
Introduction to the Guardol Language
and Verification System

David Hardin
Trusted Systems Group

Rockwell Collins Advanced Technology Center

December 6, 2011

Colleagues

This work has been conducted along with

• Konrad Slind, Rockwell Collins
• Andrew Gacek, Rockwell Collins
• Mike Whalen, U. Minnesota
• Tuan-Hung Pham, U. Minnesota
• John Hatcliff, Kansas State U.
• Joey Dodds, Kansas State U.
• David Greve, Rockwell Collins

Part 1

Guards and their properties

What is a guard?

A guard is a device that mediates information sharing
between security domains according to a specified policy.

Typical guard operations on a packet stream:
• read field values in a packet
• change fields in a packet
• transform packet by adding new fields
• drop fields from a packet
• construct audit messages
• remove entire packet from stream

Typical Guard Structure

A guard

• is hosted on some high-robustness operating system
• Thus, a guard inherently constitutes a layered assurance

problem

• is multi-homed (has network interfaces for the n networks it
mediates)

• is generally (semi-)programmable via a system-specific set
of rules

• has traditionally been applied to relatively simple packet
types, but guards for tree-structured data of arbitrary size
(e.g., email, XML) are increasingly needed

Specific guard properties

What might we want to assert about a guard?

• The guard should be NEAT (Non-bypassable,
Evaluatable, Always Invoked, Tamper-proof)

• The output packet has no occurrence of some field in the
input packet

• No “dirty” words exist in the output packet
• No information that is not releasable to a particular

destination is transmitted to that destination
• Target email addresses don’t contain .rogueNation

• Every field labelled foo in the output has been fuzzed, or
encrypted

Guard technology at Rockwell Collins

Rockwell Collins has accumulated some experience in the area

• 2005: High assurance guard demo
• 2007: Turnstile

• based on AAMP7 microprocessor
• in production

• 2010: MicroTurnstile
• used to guard USB comms in soldier systems
• also AAMP7 based
• size of a pack of gum
• in final development

Some problems with guards

Guards can be used in a wide variety of settings (commercial,
medical, military) so it is difficult to generalize, BUT

• Not a lot of literature (or information-sharing) on guards
• A guard is a {safety,privacy,mission}-critical system

component which should be verified, but guard evaluation
standards are currently in flux

• Portability is hardly addressed
• Performance of rule-based guards is difficult to assess

Uphsot

Guards can be slow to build and then to be certified.

Guards may be slow when executing.

There is little support for guard verification, or for exploring
guard properties.

Our design

Our approach is to develop a domain-specific language for
guards, plus support technology.

• Automatic generation of implementation and formal
analysis artifacts

• Integrate and highly automate formal analysis
• Ability to glue together existing or mandated functionality
• Support a wide variety of guard platforms

Part 2

Guardol

The Guardol language

Roughly: Guardol = Ada + ML

• Ada provides a familiar setting (types, programming
constructs) for our target programmers.

• ML datatypes succinctly capture tree-structured data, e.g.,
email, XML.

• We placed relatively little emphasis on incorporating
cutting edge programming language features.

• Guardol is intended to be a fairly simple language with

cutting edge verification support .

The Guardol system

x.gdl Gryphon HOL SMT

Ada

parse formalize
program

code generation

generate

goals

Guardol language summary

Guardol is a conventional imperative language with ML-style
datatypes.

• standard base types (bool,int,word32,string)
• record types
• mutual, nested recursive types
• standard imperative programming constructs

(assignments, procedures, sequential composition, etc)
• pattern-matching
• declarations for external functionality
• specification construct
• package system

What Guardol doesn’t have

• no infinite loops
• A guard should always complete its task. Also, proof

automation for recursive programs is based on induction,
which requires termination.

• no pointers
• Pointers complicate reasoning. Guardol provides automatic

memory management for unbounded tree-shaped
structures when generating code.

• no I/O
• Guardol is aimed at just the guard, not its computational

context, i.e., how data gets to it, and how its output is
managed.

• no ML-style polymorphism (not yet, anyway)
• All data structures are ground, i.e., have no polymorphic

types. This makes some aspects of processing easier, and
is more familiar to some programmers.

