
 1

Boundary Flow Modeling

Dr. Richard Neely

Märzen Group LLC

35 Technology Way, Millyard Technology Park – Suite2W3

Nashua, New Hampshire 03060

Email: rbn@marzen.com

Abstract — Boundary flow modeling

(BFM) is a method of modeling information

security constraints and behavior of a system

element — the system, its subsystems, and its

components — in terms of information flows

associated with each element.

The development of BFM has been

motivated over a number of years by the need

to model security attributes in a distributed

system environment. The BFM approach is in

contrast with state-oriented modeling. The

feature of “state” cannot reasonably be

associated with a distributed system.

Within the BFM scheme, modeling is

expressed in terms of relationships among

information flows at interfaces appearing in

the external boundaries of elements. The flow

across an interface in a boundary is expressed

as a history of the information entities that

have flowed across the interface up to some

point in time. These histories are the building

blocks of BFM. As a whole, a BFM model of a

system consists of relationships among sets of

histories associated with each system element.

Such relationships express the element’s

security attributes.

BFM also keeps track of dependency

relationships among system elements nested

(or layered) within a system. These

relationships express logical dependencies

among the security attributes of the elements.

For example, asserted flow-modeled security

constraints of lower-level components can be

used to demonstrate logically that a higher-

level component meets its own security

constraints. This in particular contributes to

addressing the security composition problem.

The BFM approach has been used for a

number of distributed systems, including an

internet gateway in its network context; a file

system in the context of an operating system;

a major weapon system; and a major

modeling and simulation warfighter training

system.

As the development of BFM progressed,

we began to focus on three areas of

improvement: more sophisticated methods of

relating flow histories; integration of flow-

based models with state-based models; and

tool support for BFM. This paper concludes

by summarizing those areas of BFM

development.

Keywords — security modeling, security

composition, data flow, distributed system,

system state

I. INTRODUCTION

Boundary Flow Modeling (BFM) is a

method of abstracting and representing

information security constraints and behavior of

systems — especially distributed systems. BFM
has been developed and applied by a group of

security engineers (see Acknowledgements)

over the past 25 years to support our efforts in
providing security assurance for a variety of

systems. The functional targets of this modeling

scheme have included specialized systems,
networks, and their subsystems and components.

BFM expresses these element characteristics

in terms of information flows associated with

each element. This paper explains the
advantages of BFM for some kinds of systems;

the mechanisms of BFM; and issues with the

BFM approach whose solution is under way.

II. THE NEED FOR BFM

Traditionally, security modeling —

including policy and design modeling — has
been based on the state of the modeled target.

 2

This is effective for many kinds of targets, for

example operating systems and even entire
platforms, such as workstations. But in other

cases, state-based modeling has shortcomings. It

does not work well for networks, or distributed

systems in general, where “state” cannot be
defined. Also, when a modeling approach is

limited to state modeling, security integration —

security composition — has been seen as
difficult or impossible. A composition approach

using BFM was presented in [ArchModeling].

Spafford ([EnsuringSecurity]) has pointed out
that there has been a lack of research in this area.

Neumann noted in [ComposableSystems] that

abstraction layering would be an effective

composition approach. Bell

pointed out in 2005

([LookingBack]) that to solve the composition

problem, models must be interface oriented; but

he also wrote that there were no such models.
The development of BFM was motivated by

the need to effectively model security attributes

in a distributed system environment. The BFM
approach is in contrast with state-oriented

modeling. In a distributed environment, flow-

oriented modeling of constraints and behavior

has several advantages. First, local views of the
model are possible, regardless of the size and

complexity of the system. Second — because of

the existence of local views — security
composition is not such a daunting problem.

Third, depending on how BFM is customized for

a particular system (or certain parts of it), the

system’s behavior can be modeled as
nondeterministic, which is typically the case for

a distributed system.

