Trust Distribution Diagrams: Theory and Applications

Michael E. Locasto Steven J. Greenwald Sergey Bratus
locasto@ucalgary.ca sjg6 @ gate.net sergey@cs.dartmouth.edu
Abstract

Software systems have rapidly increased in complexity, making it difficult to argue about their trustworthiness in
prose. It also remains difficult to construct and maintain a formal proof of security for complex, evolving systems. For
example, given the design of two software systems, we currently lack a principled method for discerning which system
we should regard as the more frustworthy (e.g., containing a simpler or more cohesive set of trust relationships).
Current metrics (e.g., lines of code) have little relationship with the actual strength of the code or design.

This paper introduces the notion of diagramming trust relationships in a system using a novel construct we call
Trust Distribution Diagrams (TDDs). TDDs define a graphical language for expressing the distribution, amount, and
migration of trust in design—level components. We suggest that TDDs can help those engaged in the craft of security
architecture formulate understandable layered assurance arguments.

1 Introduction

Assurance arguments, particularly for the composition of commodity software systems, remain difficult to achieve.
Crafting an assurance argument requires more than just prose; at the same time, overly complicated formalisms can
prove difficult to maintain. Furthermore, abstract models of system design and behavior targeted for formal analysis
typically find themselves divorced from the assumptions, limitations, and properties of the running code. Thus, these
models sometimes have little to say about the actual level of trustworthiness of a running piece of code in a specific
computing environment. As a result of these difficulties, software developers for commodity software applications
(e.g., popular Web browsers, email clients, document readers, multimedia viewers, chat programs) typically eschew
the creation of comprehensive assurance arguments as either not worthwhile (because they would not match a very
complicated reality) or not worth the effort (because the time involved in creating a logical, consistent, and rigorous
line of reasoning that illustrates the security properties of their system would far outstrip the time spent on writing
code or maintaining the system).

1.1 Contribution

‘We personally value assurance arguments, but we also acknowledge that such arguments can prove difficult to formu-
late for a variety of reasons (lack of training or practice included). We instead suggest that developers can construct a
qualitative argument about software trustworthiness based on precise, accurate diagrams that capture and convey the
amount and distribution of trust among a subset of system components, including trust relationships and dependen-
cies, along with the relative risk inherent in these relationships. We note that the relationship of trusted components,
their communication paths, and their data dependencies moderates design risk. Although errors will always exist in
system implementations, it seems feasible to rigorously describe the distribution and amount of trust in design-level
components in a manner both visual and amenable to a structured (but not “formal”) treatment.

The main contribution of this paper stems from identifying a need; we freely admit that we have yet to arrive at an
exact formulation and design of this construct, but we see this workshop as a way to gather input from the community
of practitioners and researchers engaged in constructing layered assurance arguments.



2 Motivation: Rapid Growth in Size and Complexity

“There are two ways to design a system. One is to make it so simple there are obviously no deficiencies.
The other is to make it so complex there are no obvious deficiencies.” — C. A. R. Hoare

Although in the early stages of computing, systems might have remained simple enough to formally verify or
manually certify, most systems we currently rely on contain too much complexity (and change too rapidly) for such a
process to have much practical success. Computer and information systems (including both security systems as well
as application software we attempt to defend) have rapidly increased in complexity. At least one common example
involves the growth in size of the Linux kernel; early releases of Linux boasted “only”” 200,000 lines of code. Linux
now approaches 10 million lines of code,' and some web browsers easily contain double or triple this number. Ironi-
cally, researchers have resurrected the same argument (size of an OS kernel relative to a “hypervisor”) to support the
trustworthiness of hypervisor-based application sandboxing.?

For most non-trivial software systems (e.g., web servers, browsers, media players, libraries, databases), analyzing
the trustworthiness of this code or providing a correct proof of security can present a daunting (if not impossible) task.
Arguments of trustworthiness based on small code size (as often done with hypervisors) ring no more true than for
similar arguments about OS kernels or the kinds of software mentioned above. We simply lack the tools to do this
— and the counter-example of the recent seL.4 microkernel® verification effort [10, 11, 21] provides the exception
that proves the rule: however noteworthy the results or impressive the effort might seem to us, a team of experts took
months to construct the proof infrastructure for one specialized piece of software. In essence, systems have grown
beyond our current capability to argue meaningfully about their reliability in English prose.

