
Applying a Compositional Method to Incrementally
Prove Critical Properties of an Airlock System

Elizabeth I. Leonard, Ralph D. Jeffords, Myla M. Archer, and Constance L. Heitmeyer
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington, DC 20375

leonard,jeffords,archer,heitmeyer @itd.nrl.navy.mil

Abstract. Providing assurance that a software system satisfies its critical properties is difficult, particularly when
the system must satisfy many classes of properties, such as safety, fault-tolerance, timing, and security. This paper
describes the application of an incremental development and verification approach [13, 14], based on composition
and refinement, to an airlock system. Initially, a model of the basic functional behavior of the system is developed
and proved to satisfy a set of safety properties. This basic model is then extended with timing behavior. This timed
model is a full refinement of the basic model, and related safety properties are shown to still hold for the timed
model. In the third and last step, the timed model is extended with fault handling behavior. This “fault-tolerant”
model, a partial refinement of the other two models, is shown to satisfy both weakened versions of the safety
properties and additional fault-tolerance properties.

1 Introduction

Providing assurance that a software system satisfies its critical properties is difficult, particularly when the system must
satisfy different classes of properties, such as safety, fault-tolerance, timing, and security. Two well-known theoretical
approaches to developing high assurance software are refinement [1] and composition [2]. In a refinement-based devel-
opment, an abstract model of the system is developed and critical properties are proved to hold for the model. Then, the
model is iteratively refined, adding more detail about the system behavior during each iteration. Each model is shown
to be a refinement of the model from the previous iteration, and thus, many properties which hold in the previous
model may be inherited by the new model. (This is true for a large class of properties, including all safety properties.)
A major difficulty with refinement-based approaches is that maintaining a refinement throughout the development
process is difficult, unless the original model contains some mention of every possible system behavior.

Compositional approaches to software construction generally rely on proof rules that allow properties of individual
components to be used to infer properties of the composite system. The proof rules require each component and its
properties to satisfy a set of conditions before the rules can be applied. Applying the rules in practice is challenging
because it is difficult either 1) to find components whose composition is a system with the desired composite behavior
and that also satisfy the requirements for applying the rule, or 2) to decompose the system into components that satisfy
the requirements for applying the rule.

In [13, 14], we describe a software construction and verification method that combines refinement and composition.
Like other development methods, our method builds a system model (in the form of a state machine) iteratively,
starting with an abstract model of the functional behavior (e.g., services) required of the basic system. In each new
iteration, the model is extended by composing it with a new component that describes a different aspect of the system’s
behavior (e.g., fault-tolerance). This extended model is a partial refinement of the previous model because it inherits
the behavior of the basic model but may also add new externally visible behavior. For example, the basic system model
may assume that no faults occur; the extended system model removes the no-faults assumption, thus allowing faults
to occur (e.g., notification of an engine failure in a flight control system), and adds externally visible behavior (e.g.,
an alarm to notify the pilot of an engine failure). Using the property inheritance rules that are part of our method,
and assuming that the extended model has been constructed appropriately, we have shown that the extended model
inherits weakened versions of the properties proven to hold in the basic model [13, 14]. Using the compositional proof
rules associated with our method, we can prove properties of the extended model from properties already proven of
the basic model. These proof rules can be used to prove additional properties about the extended model, for example,
to prove fault-tolerance properties when the model has been extended to support fault-tolerance.

In [13, 14], an example is presented to illustrate how our method might be applied in two phases; the basic model
was developed in the first phase, and the extended model, a fault-tolerant model, in the second phase. This paper
extends that work by showing how our method can be applied in many steps (in our new example, three steps), where
at step , additional behavior is added to the model developed at step . The paper provides an example where
it makes sense to use a full refinement step in addition to the partial refinement step used in [13, 14]. In particular,
this paper describes how our method can be applied to an airlock system, based on the example introduced in [16], by
1) specifying a model of the basic safety-critical behavior of the system and proving properties of this basic model,
2) extending the basic model with timing behavior and proving properties about the timed model, and 3) extending
the timed model with fault-tolerance and proving more properties about this fault-tolerant model. In developing these
three models of the airlock system, some new theoretical results, including a new compositional proof rule, were
needed. This paper presents these new results and discusses some lessons learned in applying our method to the
airlock example.

