering Economics, Prentice Hall (1981)

60% of errors in fault management software

Requirements & system

interaction errors
80% late error discovery

at high repair cost

80% late error discovery

at high repair cost

80% late error discovery

at high rework &

recertification cost

80% of accidents due to operator error

High recertification cost of design error corrections

leads to 75% of operator time spent in work-arounds

System-level fault propagation due to incomplete/inconsistent

requirements and mismatched assumptions.

4

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

New Levels of System Interaction Complexity &
Mismatched Assumptions – AADL addresses

System

Engineer
Control

Engineer

Application

Developer

System

User

System

Under

Control

Control

System

Compute

Platform

Runtime

Architecture

Application

Software

Embedded SW System Engineer

Physical Plant

Characteristics

Lag, proximity

Model recalibration

Data Streams

Unstable control &

inconsistent state

due to jitter and loss

Data Representation

Ariane 4/5: 16-bit data

Air Canada: gal vs. l

Concurrency

Race conditions crash applications

designed for single-core on multi-cores

Distribution & Redundancy

Loss of redundancy & other

hazards due to HW Virtualization

Operator Error

Driver lockout

Software runtime system impacts safety-critical software & system properties

Human

5

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Fault Root Causes Due to Runtime System
Architecture
Violation of data stream assumptions

• Stream miss rates, Mismatched data representation, Latency jitter & age

Partitions as Isolation Regions

• Space, time, and bandwidth partitioning

• Isolation not guaranteed due to undocumented resource sharing

• fault containment, security levels, safety levels, distribution

Virtualization of time & resources

• Logical vs. physical redundancy

• Time stamping of data & asynchronous systems

Inconsistent System States & Interactions

• Modal systems with modal components

• Concurrency & redundancy management

• Application level interaction protocols

Validation by model

checking & proofs

Fault propagation

security analysis

redundancy patterns

Data (stream) consistency

End-to-end latency analysis

Modeling of partitioned

architectures

AADL concepts capture key

architecture abstractions to address

root causes

6

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

SAE Architecture Analysis & Design
Language (AADL) for Embedded Systems

The Computer System

The System

Computer System

Hardware & OS

Physical platform

Aircraft

Control

Guidance

Deployed on

Utilizes

Physical interface

Platform component

AADL focuses on interaction between the three

major elements of a software-intensive system

based on architectural abstractions of each.

Embedded

Application Software

Flight control & Mission
The Software

Focus on software

runtime architecture

7

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University
7

AADL: The Language

Designed for standardized incremental, composable, quantitative

analysis and generative system integration

Precise semantics for components & interactions

• Thread, process, data, subprogram, system, processor, memory, bus,

device, virtual processor, virtual bus, abstract

• Typed properties, properties with units and model reference values

Continuous control & event response processing

• Data and event flow, synchronous call/return, shared access

• End-to-End flow specifications, black box flow specs

Operational modes & fault tolerant configurations

• Modes & mode transition, mode specific properties & configurations

Modeling of large-scale systems

• Component variants, packaging of AADL models, public/private

Accommodation of diverse analysis needs

• Extension mechanism (property set, sublanguage) standardized

8

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

AADL Annex Standard Extensions

Behavior Annex (ballot passed 2010)

• Concurrency behavior

• Validation of implementation

ARNIC 653 Annex (ballot passed 2010)

• Define 653 architectural elements in AADL for analysis

• Generation of runtime & configuration file for 653-compliant O/S

Data Modeling Annex (ballot passed 2010)

• Interface with data model in other modeling notation

Code Generation Annex (in review)

• API & code patterns for different programming languages

• Original annex in 2006

Error Model Annex (in revision)

• Error behavior as architecture model annotation

• Original annex in 2006

9

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Architecture Execution Semantics Defined –
Components to SoS

Nominal & recovery

Fault handling

Resource locking

Mode switching

Initialization

Finalization

Temporal Logic

Modes

Behavior Annex

9

Thread Example

Diagram

10

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Potential Model-based Engineering Pitfalls

Potential Solution

Fault model

System implementation

Inconsistency between

independently developed

analytical models

Confidence that model

reflects implementation

Architecture-centric

model repository

Generation from

validated models

The Issues

Security model
Timing model

11

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Single-Truth through consistency across
Architectural models => Architecture-Centric

Increased confidentiality

requirement

• change of encryption policy

Key exchange frequency changes

Message size increases

• increases bandwidth utilization

• increases power consumption

Increased computational complexity

• increases WCET

• increases CPU utilization

• increases power consumption

• may increase latency

12

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Formal Methods & AADL (A bridge to formal
modeling from an architecture specification).

