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Introduction

We have verified add, sub, multiply, divide (microcode), compare, convert,
logical, shuffle, blend, insert, extract, min-max instructions from Centaur’s
64-bit, X86-compatible, NanoTM microprocessor.

Media unit implements over 100 X86 SSE and X87 instructions.

Multiplier implements scalar & packed X86, X87, and FMA.

For our verifications, we use a combination of AIG- and BDD-based
symbolic simulation, case splitting, and theorem proving.

We create a theorem for each instruction to be verified.

We use ACL2 to mechanically verify each proposed theorem.

We discuss our verification approach for formally verifying execution-unit
instructions for the Centaur NanoTM – the NanoTM is used by Dell, HP,
Lenovo, OLPC, and Samsung.
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VIA NanoTM X86-64 Microprocessor

VIA NanoTM X86-64 Microprocessor

Contemporary Example

Full X86-64 design
including VMX

40-nanometer design
of 97.5M transistors

AES, DES, SHA, and
random-number
generator hardware

Built-in security
processor

Runs 40 operating
systems and four VMs
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VIA NanoTM X86-64 Microprocessor

Centaur Technology

Centaur Technology, Inc., is a whole-owned subsidiary of VIA.

Entire X86 processor design team is in Austin, Texas

100+ people specify, design, validate, bring up, test, build burn-in
fixtures and programs – everything but chip manufacturing

Roughly 20 people write RTL
Around 20 work in validation
Approximately 25 work in design
About 30 work in test, manufacturing, bring up
Three systems support
Ten or so group leads, flat management
Three support (payroll, benefits, reception, etc.)
FV group is about 4 FTEs – high ratio!

Extremely efficient organization, flat management, everyone
expected to pull their own weight and then some...
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VIA NanoTM X86-64 Microprocessor

Centaur 64-bit Design Comments

X86 designs are complicated, and to be cost and performance competitive,
they are necessarily full custom.

Low cost, small size, low power

64-bit (Intel EMT64-compatible) architecture

Virtual Machine (Intel VMX-compatible) design

Latest SSEx instructions

64-bit EA, 48-bit Virtual Address

40-bit Physical Address

Targeted at low-power, low-cost applications: netbooks, low-power
workstations, and embedded designs.
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Core Technology: ACL2

Core Technology: ACL2

Our work is based on the ACL2 logic and its mechanical theorem prover.

First-order predicate calculus with recursion and equality.

Atomic data objects

Complex rationals: 5, -12, 3/4, \#C(3 4)
Characters: #\a, #\8, #\Tab
Strings: "abc", "aBc", "ABC"
Symbols: X, DEF, |abc|, |54-fifty4|

Data constructor

Pairs: (CONS 7 "ghi"), ’(7 . "ghi")
Sophisticated quotation and abbreviation mechanisms

Functions – subset of Common Lisp

31 primitive functions
200+ defined functions
Guards defined for all functions
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Core Technology: ACL2

Fibonacci Function Example

(defun fib (x)
(declare (xargs :guard (natp x)))
(mbe :logic

(if (zp x)
0

(if (= x 1)
1

(+ (fib (- x 2)) (fib (- x 1)))))
:exec
(if (< x 2)

x
(+ (fib (- x 2)) (fib (- x 1))))))

Any such function can be memoized.

(memoize ’fib :condition ’(< 40 x))
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Core Technology: ACL2

Equivalent Function Proof Statement

(defun f1 (fx-1 fx n-more)

(declare (xargs :guard (and (natp fx-1)

(natp fx)

(natp n-more))))

(if (zp n-more)

fx

(f1 fx (+ fx-1 fx) (1- n-more))))

(defun fib2 (x)

(declare (xargs :guard (natp x)))

(if (zp x)

x

(f1 0 1 (1- x))))

(defthm fib2-is-fib

(implies (natp x)

(equal (fib2 x)

(fib x))))
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Core Technology: ACL2

Symbolic Simulation Proof Examples

An obvious observation about the factorial function.