The paper is organized as follows. Section 2 reviews the key theoretical results of [13, 14]. Section 3 presents the
airlock example, Section 4 discusses lessoned learned, and Section 5 presents some conclusions and our plans for
future work.

2 Iterative Software Construction and Verification Process

References [13, 14] describe a method for compositionally constructing and verifying fault-tolerant systems, illustrate
how the method can be applied to a two-phase specification of a fault-tolerant system, and present a formal theory to
support the method, based on composition and partial refinement. Many popular state-machine-based formalisms are
suitable for use with the method, including Abstract State Machines (ASM) [5], I/O Automata (IOA) [7], Lustre [8],
Requirements State Machine Language (RSML) [10], Software Cost Reduction (SCR) [11], StateCharts [9], and
Temporal Logic of Actions (TLA) [15].

In [13, 14], our application of the method to a fault-tolerant system was applied in two phases. In the first phase,
the normal behavior (assumes no faults are possible) is specified, and critical system properties are proved to hold
for the model. In the second phase, the no-faults assumption is removed, and the model is extended to include fault
detection, handling, and recovery. The extended model is then shown to satisfy the critical system properties (possibly
weakened) and additional fault-tolerance properties.

In this paper, we extend the method to allow multiple development/verification steps, where at step additional
behavior is added to the model developed at step . In each step, the additional behavior captures some new aspect
of the system behavior (e.g., security, fault-tolerance, timing). A system model in our method is a state machine

, where is a nonempty set of states, is a set of initial states, and is a set
of transitions that contains the stutter step for every in . An execution sequence (execution) of A is a
sequence of states () in such that for every with ().
A state is reachable if there is an execution sequence of A such that is an initial state and

. A transition is a reachable transition if is a reachable state. In our extended method, the
new system model created at each step is required to be a partial refinement of the previous system model. A special
case of a partial refinement is (ordinary) refinement. Specifically, we define a refinement and a partial refinement as
follows:

Definition 1. Refinement. Let A = and C = be two state machines, and let
be a mapping from the states of C to the states of A. Then is a refinement mapping if 1) for every in ,
is in , and 2) for every pair of states in such that .

Definition 2. Partial refinement. Let A = and C = be two state machines and
be a partial mapping from states of C to states of A. Then is a partial refinement mapping if 1) for every in
, is defined and in , and 2) for every pair of states in the domain of

such that . When a partial refinement mapping exists from C to A, we say that C is a partial refinement
of A (with partial refinement mapping).

2

An extended model that is a refinement of an existing model will inherit many properties of the existing model,
including all safety properties; hence, it is useful to establish that the extended model is a refinement. One natural
approach to constructing a refinement is to add detail to an existing state machine model by describing individual
transitions as being implemented by sequences of smaller transitions. The more detailed state machine thus has ad-
ditional (intermediate) states and additional (intermediate) transitions. When the additional states can be mapped to
existing states in such a way that all transitions in the detailed state machine map to transitions in the original state
machine, the detailed state machine will be a refinement of the original state machine. Note that including stutter steps
in our definition of state machine helps to make this possible by allowing intermediate transitions in the detailed state
machine to map to stutter steps in the original state machine.

In a (proper) partial refinement step in our method, we extend the current model by composing it with a new
component model, where transitions to, from, and inside the new component represent visible system behavior. In this
case, the extended model has visible behavior not present in the previous model, and cannot be a proper refinement of
that model. The partial refinement relation is still useful to establish, however, for verification purposes, since it allows
a weakened version of property inheritance. Finally, we have also proved that the composition of partial refinements
is a partial refinement. Hence, every system model obtained by applying our compositional method will be a partial
refinement of the original, basic system model.

In [14], we define a special relationship between two models called fault-tolerant extension.

Definition 3. Fault-tolerant extension. Given a state machine model ID of a system, a second state machine model
FT of the system is a fault-tolerant extension of ID if:

– the state set of FT partitions naturally into two sets: 1) , the set of normal states, which includes , and
2) , the set of fault-handling states that represent the system state after a fault has been detected, and

– there is a map and a two-state predicate such that , and
and .