We commonly witness justifications that generally follow a line of reasoning similar to this claim (abstracted to
protect the guilty): “Our hypervisor is only 394 lines of C code and 22 lines of inline assembly. Because this TCB
is very small, we have confidence that it is correct and bug free. The rest of the system may contain bugs, but all
the security and assurance lie in this small TCB, so the entire system is secure.” This issue particularly relates to
research efforts that make arguments about the trustworthiness of various security systems based on virtual machine
and hypervisor architectures. The systems security community has borrowed a slew of VMMs, hypervisors, virtual
machines, para-virtualized execution, and virtual servers, each promising to enforce isolation and increase the security
of code running within them (claims subject to a healthy dose of skepticism [3] in certain scenarios).

Although few security practitioners would normally question the notion that
a small TCB provides a “good” TCB, we suggest that the relationship between
size and trustworthiness remains extremely ill-defined. We claim that metrics
like lines of code (LOC) say little about the trustworthiness of a system, except °
in the sense that “ridiculously large” usually equals “definitely untrustworthy.”

All things equal, smaller might seem better, but on the other hand, we could

trivially construct a very secure chunk of code with lots of LOCs — not to men- °

tion insecure code with few LOCs. The argument used to support the notion of

“smaller as better” really boils down to “more tractable” (whether for human or

automated analysis). And yet, the relationship between tractability and assur- o

ance depends mainly on the nature and structure of the codebase and the type

of analysis done, not the raw size of the codebase considered in LOCs. In other
words, the nature and structure of the codebase will determine the complexity
(i.e., cost) of the analysis when applied to the code. For example, an otherwise
large but straightline code with few decision structures and little or no looping
may prove easy to validate automatically even though there are hundreds of thou-
sands of lines of code. On the other hand, nested looping with multiple branches
of decision control or significant modifications of data may quickly explode the
state space for automated analysis even if the code base contains only a few hundred lines of code.

Figure 1: A Simple Hierarchy With
3 Trust Levels. Here, C trusts B and
B trusts A.

"http://www.linuxfoundation.org/publications/linuxkerneldevelopment .php

2“The numbers: Xen hypervisor has around 200k LOC, while Linux/Windows/Mac kernels have tens of millions. Get it?” —http:
//theinvisiblethings.blogspot.com/2010/08/skeletons—hidden-in-linux-closet.html

3http://14hg.org/



Although it might seem that researchers have a better chance at formally verifying small pieces of C code, a large
gap remains between the mere existence of this possibility and strong, justifiable assertions about trust in an overall
system design. Furthermore, the units of “size” remain unclear: lines of code? Number and type of components (i.e.,
a TPM plus N lines of kernel code)? Number of components that the TCB communicates with? Number of functions
in an API or interface? Something else? In addition, the relative size of two TCBs for different tasks (or for the same
task across platforms) has no meaning.* Here again we see that size fails to provide any meaningful indication of
trustworthiness.

Yet, the community still subscribes to the sage advice that a small TCB supplies the principled cure for realizing
a real-world reference monitor. Few qualifiers on “small” accompany this advice. We suggest an alternative: perhaps
a better measure of assurance should rely on the complexity of the trust relationships between system components
rather than the size of the codebase.