(def-gl-thm fib-in-range

:hyp (and (natp x)

(<= 4 x) (<= x 6))

:concl (or (equal (fib x) 3)

(equal (fib x) 5)

(equal (fib x) 8))

:g-bindings ‘((x ,(g-number (list (list 0 1 2 3)))))

:rule-classes nil)

A simple arithmetic fact.

(def-gl-thm 4-5-6-is-less-than-7-8-9

:hyp (and (natp x) (natp y)

(<= 4 x) (<= 7 y)

(<= x 6) (<= y 9))

:concl (< x y)

:g-bindings ‘((x ,(g-number (list (list 0 1 2 3 4))))

(y ,(g-number (list (list 5 6 7 8 9)))))

:rule-classes nil)
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Core Technology: ACL2

Symbolic Simulation in ACL2

We have developed a verified framework for ACL2 that provides a means
for symbolic simulation.

Defined functions can be mechanically generalized.

Each mechanically defined generalized function is automatically
verified.

Such generalized functions, given finite sets, can be symbolically
executed.

Our framework allows the results of symbolic simulation of ACL2
functions to be used as a part of a proof.

Our work provides a symbolic-simulation capability for the entire ACL2
logic.
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A Simple Embedded Language

A Simple Embedded Language

To illustrate embedding a HDL within ACL2, we define the semantics of a
Boolean logic based on IF trees.

(defun if-termp (term) (defun if-evl (term alist)

(declare (xargs :guard t)) (declare

(if (atom term) (xargs :guard

(eqlablep term) (and (if-termp term)

(let ((fn (car term)) (eqlable-alistp alist))))

(args (cdr term))) (if (atom term)

(and (consp args) (cdr (assoc term alist))

(consp (cdr args)) (if (if-evl (cadr term) alist)

(consp (cddr args)) (if-evl (caddr term) alist)

(null (cdddr args)) (if-evl (cadddr term) alist))))

(eql fn ’if)

(if-termp (car args))

(if-termp (cadr args))

(if-termp (caddr args))))))

Page 12 (Centaur Technology, UT Austin) Centaur Verification Approach October, 2010 12 / 32



A Simple Embedded Language

Example IF Tree and Verification by Symbolic Execution

(to-if ’(implies (and x y) (or x y)))

==>

’(IF (IF X Y NIL) (IF X T Y) T)

Our language of IF trees only contains one logical connective.

(def-gl-thm if-evl-example

:hyp (and (booleanp a) (booleanp b))

:concl (if-evl ’(IF (IF X Y NIL) (IF X T Y) T)

‘((NIL . nil)

(T . t)

(X . ,a)

(Y . ,b)))

:g-bindings ‘((a ,(g-boolean 0))

(b ,(g-boolean 1))))
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A Simple Embedded Language

The Centaur Verification Tool Relationships

EMOD( type,          , inputs, st )

Symbolic

ACL2 Transistor Analyzer

Netlist

Translators?
Available

Simulation

Nano Spice

Cadence

Database

Nano GDS2 Nano OPC GDS2

Switches with strengths

Sized capacitors

Integer specifications and microcode

X86 ISA specification

fragments

X86 binary

code

Node

Equations

Wire and State

Equations

Output and Next

State Equations

SYM_SIM(         , inputs, st )

Simulation

Equality

ACL2
TP

ACL2

ACL2 Verilog
Translator

Nano "Golden"

Verilog

VIA Nano

VIA Nano

Nano Masks

Model

E (EMOD)
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ECC Example

ECC Example

64
648

72
8 8

64

1

1

64

errors

data

corrected_output_bits

correctable_error

uncorrectable_error

syn2

8

syn164

"Memory"

Error Injection

ecc_gen

ecc_gen

ecc_decode

data_err

syn_err

Model to analyze the ECC circuitry.