Concurrency & mode logic: interface with Alloy (deNiz)

Simulink & AADL integration: Emmeskay & Telecom Paristech

Model checking based on Simulink specifications: Rockwell Collins

Behavioral component interaction – AADL & BIP: Verimag

Formal proofs & AADL – BLESS (pace maker): Larson

AADL & Maude Model Checking: Meseguer (UIUC), U Leicester

AADL & Timed Abstract State Machines (TASM): Lundquist

AADL & Timed Automata (Cheddar): Singhoff

AADL & Process Algebra: Sokolsky

AADL & UPPAAL: Sokolsky, Lundquist

AADL & timed Petri nets: Filali (TINA), Kordon

Consistency Across Virtual Integration Models, (Nam, Sha, deNiz)

13

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Summary – AADL Strong Semantics

Integration of CPS effects into the architecture context

Understanding of runtime behavior and communication impact

Single truth modeling and transformation

Model compilation and Model composition

Incremental Verification and Validation

Precise, correct by construction code generation

Analysis tools per domain built to common architectural semantics

Bridge to formal analysis

Cyber-Physical adds several more dimensions of complexity – to

integrate the effects into an understanding of system behavior we

need a similar standardized approach, perhaps AADL annex.

14

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

AADL Standard Suite
& Industry Initiatives

SAE AADL

Standard

2004/2009

Automotive

OSATE Toolset

SEI

STOOD

ElliDiss

AADL Meta

Model & XMI

June 2006

AADL Error

Annex Standard

June 2006

Avionics

Aerospace

TOPCASED

Open Source Embedded

Systems Tool Framework

28 partners €20+M 2005-2009

ITEA SPICES

Model-Driven Embedded

Systems Engineering

15 partners €16M 2006-2009

AVSI SAVI

Analysis-based System Validation

12+ partners $40+M 2008-2014

EC ASSERT
Proof-based Satellite

Architectures
ESA + 30 partners
€15M 2004-2007

OMG MARTE

2005-2009

EAST ADL

Consortium

AutoSAR

IST ARTIST2
Embedded Systems
Center of Excellence

2007-2011

OpenGroup
Real-Time Forum
EU + US partners

AADL UML

MARTE Profile

2009

AADL Behavior

Annex

2009

AADL ARINC653

Annex

2009

AADL Data

Modeling Annex

2009

Medial

devices

Autonomous

systems

AADL Ada/C Code

Generation

Annex Standard

2006/2009

www.aadl.info

wiki.sei.cmu.edu/aadl
DARPA META

2010-2011

http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en

15

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

The ASSERT process – “Applying Model-Driven Engineering Concepts to
build High-Integrity systems in the IST-ASSERT process” by Jerome Hugues

ASN.1 Code

generators

System

Model

(AADL)

Data Models

(ASN1)

ASN1 compiler

(asn1c)

C code

mapping
C code

Data structures

Encoder/decoder

C code

Data structures

Behavior

LustreSDL

C code

mapping

C code

Data structures

Behavior

AADL container AADL Container

AADL Runtime

ObjectGeode SCADE

The source code for each

subsystem, as generated

by the tools’

code generators

As created in Stood

(and asn2aadlPlus)

The messages exchanged

between subsystems

The encoders and decoders

of the ASN.1 messages
The semantically equivalent

types of the messages per tool

Aerospace Vehicle Systems Institute

AVSI is a global cooperative of aerospace companies,
government organizations, and academic institutions

The System Architecture Virtual

Integration program is an AVSI program

addressing virtual integration of systems.

SEI was selected as the

contractor to help work the

proof-of-concept Effort

Past AVSI projects have covered the breadth

of aerospace systems and current research

includes projects in the areas of reliability,

certification, and virtual integration.

June 09

How Are We to Address This Issue?