3 Trust Distribution Diagrams: Principles and Structure

We selected the name “Trust Distribution Diagrams™ to evoke three concepts: (1) trust, (2) change and loose binding
of trust in and between components, and (3) some structured means of representing these concepts such that both
scientists and developers can make rigorous, objective comparisons between two or more designs.
We assert that “trust” and “trustworthiness” have distinct mean-
ings and represent different concepts. Postulating a precise defini-
tion for both terms can present difficulty; in this context, we equate
“trustworthy”” with the notion that software “follows expected behav- ° o
ior” according to some security policy (where “behavior” consists of
sequences of events that read or modify specific data structures).’ In
contrast, “trust” represents the concept of human judgement (war-
ranted or not) of the potential reliability (or level of risk) in some- ° ° °
thing. We contend that we can extend this notion of trust to express
a relationship between non-human system components. Humans
can trust something that may not exhibit trustworthiness, and they
may distrust something that does in fact provide trustworthy behav- ° °
ior. Finally, humans may trust something when it displays a certain
threshold level or history of trustworthiness. Different trust models
can exist, such as implicit trust, directed trust (i.e., mandated trust
regardless of trustworthiness), and verified trust (i.e., some certifi- Figure 2: Complex Hierarchy With 7 Trust Lev-

cation or verification procedure has assessed the trust relationship). ¢/s- Note incommensurate trust of some levels
TDD semantics should capture these different trust model types. (e.g., (B,X), (A,Z)).

3.1 Trust Policy = Trust Statements + Consequences

Intuitively, TDDs should encode statements about trust relationships. We believe that such trust statements should
capture: (1) the subjects and objects involved, (2) the predicates they check on pre- and post-conditions, and (3)
the temporal expectations or assumptions. For precision, it may help to formulate such statements (the precursors to
illustrating or describing trust relationships) in E-Prime [5].% Let us start with a few simple examples:

1. System A trusts System B to check property P at time T.

4While some readers may find this point obvious, the notion of a TCB often gets casually discussed as if some universal TCB existed involving
a specific version of the IA-32 microarchitecture, a specific version of the x86 assembly language produced by a specific version of the Microsoft
Visual C++ compiler running on a standard WindowsXP OS image.

5To tie this definition to “security”: attacks attempt to violate these expected behaviors and can lead to security breaches (e.g., data exfiltration,
malcode execution).

5The E-prime language removes all forms of the verb “to be” from standard English. Side effects of this change can include the specification of
an observer and the potential for more precise statements. E-prime does require developing a certain mindset, but does not present an insurmountable
challenge to communicating; we wrote this paper largely in E-prime.



Figure 3: TDD Lattice. Least Upper Bound (LUB) corresponds to “totally trusted” and Greatest Lower Bound (GLB)
corresponds to “totally untrusted.” Note incommensurate levels (e.g., (A,Z), (A,Y), (A,W)).

2. When Component B consumes input X, it requires that Component C not modify X after sequence S occurs.
3. The operating system trusts Component W at level I; to raise identity to level I; 1, acquire data structure port
with a value of “80” and then resume identity level I;.

We can create trust policy by combining a trust statement with a consequence (e.g., “System A trusts System B to
check property P at time T. If B fails to do so, A will henceforth check property P itself.”). One important benefit of
using TDDs comes from stating the consequences for violating expected behavior (note that we do not therefore need
to predict unexpected behavior or imagine all the ways that the system might fail) and this provides flexibility. For
example, in the last trust statement, if the OS does not see the event {set port=80, resume I;} (the expected behavior),
then the OS has a range of options. It can chose one or a combination of terminating W, forcing the resumption of
identity level I;, denying access to 80, or reporting the violation of the policy.

3.2 Finding the Right Structure for Diagramming Relationships

Formulating the appropriate structure for TDDs as a standardized language for trust descriptions presents an important
challenge. The underlying structure must convey the semantics (arrangement of concepts) regardless of whatever
syntax (TDD symbols) we might eventually choose. The essential feature of TDD structure comes from its ability
to depict the “complexity”’ of the relationships it contains. We need something both simple and expressive. A
translation or transformation of Harel’s “statecharts” [7] might provide a basis for representing TDD structure; Jackson
Diagrams [8] provide another. Regardless, TDD structure should convey three key properties:

1. direction of trust relationships (map of trust relationships)

2. location of trust regardless of (current) level of trust (orthagonality of location and level)

3. how direction, location, and level change over time or in response to input or other events (duration and migra-
tion of trust)

Hence, we do not define “trust” as a static number, but rather as an evolving graph structure. Trust may move
through subsets of system components (trust migration). It can increase and decrease under use and load conditions



of those components, and it may change based on runtime modifications to the system. Transitive trust may exist (for
now, we make no value judgement here).

