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Abstract — Boundary flow modeling 

(BFM) is a method of modeling information 

security constraints and behavior of a system 

element — the system, its subsystems, and its 

components — in terms of information flows 

associated with each element. 

The development of BFM has been 

motivated over a number of years by the need 

to model security attributes in a distributed 

system environment. The BFM approach is in 

contrast with state-oriented modeling. The 

feature of “state” cannot reasonably be 

associated with a distributed system. 

Within the BFM scheme, modeling is 

expressed in terms of relationships among 

information flows at interfaces appearing in 

the external boundaries of elements. The flow 

across an interface in a boundary is expressed 

as a history of the information entities that 

have flowed across the interface up to some 

point in time. These histories are the building 

blocks of BFM. As a whole, a BFM model of a 

system consists of relationships among sets of 

histories associated with each system element. 

Such relationships express the element’s 

security attributes. 

BFM also keeps track of dependency 

relationships among system elements nested 

(or layered) within a system. These 

relationships express logical dependencies 

among the security attributes of the elements. 

For example, asserted flow-modeled security 

constraints of lower-level components can be 

used to demonstrate logically that a higher-

level component meets its own security 

constraints. This in particular contributes to 

addressing the security composition problem. 

The BFM approach has been used for a 

number of distributed systems, including an 

internet gateway in its network context; a file 

system in the context of an operating system; 

a major weapon system; and a major 

modeling and simulation warfighter training 

system.  

As the development of BFM progressed, 

we began to focus on three areas of 

improvement: more sophisticated methods of 

relating flow histories; integration of flow-

based models with state-based models; and 

tool support for BFM. This paper concludes 

by summarizing those areas of BFM 

development. 
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I. INTRODUCTION 

Boundary Flow Modeling (BFM) is a 

method of abstracting and representing 

information security constraints and behavior of 

systems — especially distributed systems. BFM 
has been developed and applied by a group of 

security engineers (see Acknowledgements) 

over the past 25 years to support our efforts in 
providing security assurance for a variety of 

systems. The functional targets of this modeling 

scheme have included specialized systems, 
networks, and their subsystems and components. 

BFM expresses these element characteristics 

in terms of information flows associated with 

each element. This paper explains the 
advantages of BFM for some kinds of systems; 

the mechanisms of BFM; and issues with the 

BFM approach whose solution is under way. 

II. THE NEED FOR BFM 

Traditionally, security modeling — 

including policy and design modeling — has 
been based on the state of the modeled target. 



 2 
 

This is effective for many kinds of targets, for 

example operating systems and even entire 
platforms, such as workstations. But in other 

cases, state-based modeling has shortcomings. It 

does not work well for networks, or distributed 

systems in general, where “state” cannot be 
defined. Also, when a modeling approach is 

limited to state modeling, security integration — 

security composition — has been seen as 
difficult or impossible. A composition approach 

using BFM was presented in [ArchModeling]. 

Spafford ([EnsuringSecurity]) has pointed out 
that there has been a lack of research in this area. 

Neumann noted in [ComposableSystems] that 

abstraction layering would be an effective 

composition approach. Bell
 
pointed out in 2005 

([LookingBack]) that to solve the composition 

problem, models must be interface oriented; but 

he also wrote that there were no such models. 
The development of BFM was motivated by 

the need to effectively model security attributes 

in a distributed system environment. The BFM 
approach is in contrast with state-oriented 

modeling. In a distributed environment, flow-

oriented modeling of constraints and behavior 

has several advantages. First, local views of the 
model are possible, regardless of the size and 

complexity of the system. Second — because of 

the existence of local views — security 
composition is not such a daunting problem. 

Third, depending on how BFM is customized for 

a particular system (or certain parts of it), the 

system’s behavior can be modeled as 
nondeterministic, which is typically the case for 

a distributed system. 

IV. HOW BFM WORKS 

BFM has been progressively developed in 

the process of applying it to various systems 

over the years. In those systems, BFM has been 
used to model multiple element layers and 

logical relationships among them. Where 

needed, BFM has been shown capable of 

supporting higher assurance Common Criteria 
(CC) [CC] modeling requirements. BFM has 

been presented in a number of publications and 

has been used for several medium- and high-
assurance systems, including: 

 A multilevel secure (MLS) network gateway 

— Multinet Gateway — sponsored by Rome 

Air Development Center (RADC) and 
National Security Agency (NSA) (1985-90) 

 A specialized file server for the Current 

Endorsed List Tools Example (CETLE) 

program sponsored by the National 

Computer Security Center (NCSC) (1991) 

 Multiple platforms for a major weapon 

system, sponsored by the Air Force (1992-

1999) 

 A major modeling and simulation warfighter 

training system 
A simple example. The application of BFM 

is now explained in terms of a very simple 

system, termed “Data Sorter,” which is a high-
to-low security guard (see Figure 1). The Data 

Sorter consists of three components: a Splitter 

and two data Senders, one for classified and the 

other for unclassified data. This example is used 
to show the method of flow-based modeling. 