Analysis & Validation through
Virtual Integration!

But what exactly does that mean?

June 09

SAVI Approach: Integrate, Then Build

SAVI is
 A changed acquisition paradigm to facilitate systems

integration

 A research effort to define the standards and technologies
needed to effect virtual integration

 Built on the three-legged stool of

Model-based,

 Proof-Based, and

Component-Based engineering

 Structured/transformable data interfaces

 A global collaboration

SAVI is not
 A software tool or a design tool

 A continuation of current system development practices

June 09

Modified Business Model
System Integrator defines a new product using internal repository of virtual “parts”
Specifications for virtual subystems sent to suppliers
Proposed and developed subsystem models incrementally provided to integrator

New SM
New SM

Repository

Parse &

Process
Modify Create

Virtually

Integrate
Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues

New SM

Repository

Parse &

Process
Modify Create

Virtually

Integrate
Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues

New SM

Repository

Parse &

Process
Modify Create

Virtually

Integrate
Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues
New SM

Repository

Parse &

Process
Modify Create

Virtually

Integrate
Existing CM/SM

Modified CM/SM

New CM/SM

CM/SM

Issues

New SM

Virtually

Integrate

New Product Definition
New SM

Issues

Specs

System Integrator
Suppliers

Model Exchange

Via Standardized

Interchange

Formats

Virtual Systems Integration
Uncovers Errors Earlier in Development

... early validation of system and

embedded software system

behavior to

reduce integration errors.

Standarized architecture language

with strong semantics, the Model

Bus and Model Repository concepts

in SAVI enable…

Model Based Acquisition Environment

June 09

21

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Architecture Design Language Requirements for SAVI
Supporting Embedded Software System (ESS) Analyses

Desired quality Reason AADL

ESS architecture

concepts with

precise semantics

Standardized analysis

quantitative

assessment

Use of formal methods

ESS abstractions as language primitives

Semantics well-documented for each

component & interaction category

Checkable

consistency of

architecture

formation

Incremental change

impact detectable

Impact analysis across

quality attributes

Compilable strongly typed language with standard

legality & consistency rules

EMF-based meta model drives XMI standard

Design & operational quality attributes

Component-

based fidelity

multi-dimensional

modeling

Consistency &

quantitative analysis

early & throughout

development life cycle

Hierarchical composable SW/HW/physical

components with interaction behavior & timing

Explicit support for templates, patterns,

incomplete models

Standard extensions via property sets & annex

sublanguages to core

Model scalability,

variability &

management

Large scale system

modeling &

subcontractor

management

Spec/instance separation

Type/implementation variation

Dynamic re-configurability

Packages to manage model space

Version

PoC Prioritized Requirements

Requirement Category
1 Establish Model Bus infrastructure Process
2 Establish Model Repository Infrastructure Process
3 Inform RoI estimates through POC performance & results Process

4 Analyses be conducted across the system Analysis
5 Two or more analyses must be conducted Analysis
6 Analyses be conducted at multiple levels of abstraction Analysis

7 Analyses must validate system model consistency at
multiple levels of abstraction

Analysis

8 Analyses must be conducted at the highest system level
abstraction

Analysis

9 Model infrastructure must contain multiple model
representations

Model

10 Model infrastructure must contain multiple communicating
components

Model

23

AADL & SysML

Feiler, July 2009

© 2008 Carnegie Mellon University

Software

Architectural

Design

System

Design

Component

Software

Design

Code

Development

Unit

Test

System

Test

Integration

Test

Acceptance

Test

Top-Level

Verification Items

High-level

AADL Model

Detailed

AADL Model

Specify Model-

Code Interfaces

Predictive

Sensitivity analysis for uncertainty

Requirements

Engineering

Benefits of System Architecture Virtual Integration (SAVI)

→ generation of test cases

← updating models with actual data

Validated

Confidence in implementation

AVSI SAVI Work Packages
As-is and To-be development
process
Error & ROI Model
Model repository & bus
infrastructure
Commercial tool integration
Standards based process
Acquisition
Certification

24

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

SAVI Proof Of Concept Demo

Proof-of-Concept Demonstration - (4/4)

 Did the results from this PoC Demonstration
indicate that the System Architecture
Virtual Integration (SAVI) methodology is
technically feasible to pursue?