Externals

One design goal of Guardol is to be able to use pre-existing
functionality, provided by the platform, or when a particular
implementation is mandated. Syntax of the declaration:

imported function name (arg1, . . . ,argn); or
imported function name (arg1, . . . ,argn) returns name : ty ;

Example

imported function
msgPolicy (Text : in Msg,

Output : out MsgResult);

Specifications

A specification declaration is the way that Guardol code is
verified. Syntax:

spec name = stmt

where stmt is expected to have at least one occurrence of

check e

where e is a boolean expression.

• It looks like a parameterized unit test.
• It looks like some code sprinkled with assertions.

Example: Tree Guard

Traverses and enforces a security policy over a tree of
messages (strings), calling out to a platform-supplied dirty-word
operation to scrub each message in the tree.

package MsgTree =
begin
type Msg = string;
...

end

Tree Guard (contd.)

Declare the type of message trees.

type Tree =
{ Leaf
| Node: [Value:Msg; Left:Tree; Right:Tree]
};

Declare type encapsulating success/failure of tree guard.

type TreeResult =
{ OK : Tree
| Audit : string
};

Tree Guard (contd.)

Declare externally-supplied operation on messages, which
succeeds (with possibly scrubbed message) or fails (with audit
string).

type MsgResult = {Pass : Msg | Fail : string};

imported function
msgPolicy (Text : in Msg,

Output : out MsgResult);

The guard needs to apply msgPolicy on all messages in the
tree, emitting an audit if msgPolicy returns Fail.

Tree guard on a slide

function Guard (Input : in Tree, Output : out TreeResult) =
begin

var ValueResult : MsgResult;
LeftResult,RightResult : TreeResult;

in
match Input with
Tree’Leaf => Output := TreeResult’OK(Tree’Leaf);
Tree’Node node =>
begin

msgPolicy(node.Value, ValueResult);
match ValueResult with

MsgResult’Fail A => Output := TreeResult’Audit(A);
MsgResult’Pass ValueMsg =>
begin

Guard (node.Left, LeftResult);
match LeftResult with
TreeResult’Audit A => Output := LeftResult;
TreeResult’OK LeftTree =>
begin

Guard (node.Right, RightResult);
match RightResult with

TreeResult’Audit A => Output := RightResult;
TreeResult’OK RightTree =>

Output := TreeResult’OK(Tree’Node
[Value:ValueMsg, Left:LeftTree, Right:RightTree]);

end end end end

Tree Guard (contd.)

The algorithm works by case analysis on how the input tree can
be constructed. If Input is a Leaf, then it is OK. Otherwise, it
must be a Node, and the code has to

• scrub the message at the node, by invoking msgPolicy

• analyze the left subtree;
• analyze the right subtree;
• collect up the results.

Control flow via pattern matching

ML-style pattern-matching over datatype constructors is used
to analyze the structure of Input.

match Input with

Tree’Leaf => Output := TreeResult’OK(Tree’Leaf);

Tree’Node node =>
... node.Value ...

... node.Left ...

... node.Right ...

In the second clause, we use the variable node to name the
node contents. We can then use record projections to access
subcomponents of Input.

Externals

Now we want to analyze the contents of a node. First, we call
the external procedure, obtaining the verdict in ValueResult.
If it’s an audit, then turn it into a tree-level audit, and return
immediately. Otherwise, the scrubbed message is named
ValueMsg and processing continues.

Tree’Node node =>
begin

msgPolicy(node.Value, ValueResult) ;
match ValueResult with

MsgResult’Audit A
=> Output := TreeResult’Audit(A);

MsgResult’Ok ValueMsg
=> ...

Recursion
We recurse into left subtree. If audit happens anywhere in it,
propagate the audit. Otherwise, recurse into right subtree. If
audit happens, propagate. Otherwise we have scrubbed trees
named LeftTree, and RightTree.

begin
Guard (node.Left, LeftResult);
match LeftResult with

TreeResult’Audit A => Output := LeftResult;
TreeResult’OK LeftTree =>

begin
Guard (node.Right, RightResult);
match RightResult with

TreeResult’Audit A
=> Output := RightResult;

TreeResult’OK RightTree
=> ...

Return scrubbed tree

The message, left subtree, and right subtree have all been
scrubbed. Time to return a scrubbed tree comprising them.