 

Figure 1. The Data Sorter, Its Components, and 

Its Environment 

Security constraints are specified for each 

system element (i.e., the Data Sorter — 

“System” in the figure — and each of its 

components and peers). What is to be 
demonstrated about the Data Sorter is the claim 

that if the components and peers of the Data 

Sorter satisfy their security constraints, then the 
Data Sorter will satisfy its security constraints. 
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Developing a BFM-based model consists of 

several phases. These involve describing: 
1. System structure 

2. Data flows within the system 

3. Security constraints — also termed 

assertions — of each element. These are 
expressed in terms of relationships among 

the data flows across element interfaces. 

4. Logical relationships between security 

constraints associated with elements at 
different layers 

5. An entire chain of logic, expressing the 

logical relationships between system-level 

security constraints and security constraints 
of leaf nodes in the system structure 

We now elaborate these steps in developing and 

verifying a model. These are partially depicted 
in Figure 2. 

 

Figure 2. BFM Construction Phases 

The first phase of the BFM process is to 

express the system structure (architecture). This 
consists of describing the system itself and 

related elements (subsystems, components, and 

environment). This is effectively a tree structure, 
which may be re-entrant in the case of re-used 

functionality. In this and the other phases, the 

content of the model precisely reflects 

development artifacts.  
In the example (leftmost pane of Figure 2), 

the elements are System (Data Sorter), Splitter, 

Classified Sender, Unclassified Sender, Data 
Source, Classified Data Sink, and Unclassified 

Data Sink. Splitter, Classified Sender, and 

Unclassified Sender are subordinate to Data 
Sorter. The identification of the elements and 

their component relationships constitute the 

structure of the system. 

The second phase of modeling involves 
extraction of data flow information from 

development documentation. Data flows as 

modeled are unidirectional (from an interface of 
one element to the interface of another) flow 

channels. Two-way flows, or broadcast flows, 

are broken down into unidirectional flows. 
In the example (center pane of Figure 2), the 

data flows are named with the labels si, cs, us, 

cso, and uso. 

The third phase consists of expressing the 

security constraints of each element in terms of 
related flow histories (i.e., data flow histories at 

interfaces of the element). Basic to the 

expression of a security constraint is a method of 
relating two or more flow histories. The ideal 

way of doing this is to define a relation — not a 

function — whose parameters are the flow 
histories. This avoids forcing determinism on the 

model of the constraint. This is important for a 

distributed system. 

The “language” in which a security 
constraint is expressed is flexible: depending on 

project specifications and the nature of the 

system, a constraint may consist of a simple 
English sentence; a semi-formally expressed 

predicate calculus statement; or a formal 

mathematical expression. 
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In the example (rightmost pane of Figure 2), 

the modeled security constraints are as follows: 

 Data Source constraint: Correct Labeling 

 Splitter constraints: Correct Classified 
Extraction, Correct Unclassified 
Extraction 

 Unclassified Sender constraints: 

Information Preserved 

The fourth phase involves stating and 
verifying inferences: claims that the security 

constraints of a particular element are met, 

assuming that the security constraints of related 

elements (typically subordinate components and 
elements in its immediate environment) hold.  

In the example (rightmost pane of Figure 2), 

the heavy dotted arrows depict inferences among 
the modeled security constraints. 

The fifth and final phase of this method is 

documenting the “chain of logic” for the security 
constraints: applying the basic rule of inference 

(modus ponens) to the claims of the fourth 

phase, with the goal of showing that the security 

constraints of the system hold if the security 
constraints of the leaf elements hold. 

V. BFM IMPROVEMENTS  

In developing and employing BFM, we have 
begun focusing on three areas of improvement:  

A. Providing logically sound 

relationships among architecturally 
separated flow histories in the 

distributed environment 

B. Integrating BFM and state-based 

models within a distributed system 
C. Establishing a production-quality 

tool to support BFM 

These areas are discussed in the following 
paragraphs. 