The map and predicate are called, respectively, the normal state map and normal transition predicate for FT.
When , FT is a simple fault-tolerant extension of ID.

If FT is a simple fault-tolerant extension of ID, then is a partial refinement mapping from FT to ID. A construction
method is provided in [14] which, when used to obtain FT, guarantees FT to be a fault-tolerant extension of ID that is
“faithful” in the sense that every execution possible in ID is possible in FT (with essentially the same visible behavior).
The construction method builds a fault-tolerant extension by extending a model in three ways:

1. New variables are added to the set of existing variables. These variables may include new input variables, e.g.,
to signal that a fault occurred or a time-out expired (often a symptom of a fault). Other variables may also be
added—for example, a new output variable to warn a system operator that a fault has been detected, or new
“history variables,” such as internal variables which record the time a system has been in a given state.

2. New values may be added to ranges of existing variables. For example, to describe a fault-handling state, the range
of some existing variable may be extended to allow an extra value .

3. New transitions are added to the existing set of transitions. Two classes of additional transitions are possible. One
class consists of brand new transitions—for example, a transition from a state in the original system to a new
fault-handling state, or a transition from a new fault state back to some normal state (i.e., fault recovery). The
other class of new transitions arise from a “split”, i.e., a transformation of an original transition in ID into two
new transitions based on the value of a predicate involving new variables or new values of existing variables: if
the predicate is true, then the transition in the fault-tolerant system corresponds to the original system transition;
if false, then the transition is to a new fault-handling state.

Once the three extensions above have been specified, the user may “compose” them with the original specification
of the state machine model ID to obtain a specification of the extended state machine model FT. First, the new variables
are inserted into the set of original variables to produce a new set of state variables. Next, the type sets of variables with
new values are modified to include the new values. These two extensions lead to the set of possible states in FT.
Finally, the new transitions are inserted into the set of transitions of the original state machine model to form a new set

of transitions. The state set can be naturally partitioned into , the set of normal operating states augmented

3

with the new variables, and , the set of fault-handling states. The faithfulness to ID of the extension FT follows
because the extensions to the specification of FT satisfy the “non-interference” notion of Arora and Kulkarni [3], i.e.,
do not interfere with the original system behavior described by ID. In Section 3, we construct a fault-tolerant extension
of the airlock as the final step in the software development process.

Reference [14] defines a set of property inheritance rules for fault-tolerant extensions that allow FT to inherit
weakened versions of properties proved for ID, and two compositional proof rules that can be used to prove properties
of FT using properties already proved for ID. Those property inheritance and compositional proof rules only allow a
property proved for ID to be used in establishing that a property holds in FT. Sometimes, this information is not
sufficient to prove the desired property. In such cases, allowing the proof to use an auxiliary invariant is sometimes
all that is necessary to obtain a proof. Since the publication of [14], additional property inheritance rules have been
developed that allow an auxiliary invariant to be used in proving transition invariants and state invariants of FT.

3 Case Study: Applying the Method to an Airlock System

This section shows how the method described in Section 2 can be applied to a practical system, an airlock, which, for
example, allows divers to exit and enter a submarine or astronauts to exit and enter a space vehicle. An airlock is a
chamber connecting two areas with differing pressures. Each area has a door connecting it to the airlock, and the door
between the chamber and one of the areas should only be opened after the pressure in the chamber has been equalized
with the pressure of that area. In applying the method, the initial specification describes the safety-critical behavior
of the airlock. In the second and third phases, the specification is extended first with timing behavior and then with
fault-tolerance behavior.