The heart of a TDD centers on a graph of relationships between components of a system. Examples of compo-
nents include humans, whole software systems, subsystems, components, input and output mechanisms, and data.
Relationships include actions and predicates between components that express the nature of some form of compo-
sition; examples include: “trusts”, “expects”, “checks”, “provides”, “modifies” and “requires.” TDDs will possess
a unique feature that differs from most previous graph-based design frameworks (e.g., entity-relationship diagrams):
they explicitely include temporal movement in placement and amount of trust.

A lattice may provide a natural way to express a trust relation-
ship graph, particularly how trust flows from higher levels of trust to
lower, essentially laying out a landscape of the system’s components
in terms of their trust levels (see Figure 3). @

4 Examples for Diagramming Trust

This section offers examples of different challenges in a variety of
domains where system designers or evaluators might apply the con- ° e e °
cept of diagramming trust relationships. The theme underlying each

of these examples stems from the fact that software developers have
no way of expressing (and thus communicating to other developers,
evaluators, or users) their trust assumptions about a piece of code.
Here, we offer example TDDs for these scenarios. Since TDDs re-
main a developing concept the reader should treat these examples as
a basis for discussion rather than definitive.

Example 2: AV cooperation/negotiation Anti-virus systems reg-
ularly interfere with each other [12, 19, 20] because they attempt
to indiscrimminantly modify system properties and OS kernel data
structures without coordinating. Note how the composition of in-
tegrity checkers can cause a degradation of availability. TDDs might
prove useful here in defining a normalized order of approved modifications (independent of the problem of composing
the policy needs or wants — often driven by market share considerations — of these two different pieces of software:
a hard problem that this paper does not deal with). One interesting application of TDDs to the problem of providing
some sort of negotiation framework (beyond trust management [2]) might actually offer an interesting way to put a
number on the amount of additional “security” that an extra AV provides in terms of coverage of system properties
and data paths.

Example 3: Variable Checking In a dynamically composed software system, where a chain of plug-ins checks or
filters input, each individual plug-in may defensively check its arguments for sanity. Such “mutual distrust” represents
a safe default, but it also entails potentially wasted work and a measurable impact on performance. Enabling a designer
to express trust relationships between plug-ins may allow the designer or a runtime system to dynamically compose
chains of components that trust the input or output of other components in the chain — and thereby reduce the “tax”
that security measures so often impose.

Example 4: “GUI Requires User” Software applications often delegate security-sensitive decisions to end users
(e.g., trusting an unrecognized or unsigned certificate, allowing a particular socket connection). This kind of delegation
serves as the source of many instances of “human in the loop” vulnerabilities that can, for example, exploit the “trusted
path” gap [22]. The human has little evidence with which to make a trust decision (see “Why Do Street-Smart
People Do Stupid Things Online?” [4]). Often the application presents only a small GUI popup asking that some
arcane technical action (e.g., “The application Google Maps is requesting a socket connection to IP 64.xxX.XXX.XXX"")
proceed. The GUI usually fails to present a binding between the requested action and the subsequent actions of the
machine. Furthermore, the GUI also fails to indicate what consequences the user’s refusal might result in. For example,
it may happen that the user might obtain what they want with only a minor loss of information or functionality,
but the GUI does not make this outcome known — the user effectively must acquiesce to the request for fear of

Figure 4: Example lattice for a monolithic ker-
nel. A simple illustration of how processes trust
the kernel.




frustrating their main goal. In addition, the GUI does not make clear what elevated privileges the GUI obtains on an
affirmative response or under what conditions the GUI will relinquish those privileges. Greenwald’s paper on E-Prime
for security [5] contains a similar example involving ZoneAlarm phrasing of user notifications.

While we do not argue that TDDs provide a user-consumable way of solving the trusted path problem, we do claim
that GUI designers can more easily understand the claims and trust decisions they require a user to make relative to a
certain design approach. Too often software developers think of features first and security consequences last (if at all).
Asking them to diagram the relationship between the system and the human user in terms of what the system expects
of the user’s trust may help them redesign the application to eliminate such easily exploited trust decisions or to clarify
the trust conditions to the user.

