MILS Research Montage

LAW
Work-In-Progress Session
December 6, 2011

Rance DeLong
Consulting Researcher

Research Enabling MILS Development and Deployment (REMDaD)*

- Objective:
 Move to next stage of MILS deployment and development
- 4 Themes
 - Components development and assurance of individual components
 - Integration integration of MILS components and systems
 - Deployment facilitate MILS deployment
 - Certification enable MILS evaluation and certification
- Initial tasks (2010)
 - Evidence and toolchains for MILS certification study
 - MILS Cross Domain Solution (CDS) operational component Study
 - MILS Delivery, Configuration, and Initialization (DCI) Study

^{*} Performed at SRI, sponsored by AF Research Laboratory and AF Cryptographic Modernization Program Office.

Research Enabling MILS Development and Deployment (REMDaD)*

- Current tasks (2011-2012) -(John Rushby, Dave Hanz, Rance DeLong)
 - AADL and MILS
 - MIPP completion (MIPP as a document)
 - "Programming the MIPP" (MIPP encoded in the CCAE)
 - MILS Delivery, Configuration, Initialization model
 - MILS Cross Domain Solution investigation
 - MILS Network Subsystem Protection Profile

^{*} Performed at SRI, sponsored by AF Research Laboratory and AF Cryptographic Modernization Program Office.

MILS is based on composition of cooperating components defined by related Protection Profiles*

- Separation Kernel (SKPP)
- MILS Network System (MNSPP)
- MILS Console System (MCSPP)
- MILS Extended Attributes PP (MEAPP)
- MILS File System (MFSPP)
- . . .
- MILS Integration Protection Profile (MIPP)

Mils PPs are expected to achieve this:

Illustrative Architecture of a MILS-based MLS workstation - a collection of connected "things"

Architecture of a MILS based workstation - itself is Something

Something that must be designed. Something that has properties.

Architecture as an Integration Framework

This **Something** is what the MIPP describes

- The system level security problem (T/P/A)
- The system level security objectives
- The system level SFRs and SARs
- A system concept and reference architecture
- Identification of, and connections among, the components
- A basis for formal composition of component properties
- Constraints on the MILS components that fit in the "holes"
 - Security objectives, or modified ones, that pass to the component
 - Relationships and obligations (rely-guarantee) among the components
 - Interaction schemas for interacting components

Some architecture alternatives for MILS network system

System Inputs, Outputs, Relies and Guarantees

MILS System from Components/Subsystems

Properties: P(HI,HO,LI,LO) st S≤P

Compositional Relies / Guarantees

MILS Composite Assurance Case

- Compose assurance cases using Assume-Guarantee Reasoning
- Assumptions from MI assurance case become requirements on the components

 Assured Claims from component assurance cases become evidence for MI

Common Criteria Authoring Environment as a distributed collaboration environment

CCAE User and Components Author/Reviewer Rule Base **CC** Component **CCAE** Operation Rules, **Env Library** Document Semantic Rules. Relational Model, Repository Components, Workflow Rules CC SFRs/SARs. Interps, CIM, Parent PP, UL Agent Security Ontology MILS TOE Concept, Resource Registry MILS Integ FW or TOE Flow-down Requirements Document Creation/Revision Current Doc Assembly, Catalog Selection, Checking, Reviewing, Inference, Document Rule Execution, Queries, XML gen Factbase **Doc Creation** Project Library Team Conventions, **XML** Exchange Doc comp classes Doc generators: or Export PP, ST, FSP **Documents** PP, ST, & Reports PDF, DOCX XLSX, ... stats R. DeLong 16

Relational Structure of a Protection Profile

Approximation of a MILS PP Oracle (M_{CCAE})

Projecting the MILS PPP to standard PPs

+ Evaluation Work Unit Checklists

ordered evaluation of PPs.

19

and other PP property closures.

Differential work units assume

Evaluation differential work units (1)

Entailed work units to be performed to evaluate f $PPP_{ABC} \{A\} = PP_A$

Note, the following Venn diagrams represent contents of projected PPs, not PPP sub-profiles. Projected PPs may have substantial intersection, while sub-profiles may be disjoint.

Evaluation differential work units (2)

Work units entailed to evaluate f PPP_{ABC} {A,B} = PP_{AB}

 PP_{AB} common work units completed for evaluation of PP_{A}

Work units already completed during evaluation of PP_A

Differential
work units
AB \ {A}
to be performed
to complete
evaluation
of PP_{AB}

Evaluation differential work units (2)

 PP_{ABC} common work units completed for evaluation of PP_A and PP_{AB}

Differential
work units
ABC \ {A,AB}
to be performed
to complete
evaluation
of PP_{ABC}

Work units entailed to

evaluate
$$f$$
 PPP_{ABC} {A,B,C} = PP_{ABC}

Generalized Delivery, Configuration, and Initialization interpretation

- Interleaved configuration and delivery
- Configuration and integration is *incremental* due to separation of concerns and separation of duty
- OEM TOE developer is responsible for providing trusted delivery and for trusted initialization
- Trusted delivery should protect TOE to the deployment environment, providing basis for establishment of secure initial state
- There can be multiple intermediate integrator environments!

Incremental accumulation of component / configuration data bundle protected by, and updated within, Trusted DCI pipeline

The big picture, scope of phases

Temporal overlap and location spanning

Developer Environment Integrator Environment(s) User (deployment) Environment

Generalized Reconfiguration

- Φ system configuration property
- φⁱ interval configuration property
- τ_R reconfiguration transition