IV. HOW BFM WORKS

BFM has been progressively developed in

the process of applying it to various systems

over the years. In those systems, BFM has been
used to model multiple element layers and

logical relationships among them. Where

needed, BFM has been shown capable of

supporting higher assurance Common Criteria
(CC) [CC] modeling requirements. BFM has

been presented in a number of publications and

has been used for several medium- and high-
assurance systems, including:

 A multilevel secure (MLS) network gateway

— Multinet Gateway — sponsored by Rome

Air Development Center (RADC) and
National Security Agency (NSA) (1985-90)

 A specialized file server for the Current

Endorsed List Tools Example (CETLE)

program sponsored by the National

Computer Security Center (NCSC) (1991)

 Multiple platforms for a major weapon

system, sponsored by the Air Force (1992-

1999)

 A major modeling and simulation warfighter

training system
A simple example. The application of BFM

is now explained in terms of a very simple

system, termed “Data Sorter,” which is a high-
to-low security guard (see Figure 1). The Data

Sorter consists of three components: a Splitter

and two data Senders, one for classified and the

other for unclassified data. This example is used
to show the method of flow-based modeling.

Figure 1. The Data Sorter, Its Components, and

Its Environment

Security constraints are specified for each

system element (i.e., the Data Sorter —

“System” in the figure — and each of its

components and peers). What is to be
demonstrated about the Data Sorter is the claim

that if the components and peers of the Data

Sorter satisfy their security constraints, then the
Data Sorter will satisfy its security constraints.

 3

Developing a BFM-based model consists of

several phases. These involve describing:
1. System structure

2. Data flows within the system

3. Security constraints — also termed

assertions — of each element. These are
expressed in terms of relationships among

the data flows across element interfaces.

4. Logical relationships between security

constraints associated with elements at
different layers

5. An entire chain of logic, expressing the

logical relationships between system-level

security constraints and security constraints
of leaf nodes in the system structure

We now elaborate these steps in developing and

verifying a model. These are partially depicted
in Figure 2.

Figure 2. BFM Construction Phases

The first phase of the BFM process is to

express the system structure (architecture). This
consists of describing the system itself and

related elements (subsystems, components, and

environment). This is effectively a tree structure,
which may be re-entrant in the case of re-used

functionality. In this and the other phases, the

content of the model precisely reflects

development artifacts.
In the example (leftmost pane of Figure 2),

the elements are System (Data Sorter), Splitter,

Classified Sender, Unclassified Sender, Data
Source, Classified Data Sink, and Unclassified

Data Sink. Splitter, Classified Sender, and

Unclassified Sender are subordinate to Data
Sorter. The identification of the elements and

their component relationships constitute the

structure of the system.

The second phase of modeling involves
extraction of data flow information from

development documentation. Data flows as

modeled are unidirectional (from an interface of
one element to the interface of another) flow

channels. Two-way flows, or broadcast flows,

are broken down into unidirectional flows.
In the example (center pane of Figure 2), the

data flows are named with the labels si, cs, us,

cso, and uso.

The third phase consists of expressing the

security constraints of each element in terms of
related flow histories (i.e., data flow histories at

interfaces of the element). Basic to the

expression of a security constraint is a method of
relating two or more flow histories. The ideal

way of doing this is to define a relation — not a

function — whose parameters are the flow
histories. This avoids forcing determinism on the

model of the constraint. This is important for a

distributed system.

The “language” in which a security
constraint is expressed is flexible: depending on

project specifications and the nature of the

system, a constraint may consist of a simple
English sentence; a semi-formally expressed

predicate calculus statement; or a formal

mathematical expression.

Security Architecture

Structure Modeling...

System

Element

...Enhanced by

Information Flow...