S Discussion: Using TDDs

Let us assume for a moment that TDDs exist and have a well-specified syntax and semantics. How might we use them
as a security and assurance measurement tool?

5.1 Using TDD Complexity as an Evaluation Tool

Since the most obvious formulation of TDDs involves some
type of graph, one might feel the temptation to use complexity
measures rooted in the number of vertices and edges. We have
a slightly different take: TDDs are patterns of trust that may @
repeat in different contexts within the system, so under-
standing the entropy of the system in terms of these pat-
terns gives an indication of the density or complexity of
the TDD. In other words, the similarity or “compressiblity” of o °
the the set of trust relationships supplies a notion of diagram
complexity (there remains the issue of how to classify the re-
sulting score, please see below). For example, the graph in ° ° °
Figure 5 contains two distinct tokens even though it contains
three connected components. The paths (and connected com-
ponents) ABC' and XY Z essentially have the same “shape”
whereas the subgraph containing vertices {D, E, F} has a dif- ° ° ° °
ferent shape. Each graph shape can represent a “token” in
terms of calculating entropy (to ease exposition, we make a
simplifying assumption here that we can ignore the vertex la- @
bels for the purposes of identifying a trust pattern).

Recall that in the abstract we gave an example of the con-
cept of “more trustworthy” as a system containing “a simpler
or more cohesive set of trust relationships.” The complexity of Figure 5: Example Trust Graph. This simple, static
a system in terms of a large number of brittle trust dependen- trust graph has two distinct patterns or tokens; its
cies (reflected in a correspondingly more complex TDD) might ~shape compression factor provides a possible method
typically work to lower the overall level of trustworthiness of ~Of ascertaining its relative trustworthiness to a similar
the design. Some problems, however, may demand a relatively ~design. This graph displays the map property, but it
complex TDD, given that trust might have to rest in different ~still lacks notation for both orthagonality and dura-
subsets of components at different points in time. Again, the fion/migration (predicates controlling the map).
intent behind using a TDD seeks to reveal trust complexity as

a first step to reducing it. Claiming that one TDD “is better”
than another depends on the definition of better:

1. a “less complex” TDD (perhaps given by the entropy of subgraph patterns)
2. a “more robust” TDD in that it contains redundancy and no single point of failure



3. a “checkable” TDD in that model checking can easily assess the structure of relationships with respect to a
formal model

4. a “survivable” TDD that contains layers/rings of trust that it can jettison to save the core computation (this
requires a definition of “core”)

5. a “nimble” TDD where trust migrates between components so that an attacker can never attack the whole set

In essence, an objective way of measuring TDDs for different systems uses a comparison of multiple timelines
of how a particular set of trust relationships evolve. Note that the simple entropy measure suggested above does not
take the “duration and migration” dimension of a TDD into account, but we can account for this by giving a vector of
entropies, one for each system state.

5.2 Other Applications of TDDs

TDDs help evaluate system reliability in adversarial environments based on their structure, not the number of vulner-
abilities removed or exploits frustrated.

For runtime systems capable of interpreting them, TDDs may offer a way to autonomically tolerate failure by
gracefully reducing services or features as trusted components fail or become corrupted. In some sense, TDDs offer
the notion of a “Trust TTL.” Such an application may require something akin to a tagged architecture, or a very well-
labled (and mediated on a fine-grained scale) data and memory space. TDDs also might see use as a visualization
technique that can show post-mortem how trust dependencies failed in response to an attacker subverting some set of
components.

We intend that TDDs see use in the initial design of new,
self-contained systems. Composing two legacy systems with
separate TDDs might require a clean-slate TDD, although
there may exist some clever composition tricks and proper- @
ties. While we do not consider the secure composition problem
(which tends to work as a totally binary relation), an interest-
ing path of research might consider how to recast that problem

in terms of varying levels of trust. @ @

5.3 Cavaets check(P)

We stress that we do not intend TDDs to support assertions like
“System A is more secure than System B,” nor do we think @ @- @
that TDDs can prevent all errors in system implementation

(unfaithful translation by either the human or compiler from

the design to the artifact may result in unanticipated security
flaws). Instead, we mainly see TDDs as providing a coherent

basis for qualitative arguments about design—level trustworthi- GLB @
ness; ultimately, the developer or designer may have misplaced
this trust (but the design artifact visibly displays this placement
rather than buries it in lines of code).