 Core concepts were demonstrated on three
different models, BUT...
 Scalability was not fully explored

 Open issues with AADL (ADL used in PoC) are to be explored

• Meets needs of all Use Cases?

• Full compatibility with DoDAF version 2?
June 09

Cost Reduction through Rework Avoidance

Cost reduction ranges from $717M (7.8%) to $2,391M (26.1%) on a $9,176M
new airplane project (2014-2018)

Every increase of 1% in defect removal efficiency results in a

conservative cost reduction of $22M

Estimates based on conservative assumptions

• Based on industry data from SAVI participants
• Model assumes development of a single large aircraft in the 2014-2018

timeframe
• Savings largely driven by reduction of rework via discovery of

requirements related problems earlier in the development lifecycle
• ROI does not include savings in maintenance & field upgrades, schedule

overrun, loss of life & equipment, mission delay
• Conservative – used research investment of $108M, 2.5x expected,

2010-2014.

ROI study is part of SEI & AVSI SAVI collaboration

Based on research

investment not cost

to apply

Spiral Development Planned

June 09

Three Iterations to Reach TRL 9

Schedule Roadmap Next

28

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Cooperative Engineering of Systems: A Multi-
notation Single Source Repository Approach

System components are captured

as component abstractions &

properties supported by detailed

component models

Application Software

Runtime Architecture
(task & communication)

Computer Platform

Architecture
(processors & networks)

Physical System

Architecture
(interface with embedded

SW/HW)

Hardware

Components
(circuits & logic)

VHDL

Application Software

Components
(source code)

Java, UML, Simulink

Physical

Components
(mechanical , electrical, heat)

Modelica

SysMLAADL

Operational

Environment
(People, Use

scenarios)

UML

Embedded System Engineering System Engineering

Control

Engineering

Mechanical

Engineering

Electrical

Engineering

Application

Software

Engineering

Demonstrated

in AVSI SAVI

29

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

A Fault Propagation Use Case
System & Embedded Software Loop

Hydraulic System

Pump failure due to SW

Avionics System

Unresponsive flaps affect

flight control

Hydraulic Control Software

Pump control

Avionics Software

Auto-pilot

Flight control

The System
The Software

Computer

System

Computer System

Bus failure

Use of AADL Error Model

Annex for Fault Propagation

Modeling

AADL Model of Physical System, Application Software, Computer System

30

Behavior Analysis Demo. – Aims (4)

4. To demonstrate
the integration
of multi-model
representations
within the
EPoCD Archi-
tecture Frame-
work AADL
model.

Mechatronic
Actuator Model

Structural Finite
Element Model

31

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

31

AADL and Safety-Criticality

Fault management

• Architecture patterns in AADL

— Redundancy, health monitoring, …

• Fault tolerant configurations & modes

Dependability

• Error Model Annex to AADL

• Specification of fault occurrence and fault propagation information

• Use for hazard and fault effect modeling

• Reliability & fault tree analysis

Behavior validation

• Behavior Annex to AADL

• Model checking

• Source code validation

Consistency checking of

safety-criticality levels

32

Safety-Critical Systems Validation

Feiler, April 2009

© 2008 Carnegie Mellon University

AADL Error Annex

AADL annex that supports various forms of reliability and safety analysis

Defines error model

• State transition diagram that represents normal and failed states

• Error models can be associated with hardware components, software

components, connections, and “system” (composite) components

Error model consists of

• State definitions

• Propagations from and to other components

• Probability distribution and parameter definitions

• Allowed state transitions and probabilities

33

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Leverage Connectivity in AADL Models

Fault propagation at the application logic level, at the hardware level,

and between the two levels.

• Provides compositional model specification approach

• Architecture defines propagation paths for software and hardware

Component A Component B

Processor 1 Processor 2Bus

Error_Free Failed

Error_Free Failed Error_Free Failed Error_Free Failed

Error_Free FailedError_Free Failed

34

AADL transformation

• ADAPT Tool (Ana Rugina, LAAS-CNRS)
– Packaged as an eclipse plug-in

– Takes in AADL architecture and error behavior
information

– Converts to a general stochastic petri net

– Outputs GSPN information to an XML file

• ADAPT-MOBIUS Converter
– Takes in the ADAPT XML file.