All three of the specifications presented in this paper are represented in the SCR tabular notation [11]. In SCR
a set of tables are used to define a state machine model . The set of states is determined by
the values assigned to the set of state variables which specify the required system behavior. In SCR, monitored and
controlled variables represent the externally visible input and output behavior of the system. SCR also has additional
“hidden” variables—namely, mode classes and terms, which are used to make the specification of the relationship of
the monitored and controlled variables more concise. SCR tables are used to specify how the value of each controlled
variable, mode class, or term changes in response to changes in the monitored variables. In SCR tables, two other
constructs are important: conditions and events. A condition is a predicate on a single state, while an event is a two-
state predicate on an old state and new state indicating a change in some variable value. If condition ’s values in the old
and new states are denoted and , then the semantics of the basic event is defined by , the semantics
of by , and the semantics of by . A conditioned event, denoted , adds a
qualifying condition to an event and has the semantics . A monitored event represents a change in value
of a monitored variable. In SCR, each transition in is uniquely determined by a state in and a monitored event
permitted in , and an execution, which starts in some initial state in , is driven by a nondeterministic sequence of
monitored events. Each new state in the execution is defined by the new value of the monitored variable that changed,
no change in the values of other monitored variables1, and updates to the remaining state variables deterministically
defined by the SCR tables. This process is synchronous: the system completely processes one monitored event before
processing the next monitored event.

3.1 Modeling and Verifying the Safety-Critical Behavior

The basic airlock specification and some of the properties proved of it are based on the example given in [16]. The
basic airlock is designed to control two doors and the pressure in the chamber between them. These two doors and
the chamber pressure are represented in the SCR specification by the controlled variables cInDoor, cOutDoor, and
cChPres. In the initial specification, no timing constraints on the opening and closing of the doors are assumed. Nor
are there constraints on the time needed to equalize the pressure in the chamber. Thus, each door has the value of
either closed or open, and the chamber pressure is either equal to the pressure on the other side of the inside door
(InPres) or on the other side of the outside door (OutPres). The airlock responds to operator commands, repre-
sented as values of a monitored variable mCmd. The possible commands are OpenOutDoor and CloseOutDoor
for operating the outside door; OpenInDoor and CloseInDoor for operating the inside door; and ToOutPres

1 SCR’s One Input Assumption allows a change in only a single monitored variable

4

Table 1. Event table defining in ID

Variable Event Event

Table 2. Event table defining in ID

Variable Event Event

and ToInPres for changing the pressure in the chamber to match the pressure outside or inside. Tables 1 and 2 are
SCR event tables describing how the values of the controlled variables cInDoor and cChPres change in response
to events. The table for cOutDoor, which is analogous to that for cInDoor, is omitted.

Table 3 lists six safety properties required of the basic airlock model. Each property was proved for the basic
model using the property checker Salsa [4]. The proofs of properties through required no auxiliary invariants.
In contrast, to complete the proof of property , properties and were used as auxiliaries.

3.2 Adding Timing Behavior

In the second phase, the assumption that doors open and close unconstrained by time is replaced by a requirement
that the doors open and close in a fixed amount of time. (The assumption about the chamber pressure changing
unconstrained by time can be replaced in a similar manner.) A new monitored variable mtime, a monotonically non-
decreasing integer, is added to the specification, and two constants ClosingDur and OpeningDur are introduced
to represent the time required to close and open a door. To represent this, the representation of the doors in the timed
model has one of four possible values: open, closed, opening, or closing. When the command to open a door
is invoked, the door is assigned the value opening. If the door is opening, then when OpeningDur time has passed,
the door is assigned the value open. The process is similar for closing a door. (The timed behavior of the airlock is
similar to that described in [6].) The event tables for cInDoor and cOutDoor are modified to reflect these additional
values; Table 4 is the modified table for cInDoor. The table for cOutDoor is analogous. The table for cChPres
does not change.

We can define a mapping from the timed specification T to the original specification ID by ignoring the value
of mtime and mapping a state of T to a state of ID based on the values of the remaining variables: (1) the values
opening and closing for the doors in the timed specification are mapped to open and closed in the untimed
specification, while values open and closed remain unchanged; (2) the value of cChPres is preserved by the
mapping (the mapping for mCmd is technical and omitted here). In the mapping, in response to a command to open a
door, a door in ID immediately opens and then stutters while the corresponding door in T has the intermediate value
opening (i.e., all the variables except mCmd remain unchanged). The case for closing a door is analogous. This
mapping was proved to be a refinement using PVS.