Syndrome unit produces error-correcting code

ECC unit decodes syndrome to produce 1-hot, correction position
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ECC Example

Verilog for ECC Model

module ecc_model (data, // Input Data

errors, // Error Injection

corrected_output_bits, // Output Data

correctable_error, // Corrected?

uncorrectable_error); // Can’t be corrected

ecc_gen gen1 (syn1, data); // Generate syndrome bits for "memory"

assign data_err = data ^ errors[63:0]; // Fault injection

assign syn_err = syn1 ^ errors[71:64]; // Fault injection

ecc_gen gen2 (syn2, data_err); // Syndrome bits for "memory" output

assign syn_backwards_xor = syn_err ^ syn2; // Compute syndrome

ecc_decode make_outs (bit_to_correct, // One-Hot output correction

correctable_error, // Correctable error?

uncorrectable_error, // UnCorrectable error?

syn_backwards_xor); // Syndrome input

assign corrected_output_bits = bit_to_correct ^ data_err;

endmodule
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ECC Example

E-Language for ECC Model

(:n |*ecc_model*|

:i (|data[0]| |data[1]| |data[2]| |data[3]| |data[4]|

|data[5]| |data[6]| |data[7]| |data[8]| |data[9]| ...)

:o (|corrected_output_bits[0]| |corrected_output_bits[1]|

|corrected_output_bits[2]| |corrected_output_bits[3]|

|corrected_output_bits[4]| |corrected_output_bits[5]|

|corrected_output_bits[6]| |corrected_output_bits[7]|

|corrected_output_bits[8]| |corrected_output_bits[9]| ...)

:occ ((:full-i #@53# :full-o #@54# :u |_gen_3|

:op #.*vl_64_bit_buf* :o #@55# . #@56#)

(:full-i #@57# :full-o #@58# :u |_gen_4|

:op #.*vl_8_bit_buf* :o #@59# . #@60#)

(:full-i #@61# :full-o #@62# :u |_gen_5|

:op #.*vl_64_bit_pointwise_xor*

:o #@63# . #@64#)

(:full-i #@19# :full-o #@20#

:u |gen1|

:op #.|*ecc_gen*|

:o #@21#

:i #@22#) ... ))
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ECC Example

ACL2 Specification for ECC Model

(defn our-one-bit-error-predicate (bad-bit)

;; Check output correctness if one error injected.

(declare (xargs :guard (natp bad-bit)))

(let* ((data (qv-list 0 1 64))

(errors (q-not-nth bad-bit

(make-list 72 :initial-element nil)))

(inputs (ap data errors)))

(equal (mv-let (s o)

(emod ’two |*ecc_model*| inputs nil)

(declare (ignore s))

(list :corrected-bits

(take 64 o)

:correctable_error

(nth 64 o)

:uncorrectable_error

(nth 65 o)))

(list :corrected-bits

data

:correctable_error

(< bad-bit 64)

:uncorrectable_error

NIL))))
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Centaur Formal Verification Toolflow

Centaur Formal Verification Toolflow

We begin, by translating Nano’s Verilog specification into our
formally-defined, E-language HDL.

Verilog is simplified into single-assignment form.

Create environment suitable for media unit verification.

We extract its equation by symbolic simulation.

We specialize this equation to the instruction of interest.

We then, as appropriate, convert this equation into BDDs.

The specification is written in ACL2.

Integer operations are used to specify media-unit instructions.

Such operations are symbolically simulated and specialized.

These specification are proven to implement floating-point operations.

Finally, the results of both paths are compared.
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The Verilog-to-E Translator

The Verilog-to-E Translator

Logic

Library Files (.v)

Processor Files (.v)

ROM Images

makeTop
Script

top.v

VL

Loader

~550,000 lines
Everything but some libraries

reader
preprocessor

lexer
parser

"loader"

ACL2 Program

Parse Tree

Tr
a
n

sf
o
rm

a
ti

o
n

s

Cut Down Modules (Optional)
Make Reasonable
Unparameterize
Fill in Wires
Resolve Argument Lists
Resolve Constant Expressions
Standardize Ranges and Selects
Rewrite Operators
Compute Signs
Self-Determine Sizes
Fix Integer Size to 32 Bits
Context-Determine Sizes
Split Expressions
Replicate Instance Arrays
Truncate Expressions for Lvalues
Optimize
Assignments to Occurrences (Occform)
Eliminate Always Blocks (In progress)

ACL2 Object
(not on disk)

"Conservatively
     Approximates"

Parse Tree
ACL2 Object
(not on disk)

Writer

E Modules
(defm ...)
(defm ...)
(defm |*fadd*| ...)