Flow

Channel

...with Chain-of-Logic

Assertion Dependencies

Correct Labeling

Information

Preserved

Information

Preserved
Information

Preserved

Information

Preserved

Corre
ct C

lassifie
d E

xtra
ctio

n

Corre
ct U

nclassifie
d E

xtra
ctio

n

Confidentiality

Preserved

Confidentiality

Preserved

Assertion

AA

 4

In the example (rightmost pane of Figure 2),

the modeled security constraints are as follows:

 Data Source constraint: Correct Labeling

 Splitter constraints: Correct Classified
Extraction, Correct Unclassified
Extraction

 Unclassified Sender constraints:

Information Preserved

The fourth phase involves stating and
verifying inferences: claims that the security

constraints of a particular element are met,

assuming that the security constraints of related

elements (typically subordinate components and
elements in its immediate environment) hold.

In the example (rightmost pane of Figure 2),

the heavy dotted arrows depict inferences among
the modeled security constraints.

The fifth and final phase of this method is

documenting the “chain of logic” for the security
constraints: applying the basic rule of inference

(modus ponens) to the claims of the fourth

phase, with the goal of showing that the security

constraints of the system hold if the security
constraints of the leaf elements hold.

V. BFM IMPROVEMENTS

In developing and employing BFM, we have
begun focusing on three areas of improvement:

A. Providing logically sound

relationships among architecturally
separated flow histories in the

distributed environment

B. Integrating BFM and state-based

models within a distributed system
C. Establishing a production-quality

tool to support BFM

These areas are discussed in the following
paragraphs.

A. Providing Logically Sound

Relationships among Architecturally

Separated Flow Histories
Care must be taken to express the

relationships among flow histories so that they
are logically sound, particularly when the

corresponding elements architecturally

separated. For example, a relationship may be
expressed that tacitly assumes that the contents

of two histories being compared are being

viewed at the same point in time. Yet a system-

wide time referent is not possible within a
distributed system.

In applying BFM, we have for example

defined the function Derived_From, whose two

parameters are two interface flow histories that
are to be related. This function is used as part of

the expression to model the security constraints

of various elements. Informally,
Derived_From (h1, h2) asserts that every entity

within h2 is “accounted for” by some entity

within h1. We have typically defined the
function as follows:

For every entity e2 in h2,

there is an entity e1 in h1

 such that e1 = e2.
While the informal characterization of

Derived_From is usable as a basis for

representing a model, its more precise definition
in terms of entities within histories is not

categorically sound. For example, the selected

entity e1 may appear in h1 at a later time than
the entity e2 appears in h2, and so e1 cannot

account for e2. Providing time stamps for

entities within a history is not a solution because

of the impossibility of a universal time referent.
We have hypothesized defining Derived_From

in a distributed context in terms of a similar

function Derived_From_Local. The latter
function would be applied only to “non-

distributed” elements (e.g., platforms) and so for

that function entities in histories could be

compared time-wise. Derived_From_Local
would be further defined so that it would “pass

on” accountability information to Derived_From

instances to be applied to higher-level,
distributed elements.

In all cases, Derived_From makes no

reference to the order of the entities in a history.
In a distributed system with its characteristically

nondeterministic behavior, it is not reasonable to

assume that order will be preserved from inputs

to outputs.

B. Integrating BFM and State-based

Models
Certain system elements (operating systems,

localized platforms, etc.) are best modeled using

a state approach. Such an element may be a

component within a distributed system.

 5

Modeling of operating systems has matured

considerably over the years, most recently with
the Multiple Independent Levels of Security

(MILS) approach ([MILS], [MLSwithMILS]).

[SecureSharing] discusses a path to

composability using the CC Protection Profile
approach within “local” systems (e.g.,

platforms). BFM complements this, providing

multi-layered composability above the platform
level

To provide this complement — for security

integration of an operating system within a
distributed system — a means of providing

security integration between state modeling and

BFM is necessary.

We have taken a step toward this
integration, at the separation kernel (SK) level.

The approach was to make a careful comparison

of a state model of an SK and a BFM model for
that SK. More precisely, this involved:

 Understanding the claim made by the Greve,

Wilding, Vanfleet (GWV) Formal Security

Policy [GWVpolicy] for a separation kernel
(SK)

 Expressing that same policy in BFM terms

 Demonstrating that the BFM claim is true if

the GFW claim is true

In that way, when the SK is integrated into a

larger system, the BFM expression of its policy
can be used to support the validity of security

constraints of higher level elements. We use

“dual modeling” as a term to describe this
approach.