Table 3. Safety Properties for the basic airlock ID

Name Formal Statement Informal Statement

Both doors cannot be open at the same time.
Pressure is equal during door movement.
If door open, pressure same as in indoor area.
Pressure is equal during door movement.
If door open, pressure same as in outdoor area.
Pressure only changes when both doors closed.

5

Table 4. Event table defining in T

Variable Event Event Event Event

While the properties proved for ID may still hold for T, in some cases those properties are now weaker than
what we actually desire to prove as a result of the refinement. In particular, properties that are conditioned on a door
being open can be strengthened to be conditioned on the door being either partially or fully open (i.e., having value
opening, open, or closing). For example, when a door is open fully or partially, the pressure in the chamber
must be the same as the pressure on the other side of the door. Any property that explicitly mentions values for
the variables whose values were refined, in this case cInDoor and cOutDoor, can be modified to take the value
refinement into account. Thus, properties , , and are modified, replacing all references to cInDoor = open
by cInDoor closed (shown as properties , , and in Table 5).

Because T is a refinement of ID, T can inherit properties of ID. If is a state invariant of ID, then is a
state invariant of T. Likewise, if is a transition invariant of ID, then is a transition invariant of T.
Unfortunately, in some cases the inherited property is not identical to the property proved for ID. For example, the
inherited property corresponding to is

Because we want to prove the stronger properties shown in Table 5 (including , , and which are syntacti-
cally identical to the untimed properties of the same names in Table 3), rather than the weaker properties obtained via
inheritance, the desired properties were verified using Salsa. Proving properties , , and required no auxiliary
invariants. In contrast, required as an auxiliary, required as an auxiliary, and required both
and as auxiliaries.

3.3 Adding Fault Tolerance

In the final iteration, the system is modified to handle the case in which opening a door is faulty—i.e., either door
opens outside of user control. In such cases, both doors may be open for some nonzero period of time. Detecting this
fault leads to the sounding of an alarm; a Warning alarm indicates that the other door is closed, and a Danger alarm
indicates that the other door is open. The recovery for this fault is to force the offending door to close within a set time
limit. The system only tolerates one faulty door at a time.

Using the method for constructing a fault-tolerant extension described in [13, 14], we add several new variables to
the specification to represent fault detection and fault handling. Two new monitored variables, mOpenInDoor and
mOpenOutDoor, are used to signal the system when one of the doors opens outside of user control. A new controlled
variable cAlarm is introduced to model the status of the alarm; its value can be None, Warning, or Danger. A
new integer constant HazardDur is introduced to represent the time required to close a door that has opened outside

Table 5. Safety Properties for the timed airlock T

Name Formal Statement

6

Table 6. Table defining the mode transitions in FT

Old Mode Event New Mode

Table 7. Event table defining in FT

Mode mcStatus Event Event

of user control. Finally, and most importantly, a new mode class mcStatus is added to indicate the status of the
fault-tolerant airlock system. The status is Normal when both doors are operating properly (all behavior that was part
of T has this value of mcStatus in FT), FaultyOutDoor when the outside door is opening because of a glitch,
and FaultyInDoor when the inside door is opening because of a glitch. The mode transition table for mcStatus
is shown in Table 6. The second step in constructing a fault-tolerant extension is to extend the ranges of existing
variables. In the example presented in [13, 14], the mode variable was extended with a new value fault to indicate
when the system was in fault-handling mode. In the airlock system, there was no need for a mode class variable in
the original and timed specifications because the system only had one mode of operation. Thus, when we added fault-
tolerance to the airlock, we added a mode class variable, rather than extending the range of an existing mode class. In
the airlock example, there is no need to extend the range of any variables.

The final step in constructing a fault-tolerant extension is to add transitions. In our SCR specification, the set of
transitions is extended by adding rows to the tables which define the values of the controlled variables. Tables 7, 8,
and Table 9 show the modified tables defining cChPres, cInDoor, and cAlarm. The tables for cInDoor and
cChPres has been extended by first making the new values of the variables depend on the value of the mode class
variable mcStatus. All transitions in the tables for cInDoor and cChPres in T are present in the tables for FT
and are represented in the rows where the mode of mcStatus=Normal. Additional transitions are added when the
value of mcStatus is either FaultyOutDoor or FaultyInDoor by adding rows to the table for cInDoor.