Xformed Verilog
module ...
module ...
module fadd ...

FV

Q.E.D.
P(x)

"Differ By Parens"

DV

Simulation
Centaur's 

Regression Suite

"Pass/Fail
  Together?"
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The E-Language

Use of the E Language

We have developed a formalized HDL in support of industrial design.

Deeply embedded E language in ACL2 logic.

Language descriptions are represented as Lisp constants.

ACL2 theorem-proving system used to verify E descriptions.

The E language is formal.

Syntax of E language is recognized by ACL2 predicate.

Semantics given by interpreter.

Multiple evaluators defined: BDD, four-valued BDD, AIG, four-valued
AIG, dependency, and delay.
Symbolic simulation for all modes (except delay).

The E Language is in everyday industrial use at Centaur.

Page 21 (Centaur Technology, UT Austin) Centaur Verification Approach October, 2010 21 / 32



The E-Language

E-Language Features

The E language is deeply embedded in ACL2, and it is:

hierarchical, and

occurrence-oriented.

We use the E language much like a database; it includes:

HDL descriptions

Hierarchical state representation

Signal sense and direction

Clock discipline

Properties

Annotations

E-language has multiple symbolic simulators

BDD and AIG (both two- and four-valued) simulators

Symbolic information-flow simulator

Delay estimator
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The E-Language

E-Language Example

(defm *simple-ff-latch*
‘(:i (clk a)
:o (o)
:s (l- l+)
:c (clk)
:cd ((t) (nil))
:occs
((:u l+ :o (n n~) :op ,*latch+* :i (clk a))
(:u o1 :o (clk~) :op ,*not1* :i (clk))
(:u l- :o (o o~) :op ,*latch+* :i (clk~ n)))))

Simple two-latch, flip-flop

Interface: :i, :o, and :s fields.

Clock: :c and :cd fields.

Occurrences are in a list, but treated as a set

Multi-phase and gated clocking supported (and used by Centaur)
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The E-Language

Centaur CN Pipeline

D pre-fetch 
 buffers 
(64 lines) 

L2-cache 
(1 MB, exclusive, 16-way, ECC) 

Bus 

Br 
Predict 

Decode 

Issue 

Retire …
.  

7 issue ports 
               & 7 execution units  

br 
predict 

x86 
insts uops 

irs 

I-Cache 
(64 KB, 
16-way) 

tangle of 
 forward 
 busses 

rs 

Rename 

D-cache 
(64 KB, 
16-way) 

rs 

x86 
insts 

rs 
rs 
rs 
rs 
rs ….  

….  

rob 

Fetch arch 
B I U L M F X 

Speculative In-Order 
Out-of-Order 

7 issue ports & 
    7 execution units 

Tangle 
of 
forward 
busses 

Real In-Order 
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The E-Language

Centaur NanoTM Media Unit – FADD

Adder Adder Adder Adder

DP SP EP
Adder

Control

Clocks
Control

Instruction
Flags Data A

Data B

1074 inputs

Completion
Signals

Exceptions
Results

394 outputs

SP

33,700 line Verilog description of 680 modules
Modules represent 432,322 transistors
Unit has 374 outputs and 1074 inputs (26 clocks)
Implements over 100 media instructions
Two-cycle-latency for floating-point additions/subtractions
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The E-Language

The Centaur Media-Unit, Verification Tool Flow

Hardware 
Output 
BDDs

Spec 
Output 
BDDs

=?