An interesting challenge exists in deciding how much to
separate trust design from functional design. Two or more sys-
tems for accomplishing the same task may take radically dif-
ferent functional design paths. Since the unique features of
their individual architectures may have an impact on trustwor-
thiness, how can we create TDDs resiliant to such differences?

In other words, how do we design TDDs so that we can still
use them for trust comparisons even when the systems they describe have radically different designs?

Figure 6: Trust Evolution Over Time. Here, the TDD
expressed as a lattice, shows a change in the trust re-
lationship between foo and bar.




6 Related Work

Assessing the trustworthiness of real-world systems designs presents a challenging task, particularly in terms of com-
pliance checking [9, 1]. TDDs may provide a useful tool for such compliance tasks.

One of the closest concepts to TDDs is Harel’s work on state charts; we intend to explore their application to this
problem. State charts [7] have a number of attractive features that correspond to the needs we perceive for creating the
underlying TDD semantics. State charts provide a method for expressing complex relationships in software systems
in a compact fashion. They supply a visual discipline for understanding system complexity via encapsulation and
predicated labeling of state transitions, and they also include a notion of history contained in each state.

The diagrams at the heart of Jackson Structured Programming [8] may serve (with appropriate modifcations) as
another basis for TDD semantics related to describing trust relationships about data properties. Jackson Diagrams
illustrate how a developer can design a system in terms of its data structures and its input and output formats. In this
discipline, system designers graphically describe data formats in terms of sequences, iterations, and selections; the
combination of input and output formats described in this way suggest the structure of a program for performing this
mapping. For our purposes, the most important feature of Jackson Diagrams stems from their focus on data structure.
While trust relationships may exist between processes in a system, the subject of this relationship often concerns an
action on some data (e.g., component A expects component B to perform a predicate that tests a property of data D).

The transitive trust of the Unix rtools (rsh, rlogin, rcp) provides an early example of trust relationships between
systems; in the network environment, understanding such relationships has become a standard tool in network design
and analysis, particularly in terms of security. The body of work on attack graphs [18, 16, 13, 14, 15] supplies a
method of codifying trust relationships in a structured graph representation.

Probst and Hansen [17] suggest the concept of secure de-composition (our term for their “fluid information sys-
tems” concept) whereby systems are designed to move data away from threatend environments. This kind of system
highlights the principle of trust distribution: their system physically moves sensitive data to a more trustworthy set of
components. They discuss a method of using static analysis and program partitioning to migrate applications and data
during runtime.

Although similar to the concept of ER diagrams in software engineering, TDDs can be seen as a domain-specific
language for specifying security-relevant expected behaviors in software relationships as they evolve over time or in
response to input conditions (temporal relationships can be difficult to capture in traditional ER models [6]).

7 Conclusion

The information security community finds itself at a crossroads; despite intense efforts aimed at increasing the trust-
worthiness of software systems, errors, faults, and vulnerabilities still exist in deployed code. Few ways exist to
quantitatively measure the relative amounts of security or trustworthiness in a system design. Almost all arguments
about trustworthiness proceed qualitatively, under the guise of “argument from authorithy” (i.e., the personal opinion
of an expert) or simple metrics (e.g., lines of code) that have little immediate relationship to the actual strength of the
code or the design.

This paper suggests a method for giving structure to the assumptions of a software architect, developer, or system
designer about the expected behavior of a set of components. The use of TDDs helps such expectations form the basis
of a measure of relative trustworthiness in the relationships between data, components, and processes in the system. We
conceive of TDDs as including techniques for representing the amounts and distribution of trust in system components
and how these properties evolve over time or in response to input. Capturing these patterns and relationships in a
concrete format seems like it can help make the trustworthiness properties of the system more explicit (and thus more
amenable to structured, objective analysis).