– Converts a GSPN to a Mobius Stochastic
Activity Network

– Outputs SAN information to an XML format.

FMEA

Generator
FMEA

AADL

Architecture

Model

AADL Error

Model

OSATE-A

Error Model

Editor

OSATE-A
Error Model

Editor

GPSN

35

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Reliability Validation & Improvement Framework

Model Repository

Mission

Requirements

Function

Behavior

Performance

Safety-criticality

Requirements

Reliability

Safety

Security

End-to-end System Validation and Verification

System & Software Assurance

Sufficient justified confidence that mission &

safety-criticality requirements (claims) are met

Evidence through reviews, analysis, testing,

and validated assumptions

From System Requirements to

Software Requirements

Formalized requirements

Focus on safety-criticality

requirements

Architecture

Model

Component

Models

System

Implementation

Static Analysis

Formal methods to

complement testing

End-to-end V&V of mission

and safety-criticality

requirements

Resource &

Performance

Analysis

Reliability

& Safety

Analysis

Mode &

Interaction

Behavior

Analysis

Architecture-centric Model-based Engineering

Architecture model with well-defined semantics

(AADL)

Incremental validation through virtual integration

Consistency across analysis dimension

36

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

A
rc

h
it
e

c
tu

re
 M

o
d

e
lin

g

A
n

a
ly

s
is

 &
 G

e
n

e
ra

ti
o

n

Software

Architectural

Design

System

Design

Component

Software

Design

Code

Development

Target

Build

Deployment

Build

Requirements

Engineering

Incremental Architecture-centric Validation & Verification
Improves Qualification Confidence

Acceptance

Test

System

Test

Integration

Test

Unit

Test

Build the

Assurance Case

Build the

System

Requirements

Validation

System

Architecture

Validation

Software

Architecture

Validation

Design

Validation

Integration

Build

37

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

AADL: Security Modeling

Confidentiality concerns that sensitive data should only be
disclosed to or accessed/modified by authorized users, i.e.,
enforcing prevention of unauthorized disclosure of information.

Objective: Model security attributes for an architecture to verify
that data is properly accessed and handled by users and
applications.

Confidentiality frameworks

• Bell-LaPadula framework: military applications

• Chinese wall framework: commercial applications

• Access role/role-based access framework

• MILS

.

The Dependability Solution Provider TM

WW Technology Group

WW Technology Group
© Copyright 2009 All rights reserved.

Model Based Analysis for Information Assurance

An integrated tool suite for the specification,

design, evaluation and deployment of high

confidence systems

• An innovative approach for

– IA domain specific modeling and systematic

evaluation and analysis

– Integration with standard development and

certification processes

• Utilize a Model Driven development approach to

support the specification and evaluation of

system properties throughout the system lifecycle

• Support for modeling and analysis of MILS

design approaches

• Provide views and tools that are tuned to the

needs of system stakeholders cross cutting

concerns and activities

– Architects – Security Engineers - Certifiers

• Utilize analysis after system deployment to

support

– Upgrades – Changes In Threat – Changes In

Operations

EDICT IA Vision

Open Modeling and Tool Platform
• Eclipse Platform for tool portability and open

integration

• AADL for system architecture modeling

• XML based information storage

Architecture-Centric Virtual Integration Impact

• Reduce the risks

– Analyze system early and throughout life cycle

– Understand system wide impact

– Validate assumptions across system

• Increase the confidence

– Validate models to complement integration testing

– Validate model assumptions in operational system

– Evolve system models in increasing fidelity

• Reduce the cost

– Fewer system integration problems (SAVI ROI)

– Fewer validation steps through use of validated
generators

40

System and Software Architecture Using

AADL

Feiler, Nov 2010

© 2010 Carnegie Mellon University

Back-Up

The SAVI demo video can be watched over the web at

www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html

Design, Verification and Implementation of MILS Systems

Julien DELANGE, Laurent PAUTET

TELECOM ParisTech -- delange@enst.fr, pautet@enst.fr

Fabrice KORDON

LIP6, Univ. P & M. Curie -- fabrice.kordon@lip6r

http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html
http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html
http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html
http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html
http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html