A. Providing Logically Sound 

Relationships among Architecturally 

Separated Flow Histories 
Care must be taken to express the 

relationships among flow histories so that they 
are logically sound, particularly when the 

corresponding elements architecturally 

separated. For example, a relationship may be 
expressed that tacitly assumes that the contents 

of two histories being compared are being 

viewed at the same point in time. Yet a system-

wide time referent is not possible within a 
distributed system. 

In applying BFM, we have for example 

defined the function Derived_From, whose two 

parameters are two interface flow histories that 
are to be related. This function is used as part of 

the expression to model the security constraints 

of various elements. Informally, 
Derived_From (h1, h2) asserts that every entity 

within h2 is “accounted for” by some entity 

within h1. We have typically defined the 
function as follows: 

For every entity e2 in h2, 

there is an entity e1 in h1 

    such that e1 = e2. 
While the informal characterization of 

Derived_From is usable as a basis for 

representing a model, its more precise definition 
in terms of entities within histories is not 

categorically sound. For example, the selected 

entity e1 may appear in h1 at a later time than 
the entity e2 appears in h2, and so e1 cannot 

account for e2. Providing time stamps for 

entities within a history is not a solution because 

of the impossibility of a universal time referent. 
We have hypothesized defining Derived_From 

in a distributed context in terms of a similar 

function Derived_From_Local. The latter 
function would be applied only to “non-

distributed” elements (e.g., platforms) and so for 

that function entities in histories could be 

compared time-wise. Derived_From_Local 
would be further defined so that it would “pass 

on” accountability information to Derived_From 

instances to be applied to higher-level, 
distributed elements. 

In all cases, Derived_From makes no 

reference to the order of the entities in a history. 
In a distributed system with its characteristically 

nondeterministic behavior, it is not reasonable to 

assume that order will be preserved from inputs 

to outputs. 

B. Integrating BFM and State-based 

Models 
Certain system elements (operating systems, 

localized platforms, etc.) are best modeled using 

a state approach. Such an element may be a 

component within a distributed system. 
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Modeling of operating systems has matured 

considerably over the years, most recently with 
the Multiple Independent Levels of Security 

(MILS) approach ([MILS], [MLSwithMILS]). 

[SecureSharing] discusses a path to 

composability using the CC Protection Profile 
approach within “local” systems (e.g., 

platforms). BFM complements this, providing 

multi-layered composability above the platform 
level 

To provide this complement — for security 

integration of an operating system within a 
distributed system — a means of providing 

security integration between state modeling and 

BFM is necessary. 

We have taken a step toward this 
integration, at the separation kernel (SK) level. 

The approach was to make a careful comparison 

of a state model of an SK and a BFM model for 
that SK. More precisely, this involved: 

 Understanding the claim made by the Greve, 

Wilding, Vanfleet (GWV) Formal Security 

Policy [GWVpolicy] for a separation kernel 
(SK) 

 Expressing that same policy in BFM terms 

 Demonstrating that the BFM claim is true if 

the GFW claim is true 

In that way, when the SK is integrated into a 

larger system, the BFM expression of its policy 
can be used to support the validity of security 

constraints of higher level elements. We use 

“dual modeling” as a term to describe this 
approach. 

This experiment in dual modeling at the SK 

level is only a prototype of the concept. 

Additional work must be done to further 
demonstrate the concept’s feasibility. It is 

envisioned that dual modeling would typically 

occur at the platform interface (rather than an 
SK interface). That is because state modeling for 

an entire platform could reasonably be done, but 

could not be done for higher-level elements. 

C. Establishing Tool Support for BFM 
Having developed BFM features and applied 

BFM to various systems over the years, we have 

concluded that tool support for BFM is 

necessary. Tool support is advantageous in a 
number of ways. First, a support tool makes the 

modeling process more efficient than manual 

development of a model. Second, the 

presentation of the model to other developers, 
reviewers, and customers is more effectively 

accomplished using an appropriate tool. Third, 

accurate validation of security claims is more 

certain with a tool. 
We have attempted the development of a 

tool from scratch. Even such a “rough and 

ready” tool was helpful in our efforts. Figures 1 
and 2 in this paper were produced by the tool. 

Nevertheless, we concluded that a production-

quality tool is needed. It is likely that extending 
a Unified Modeling Language (UML)-based 

development tool (such as Rational Rose) is the 

best direction to move in, and whenever we 

attempt BFM modeling of another system we 
plan to incorporate such a tool. 
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