FT is a fault-tolerant extension of T in which

;
; = ; and

: = , where

Because FT is a fault-tolerant extension of T, FT inherits weakened forms of T’s properties. Properties – ,
shown in Table 10, are inherited via property inheritance rules. A new property inheritance rule allowing the use of an
auxiliary invariant in the proof was necessary in proving properties and . In this case, the necessary auxiliary
invariant is

7

Table 8. Event table defining in FT

Mode Event Event Event Event
mcStatus

Table 9. Condition table defining in FT

Mode mcStatus

proved by the compositional proof rule for state invariants in [14]. The properties , , and hold by the
following rule, “If holds by propositional reasoning and if is a state invariant, then is a state invariant,”
and because . Property was proved using the compositional proof rule for transition
invariants in [14]. Table 10 also shows new fault-tolerance properties, – , generated automatically by our
invariant generator [12], and an interesting timing property, , proved using Salsa.

4 Lessons Learned

Incremental development and verification. Before developing the airlock as a series of three specifications, ID, T,
and FT, we tried deriving FT from ID in a single step that included both the timing and fault-tolerance behavior. De-
veloping FT directly from ID was extremely difficult because the combination of timing and fault-tolerance behavior
required the addition of a significant amount of detailed behavior. It was much easier to get the final behavior correct
by concentrating on the timing and fault-tolerance behavior individually in separate steps. This is one major argument
for incremental development, and it held true in our case study. This experiment confirmed that the basic premise of
our approach, adding only one additional aspect of the system’s behavior in each step, was beneficial.

In addition, when we attempted to add both timing and fault-tolerance in a single step, proving the relationship
between the models was difficult. Using the incremental approach, proving that T was a refinement of ID was the
difficult part; establishing that FT was a partial refinement of T was easy (in fact, it follows by construction; see
Section 2). Including both timing and fault-tolerance in one step obscured the individual pieces and made proving the
relationship difficult.

Finally, we also found that it was important that each step extend the model from the previous step in a manner that
was suitable for the new behavior being added. This requires the construction and verification method to be flexible,
allowing some steps to be full refinements of the previous step and others to be just partial refinements. In the airlock
example, a full refinement that refined the transitions of the original specification was the appropriate way to add

8

Table 10. Safety Properties for the fault-tolerant airlock FT

Name Formal Statement

timing behavior. In contrast, adding fault tolerant behavior was better handled by using a compositional construction
that produced a fault-tolerant extension that was only a partial refinement of the timed model. This need for flexibility
will likely hold for modeling other systems. Adding behavior such as exception handling or a new security component
that performs monitoring will likely be best handled using composition and partial refinement, while adding more
detailed security behavior to an abstract model that only captures security at a high level would be better handled
using full refinement.

Importance of modes. Mode variables play an important role in the construction of a fault-tolerant extension. In the
example specification in [13, 14], a mode variable that existed in the original specification was extended with a new
mode to indicate when the extended system was handling a fault. In the airlock example, no mode class was defined
in either the basic specification or in the timed specification. When the timed version is extended with fault-tolerant
behavior to create FT, one of the new variables is the mode class mcStatus. This new mode class distinguishes all
of the previously existing behavior (now described by mode Normal) from the states in which fault handling occurs
(modes FaultyInDoor and FaultyOutDoor). Fault detection is indicated by transitions from a Normal state to
one of the fault handling states, and recovery by transitions from the fault handling states to a Normal state. The mode
variable clearly partitions the set of states based on its value into N and F, thus simplifying the process of establishing
that FT is a fault-tolerant extension of T.

Use of auxiliary invariants in proving properties. Using the proof rules to establish properties of the airlock system
revealed that in some cases the proof rules developed in [14] were not strong enough to produce the desired proof. In
these cases, the proofs required additional information in the form of an auxiliary invariant to establish that the desired
properties were satisfied. This led to the development of additional proof rules that allow the use of an auxiliary
invariant in the proof. One important question is how to find the needed invariants. Discovering the auxiliary invariant
needed to prove properties and of the fault-tolerant model (see Section 3.3) required user ingenuity. More
systematic techniques are needed for discovering the needed auxiliary invariants.