Verilog 
Files

fadd
EMOD

module

EMOD

�����

Symbolic 
Simulator

fadd AIG 
function

AIG2BDD

Specialize

Instruction 
Spec

Symbolic 
Spec

Case-splitting,
Parametrization

Per-instruction
AIGs
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The E-Language

Symbolic Simulation of the Media Unit

Using the E-language model, we perform a four-valued, AIG-based
symbolic simulation of entire design for eight half-cycles.

AIGs specialized for the instruction under investigation

AIGs are converted to BDDs

For some instructions, a property may be too big to verify directly, so
case splitting employed
For each case, BDD approximated until exact
For each case, compared to symbolic simulation of specification

Cases are shown to be exhaustive
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The E-Language

The Centaur Media-Unit, Case-Splitting Approach

Floating-point add/subtract unit
is too big to verify all at once.

Case split by exponent
differences

Separately, account for
special cases (e.g., NaNs,
Infinity)

For each case, generate
symbolic inputs that cover
the specified set of inputs

BDDs are parametrized
Approach used for all FP
sizes

Used ACL2 to orchestrate proofs
and to ensure entire input space
covered and verified.

Exponent 10 Max

Outer Triangle

In
ne

r D
ia

go
na

ls

Outer Triangle

Denorms, Zeros

NaNs, Infinities

E
x
p

o
n

e
n

t 
2

0
M

a
x
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Centaur Nano Media-Unit, Verification

Centaur Nano Media-Unit, Verification

We attempted to verify single, double, and extended precision
addition/subtraction operations.

Single precision (32-bit) results and flags OK.

Double precision (64-bit) results and flags OK.

Extended precision (80-bit) results had an error.

Exactly one pair of numbers returned an incorrect answer
Sort of like a perfect storm; a 64-bit cancellation
Answer returned was twice as big as it should have been.

A fix was developed, and this bug was eliminated. We checked the
correctness of the new design – it took less than an hour.

Robert Krug proved that our Boolean-based
adder/subtracter specification is correct.
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Redux: The Centaur Verification Tool Relationships

Redux: The Centaur Verification Tool Relationships

EMOD( type,          , inputs, st )

Symbolic

ACL2 Transistor Analyzer

Netlist

Translators?
Available

Simulation

Nano Spice

Cadence

Database

Nano GDS2 Nano OPC GDS2

Switches with strengths

Sized capacitors

Integer specifications and microcode

X86 ISA specification

fragments

X86 binary

code

Node

Equations

Wire and State

Equations

Output and Next

State Equations

SYM_SIM(         , inputs, st )

Simulation

Equality

ACL2
TP

ACL2

ACL2 Verilog
Translator

Nano "Golden"

Verilog

VIA Nano

VIA Nano

Nano Masks

Model

E (EMOD)
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Redux: The Centaur Verification Tool Relationships

Verification of Full-Custom Circuitry

The Nano design is largely custom – meaning designers implement
transistor-level circuits to satisfy Verilog specifications.

Equivalence checking used to validate transistor-level circuits.

Not all modules can be checked by equivalence checking

Module sub-divided
Individual submodules checked
Composition of submodules verified with ACL2

When automatic verification not possible, Verilog is further partitioned so
as to permit automatic equivalence check.

Capability useful because vendor tools do not have adequate capacity.
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Conclusion

Conclusion

ACL2 is in everyday commercial use at Centaur Technology.

Each night, entire design is translated

570,000 lines of Verilog translated to E
Unable to translate some modules – working to finish translation

New ACL2 containing all E-based modules is built each day.

Entire translation and build time about 15 minutes
Human verifiers get newest design version each morning

Each night we recheck our proofs on the new model

Extended ACL2:

by deeply embedding the E HDL, transistor-level HDL,

with AIG and BDD algorithms, which we mechanically verified, and

by providing generalized symbolic simulation of all ACL2 functions,

It is possible to use a theorem prover to support
an industrial hardware verification flow.
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