This experiment in dual modeling at the SK

level is only a prototype of the concept.

Additional work must be done to further
demonstrate the concept’s feasibility. It is

envisioned that dual modeling would typically

occur at the platform interface (rather than an
SK interface). That is because state modeling for

an entire platform could reasonably be done, but

could not be done for higher-level elements.

C. Establishing Tool Support for BFM
Having developed BFM features and applied

BFM to various systems over the years, we have

concluded that tool support for BFM is

necessary. Tool support is advantageous in a
number of ways. First, a support tool makes the

modeling process more efficient than manual

development of a model. Second, the

presentation of the model to other developers,
reviewers, and customers is more effectively

accomplished using an appropriate tool. Third,

accurate validation of security claims is more

certain with a tool.
We have attempted the development of a

tool from scratch. Even such a “rough and

ready” tool was helpful in our efforts. Figures 1
and 2 in this paper were produced by the tool.

Nevertheless, we concluded that a production-

quality tool is needed. It is likely that extending
a Unified Modeling Language (UML)-based

development tool (such as Rational Rose) is the

best direction to move in, and whenever we

attempt BFM modeling of another system we
plan to incorporate such a tool.

VIII. ACKNOWLEDGEMENTS

The development of BFM, its application to
various systems, and any successes enjoyed by

the modeling approach are the result of efforts

by a number of colleagues, including
Jim Freeman, George Dinolt, Michael Krenzin,

and Max Heckard.

 6

IX. REFERENCES

[ArchModeling]
Richard Neely, “System Security Integration

Through Abstract Architecture Modeling,”

InfoSeCon, May 2006.
[CC]

Common Criteria for Information

Technology Security Evaluation, version

3.1,
http://www.commoncriteriaportal.org/cc/.

[ComposableSystems]

Peter G. Neumann, “Achieving Principled
Assuredly Trustworthy Composable

Systems and Networks,” Computer Science

Lab, SRI International.
[EnsuringSecurity]

Gene Spafford, “Exploring Common

Criteria: Can it Ensure that the Federal

Government Gets Needed Security in
Software?”, Testimony before the House

Government Reform Committee,

Subcommittee on Technology, Information
Policy, Intergovernmental Relations and the

Census, September 2003.

[GWVpolicy]

Jim Alves-Foss and Carol Taylor, “An
Analysis of the GWV Security Policy,” Fifth

International Workshop on the ACL2

Theorem Prover and Its Applications,
November 2004,

http://www.cs.utexas.edu/users/moore/acl2/

workshop-2004/.
[LookingBack]

David Bell, “Looking Back at the Bell-La

Padula Model,” Proceedings of the 21st

Annual Computer Security Applications
“Conference (ACSAC), December 2005.

[MILS]

W. Mark Vanfleet, Jahn A. Luke, R.
William Beckwith, Carol Taylor, Ph.D., Ben

Calloni, Ph.D., Gordon Uchenick, “MILS:

Architecture for High-Assurance Embedded

Computing,” CrossTalk, August 2005.
[MLSwithMILS]

Rance DeLong, “MLS with MILS?”, Naval

Postgraduate School Center for Information
Systems Security Studies and Research

lecture, Santa Clara University, March 2006.

[SecureSharing]

Carolyn Boettcher, Rance DeLong, John
Rushby, Wilman Sifre, “The MILS

Component Integration Approach to Secure

Information Sharing,” 27
th
 IEEE/AIAA

Digital Avionics Systems Conference
(DASC), October 2008.

http://www.commoncriteriaportal.org/cc/
http://www.cs.utexas.edu/users/moore/acl2/workshop-2004/
http://www.cs.utexas.edu/users/moore/acl2/workshop-2004/