Output := TreeResult’OK
(Tree’Node

[Value : ValueMsg,
Left : LeftTree,
Right : RightTree]);

That finishes the definition of the tree guard.

Tree Guard specification

Our tree guard example is quite general because it is
parameterized by the dirty-word policy. The specification that
we want to hold is, roughly,

If we run the guard successfully on a tree of
messages, then every message in the result is clean,
i.e., scrubbing again changes nothing.

• This is a disguised form of idempotence.
• Idempotence of the guard depends on idempotence of the

external dirty-word operation!

Tree Guard specification (contd.)
Experience in working with developers tells us that we don’t
want to use a logic language to write specifications. First, a
predicate that returns true if a tree doesn’t change under
application of msgPolicy:

function Tree_Stable (MT : in Tree) returns Output:bool =
begin var R : MsgResult;
in
match MT with
Tree’Leaf => Output := true;
Tree’Node node =>

msgPolicy(node.Value, R);
match R with

MsgResult’Pass M => Output := node.Value = M;
MsgResult’Fail A => Output := false;

Output := Output and Tree_Stable(node.Left)}
and Tree_Stable(node.Right);

end

Tree Guard specification (contd.)

Then some code that msgPolicy is idempotent on its input
string:

function msgPolicy_Idempotent(M : in Msg)
returns Output : bool =

begin var R1,R2 : MsgResult;
in

msgPolicy(M, R1);
match R1 with
MsgResult’Fail A => Output := true;
MsgResult’Pass M2 =>

msgPolicy(M2, R2);
match R2 with

MsgResult’Fail A => Output := false;
MsgResult’Pass M3 => Output := M2 = M3;

end

Tree Guard specification (contd.)
Now we run the guard and check that the resulting tree is
stable. Proving this goal requires that the external function is
idempotent on all strings:

spec Guard_Correct =
begin var MT : Tree;

RT : TreeResult;
in

if (forall (M:Msg). msgPolicy_Idempotent M)
then Guard(MT, RT);

check Result_OK(RT);
else skip;

end

function Result_OK(TR:in TreeResult) returns Output:bool
= begin match TR with

TreeResult’Audit A => Output := true;
TreeResult’OK t => Output := Tree_Stable(t);

end

Part 3

The Guardol Verification System

Guardol System Diagram

x.gdl Gryphon HOL SMT

Ada

parse formalize
program

code generation

generate

goals

The Guardol system supports code generation and verification.

Verification

If the user chooses to verify the code in x.gdl, the HOL4 and
SMT systems become involved.

• HOL4 is an implementation of higher order logic. It is
well-suited to give semantics to programming languages.

• SMT (Satisfiability Modulo Theories) is a framework for
coordinated proof using decision procedure technology.

Guardol operational semantics

The operational semantics of Guardol describes program
evaluation. The semantics takes the form of an inductively
defined judgement saying how statements alter the program
state. The formula:

STEPS Γ prog (Normal s1) (Normal s2)

says “evaluation of program prog beginning in state s1
terminates and results in state s2”.

• This is a so-called big-step semantics.
• Γ is an environment binding procedure names to procedure

bodies.

Verification

The operational semantics of Guardol has been formalized in
HOL4. The first step along the verification path is the
translation of the types and code in x.gdl to formal analogues
in this theory.

• One could reason in HOL4 about such programs, directly
using the operational semantics.

• But that’s a chore.
• Instead, we use HOL as a semantical conduit to fully

automated proof.
• We utlimately use the high automation promised by

systems such as OpenSMT and CVC4

Semantic translation

• HOL mapping
• Guardol types go to HOL types
• Guardol expressions go to HOL terms
• Guardol statements go to AST nodes
• Guardol procedures go to HOL functions. Recursive

procedures map to recursive functions.
• Decompilation proves equivalence between

• a Guardol program under operational semantics and
• a footprint function representing the program

Decompilation into logic

A decompilation theorem

` ∀s1 s2. ∀x1 . . . xk .
s1.proc.v1 = x1 ∧ . . . ∧ s1.proc.vk = xk ∧
STEPS Γ code (Normal s1) (Normal s2)
⇒
let (o1, ...,on) = fn (x1, . . . , xk)
in s2 = s1 with{y1 := o1, . . . , yn := on}

relates evaluation of a program code with a footprint function
fn which captures the behavior of the program.