Proving refinement may be difficult. In proving the refinement mapping from T to ID, an additional environmental
constraint on was needed: The value of must always return to the inactive value between each setting
to an active value. Including such artificial constraints in the initial formal specifications is undesirable because this
makes the specifications less understandable. However, such artifacts are sometimes necessary to establish required
relationships (such as refinement) between two specifications. Further, the refinement mapping seemed overly com-
plex given the relative simplicity of the Airlock example. In the future, we shall explore alternate ways of establishing
refinement in the Airlock example.

9

5 Conclusions and Future Work

This paper has presented a case study of incremental development of an airlock using composition and (partial) re-
finement to add timing and fault-tolerance to the original specification of the system’s safety-critical behavior. In the
process, additional theory, including a new compositional proof rule that allows invariants to be used in the proofs of
properties of an extended system from properties of the basic system, was developed.

In the future, we plan to continue developing theory and methods to support different types of behavioral extensions
beyond fault-tolerant extensions (for example, security extensions and error handling extensions). We also plan to
develop tools to support use of the methods. Such tools include: 1) a construction tool that would guide the user
in extending a model so that the resulting extended model is guaranteed to be a behavioral extension; 2) verification
support for applying the property inheritance and compositional proof rules; and 3) tools for transferring the confidence
developed for the model to the actual code (e.g., automatic code generation from the models or model-based testing).

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer Science, 82(2):253–284, 1991.
2. M. Abadi and L. Lamport. Composing specifications. ACM Trans. Program. Lang. Syst., 15(1):73–132, 1993.
3. A. Arora and S. S. Kulkarni. Component based design of multitolerant systems. IEEE Trans. Softw. Eng., 24(1):63–78, Jan.

1998.
4. R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with BDDs for automatic invariant checking. In Proc. Tools

and Algorithms for the Construction and Analysis of Systems (TACAS 2000), Berlin, 2000.
5. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, 2003.
6. D. Esp. Environment-based specification of real-time interlock and control systems. pages 173 –177, jul. 1988.
7. S. J. Garland and N. Lynch. Using I/O automata for developing distributed systems. In G. T. Leavens and M. Sitaraman,

editors, Foundations of Component-Based Systems, pages 285–312. Cambridge Univ. Press, 2000.
8. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic Publishers, Boston, MA, 1993.
9. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Programming, 8(3):231–274, June 1987.

10. M. P. E. Heimdahl and N. Leveson. Completeness and consistency in hierarchical state-based requirements. IEEE Transactions
on Software Eng., 22(6):363–377, 1996.

11. C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords. Tools for constructing requirements specifications: The SCR toolset
at the age of ten. International Journal of Computer Systems Science and Engineering, 1:19–35, 2005.

12. R. Jeffords and C. Heitmeyer. Automatic generation of state invariants from requirements specifications. In Proc. Sixth ACM
SIGSOFT Symp. on Foundations of Software Eng., 1998.

13. R. D. Jeffords, C. L. Heitmeyer, M. Archer, and E. I. Leonard. A formal method for developing provably correct fault-tolerant
systems using partial refinement and composition. In A. Cavalcanti and D. Dams, editors, FM 2009: Formal Methods, Second
World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings, volume 5850 of Lecture Notes in Computer
Science, pages 173–189. Springer, 2009.

14. R. D. Jeffords, C. L. Heitmeyer, M. Archer, and E. I. Leonard. Model-based construction and verification of critical systems
using composition and partial refinement. Formal Methods in System Design, to appear.

15. L. Lamport. The temporal logic of actions. TOPLAS, 16(3):872–923, May 1994.
16. I. Lopatkin, A. Iliasov, and A. Romanovsky. On fault tolerance reuse during refinement. Technical Report CS-TR-1188,

University of Newcastle upon Tyne, Feb. 2010.

10