References

[1] Adam Beautement, M. Angela Sasse, and Mike Wonham. The Compliance Budget: Managing Security Behaviour in Organ-
isations. In Proceedings of the New Security Paradigm Workshop, 2008.



(2]

(3]

(4]

(5]

(6]

(7]
(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]
[20]
(21]
[22]

Matt Blaze, Joan FeigenBaum, and Jack Lacy. Decentralized Trust Management. In Proceedings of the IEEE Conference on
Security and Privacy, May 1996.

Sergey Bratus, Michael E. Locasto, Ashwin Ramaswamy, and Sean W. Smith. VM-based Security Overkill: A Lament for
Applied Systems Security Research. In Proceedings of the New Security Paradigms Workshop, September 2010.

Sergey Bratus, Chris Masone, and Sean W. Smith. Why Do Street-Smart People Do Stupid Things Online? Security Privacy,
IEEE, 6(3):71-74, May 2008.

Steven J. Greenwald. E-Prime for Security: a New Security Paradigm. In Proceedings of the New Security Paradigms
Workshop, pages 87-95. ACM, 2007.

Heidi Gregersen and Christian S. Jensen. Temporal entity-relationship models-a survey. IEEE Trans. on Knowl. and Data
Eng., 11(3):464-497, 1999.

David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming, 8:231-274, 1987.
Michael A. Jackson. Principles of Program Design. Academic Press, first edition, 1975.

Klaus Julisch. Security Compliance: the Next Frontier in Security Research. In Proceedings of the New Security Paradigm
Workshop, 2008.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL.4: Formal Verification
of an OS Kernel. In Proceedings of the 22 ACM Symposium on Operating Systems Principles, pages 207-220, Big Sky,
MT, USA, Oct 2009. ACM.

Rafal Kolanski and Gerwin Klein. Formalising the L4 microkernel API. In CATS ’06: Proceedings of the 12th Computing:
The Australasian Theroy Symposium, pages 53—68, Darlinghurst, Australia, Australia, 2006. Australian Computer Society,
Inc.

Michael E. Locasto, Sergey Bratus, and Brian Schulte. Bickering In-Depth: Rethinking the Composition of Competing
Security Systems. IEEE Security and Privacy, 7(6):77-81, 2009.

Peng Ning, Yun Cui, Douglas Reeves, and Dingbang Xu. Tools and Techniques for Analyzing Intrusion Alerts. ACM
Transactions on Information and System Security, 7(2):273-318, May 2004.

Peng Ning and Dingbang Xu. Learning Attack Strategies from Intrusion Alerts. In Proceedings of the 10" ACM Conference
on Computer and Communications Security, pages 200-209, October 2003.

Peng Ning, Dingbang Xu, Christopher G. Healey, and Robert A. St. Amant. Building Attack Scenarios through Integration
of Complementary Alert Correlation Methods. In Proceedings of the 11'" Annual Network and Distributed System Security
Symposium, pages 97-111, February 2004.

Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A Scalable Approach to Attack Graph Generation. In Proceedings of
the 13" ACM Conference on Computer and Communications Security (CCS), October 2006.

Christian W. Probst and Rene Rydhof Hansen. Fluid Information Systems. In Proceedings of the New Security Paradigm
Workshop, 2009.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated Generation and Analysis of Attack Graphs. In
Proceedings of the IEEE Symposium on Security and Privacy, May 2002.

skape. What Were They Thinking: Annoyances Caused by Unsafe Assumptions. Uninformed, 1, April 2005.
Skywing. What Were They Thinking: Anti-virus Software Gone Wrong. Uninformed, 4, June 2006.
Harvey Tuch. Formal Verification of C Systems Code. Journal of Autom. Reasoning, 42(2-4):125-187, 2009.

Zishuang (Eileen) Ye, Sean W. Smith, and Denise Anthony. Trusted Paths for Browsers. ACM Transactions on Information
and System Security, 8(2):153-186, 2005.