Proving decompilation theorems

Decompilation theorems allow reasoning about execution to be
replaced by reasoning about footprint functions.

• Automatically proved
• Bottom-up approach
• Essentially symbolic evaluation of program, using env. of

decompilation theorems to summarize behavior of
procedures

• Induction on recursion structure needed for recursive
procedures.

Transformation Example

The correctness goal for our Tree Guard example is

∀u1 u2 MT RT.
(u1.Guard_Correct.MT = MT) ∧
(u1.Guard_Correct.RT = RT)) ∧
STEPS Gamma code (Normal u1) (Normal u2)

==> u2.Guard_Correct.V

The goal resulting from applying the decompilation theorem:

(∀M. msgPolicy_IdempotentFn ext M)
==>
Result_OKFn ext (GuardFn ext v1)

Decision procedures for functional programs

We want to automate much or all of the reasoning about
Guardol programs.

• In general that’s not possible (Turing, Rice, etc)
• But, new decision procedures for functional programs over

recursive datatypes have recently emerged and we have
implemented one of them, due to Suter and Kuncak.

• Reference: Suter, Koeksal, and Kuncak. Satisfiability
Modulo Recursive Programs. SAS 2011 Proceedings.

Automated reasoning about Guardol programs

The goals we are interested in are of the form

H1 ∧ . . . ∧ Hm ⇒ P (cata (Guard x1 . . . xn))

where cata is a so-called catamorphism (a.k.a fold) and the fold
maps the output of the Guard into a decidable theory.

• Under certain technical conditions, this class of formulas is
decidable by SK.

• BUT FIRST we need to
• induct with scheme for Guard,
• expand Guard once, and
• instantiate any quantifiers in the hypotheses

Catamorphism aka Folds

A catamorphism is a simple pattern of recursion in which an
operator

op : (α→ β → β)→ α list→ β → β

is used to crunch a recursive branching structure down into a
single value.

fold (+) [x1, . . . , xn] 0 = x1 + · · ·+ xn + 0
fold (∗) [x1, . . . , xn] 1 = x1 ∗ · · · ∗ xn ∗ 1
fold (cons) [x1, . . . , xn] [] = [x1, . . . , xn]

Note also that a sorted predicate on lists is a catamorphism.

Catamorphism

Tree_Stable is a catamorphism on Tree.

function Tree_Stable (MT : in Tree) returns Output:bool =
begin var R : MsgResult;
in
match MT with
Tree’Leaf => Output := true;
Tree’Node node =>

msgPolicy(node.Value, R);
match R with

MsgResult’Pass M => Output := node.Value = M;
MsgResult’Fail A => Output := false;

Output := Output and Tree_Stable(node.Left)

and Tree_Stable(node.Right);
end

Implementing SK

We (Whalen and Pham) have been implementing the SK
decision procedure
• Integrating the decision procedure into public Satisfiability

Modulo Theories (SMT) frameworks
• Not a smooth fit because the SK procedure needs to work

on terms before the purification step.
• Extended the d.p. to handle mutual recursion
• Z3, OpenSMT, CVC4 used so far.

Remark on guard properties

Guardol programs get translated to mathematical functions in
our verification path. This yields good news and bad news.

• Good news: we can apply decision procedures to prove
specifications.

• Bad news: the properties we can show are extensional ,
but some properties of interest are intensional

• On the bright side: we know how to deal with the bad news.
("Model checking information flow", Whalen and Greve).

Extensional vs. Intensional

• Extensional: only the input/output of a computation is
visible (what not how).

• Intensional: how the computation works is visible.

Example
Extensional . The procedure sorts a list of integers.
Intensional . The procedure sorts a list of integers in-place.

Example
Extensional . Scrubbing a message twice gives the same
result as scrubbing it once.
Intensional . The guard analyzes every component of every
message.

Summary

The Guardol system is a domain-specific language aimed at
advancing the state of the art in developing and proving
correctness of high-assurance guards.

• Ada code for a number of guards can be generated.
• Rules for specific guards can be generated.
• Specifications of Guardol programs are soundly and

automatically translated into goals for automatic proof.
• A reasonable class of guard properties (but not all) can be

be decided by our implementation.

THE END

