Introduction to the Guardol Programming
Language and Verification System

David Hardin* Konrad Slind* Michael Whalen'
Tuan-Hung Pham!

September 15, 2011

Abstract

Guardol is a high-level programming language intended to facilitate
the construction of correct network guards. The Guardol system gener-
ates Ada code from Guardol programs. It also provides specification and
automated verification support: guard specifications are formally trans-
lated to SMT format and passed to a new decision procedure dealing with
functions over tree-structured data. The result is that difficult properties
of Guardol programs can be proved fully automatically.

Guardol is a programming language and support environment being devel-
oped by the Trusted Systems group in the Advanced Technology Center of
Rockwell Collins. Guardol is aimed at making the process of specifying, im-
plementing, and certifying high assurance guards more efficient, flexible, and
retargetable. The motivation for developing Guardol comes from experience
Rockwell Collins has in developing guard implementations. Although execution
aspects of programs (e.g., speed and size) are undoubtedly important, we have
focused on a number of other significant aspects as well: the ability to target
a wide variety of guard platforms; the ability to glue together existing or man-
dated functionality; the generation of both implementations and formal analysis
artifacts; and sound and highly automated formal analysis.

What is a guard? A guard mediates information sharing between security
domains according to a specified policy. Some typical guard operations on a
packet stream are the following: read field values in a packet; change fields in
a packet; transform a packet by adding new fields; drop fields from a packet;
construct audit messages; and remove an entire packet from stream.

*Rockwell Collins Advanced Technology Center
TUniversity of Minnesota

Design considerations An important consideration for us is that the mes-
sages to be guarded may not be of fixed size. For example, email messages, or
XML encodings, can have branching tree structure, and Guardol is designed to
be able to easily declare complex tree-structured data and guarding functional-
ity that processes such data. Thus a major aspect of the design of Guardol is
the provision of datatype declaration facilities similar to those available in func-
tional languages such as SML [3]. Recursive programs over such datatypes then
have to be supported, and ML-style pattern-matching is incorporated to facili-
tate such processing. However, appealing as it may be to some, Guardol is not
simply an adaptation of a functional programming language to guards. In fact,
much of the syntax and semantics of Guardol is similar to that of Ada: Guardol
is a sequential imperative language with assignment, sequencing, conditional
commands, and procedures with in/out variables. Roughly,

Guardol = Ada + ML .

This hybrid language provides a high level of support for writing complex pro-
grams over complex datastructures, while also providing standard types and
programming constructs from Ada, which should be familiar to our intended
customers.

What Guardol doesn’t have Guardol is not Turing complete, it has no
pointers, and it has no I/O facilities. These choices are all made in order to
support an effective verification environment, but have other justifications as
well. A guard language should not be Turing complete i.e., admit infinite com-
putations, since it is expressly required that a guard, given an input, always
returns an output. From the point of view of verification, termination means
that induction can be used to reason about looping constructs; otherwise, less
familiar reasoning methods need to be used. 10 operations are also not part of
Guardol since guards are typically embedded in a computation fabric that sup-
plies inputs and deals with the output: we want to support the declaration and
analysis of the guard itself, and not its support environment. Finally, pointers
tend to complicate program analysis and verification, so we have dispensed with
them. Tree-structured data of unbounded size is well supported in Guardol,
but the programmer is not exposed to the pointer technology underlying the
abstraction.

1 The Guardol System

The Guardol system integrates several distinct components, as illustrated in
Figure 1. A Guardol program in file x.gdl is parsed and typechecked by the
Gryphon framework [2] developed by Rockwell Collins. Gryphon provides a
collection of passes over Guardol ASTs that help simplify the program.

If the user chooses to generate Ada code corresponding to x.gdl, then fur-
ther passes over the program are made, e.g., to enforce Ada requirements on

parse formalize generate
o7 |
Gryphon program | HOL | goals SMT

code | generation

Ada

Figure 1: Guardol System Components

identifiers and string literals, before specification (.ads) and implementation
(.adb) files are created for the program. Also generated are implementations of
any datatypes declared in x.gdl. A reference-counting memory scheme using
so-called smart pointers is used for allocating and freeing datatype elements.

If the user chooses to verify the code in x.gdl, the reasoning tools HOL4 [5]
and OpenSMT [1] become involved. First, the programs in x.gd1 are translated
into formal analogues in HOL4. The formalized programs are based on a logical
theory of the operational semantics for Guardol. One could reason in HOL4
about such programs, directly using the operational semantics. However, such
an approach is awkward and requires advanced expertise in the use of a higher
order logic theorem prover. We would instead like to make use of the high
automation promised by current SMT systems.

There remain two problems; the first is that current SMT systems do not
understand operational semantics. We surmount this by use of ‘decompilation
into logic’, a technique established by Magnus Myreen in his PhD thesis [4]. Tt
enables us to deductively map from properties of programs in an operational
semantics to equivalent properties over mathematical functions. This automatic
transformation moves the verification task into the realm of proving properties
of recursive functions operating over recursive datatypes. This raises the second
problem: until recently SMT systems were unable to reason about functional
programs. We have surmounted this by implementing a decision procedure for
functional programming due to Suter, Dotta, and Kuncak [6]. This decision
procedure necessarily has limitations, but it is able to handle a wide variety of
interesting programs and their properties fully automatically.

2 The Guardol language by example

In the following we will get a taste of Guardol by examining a simple guard.
The guard applies a platform-supplied dirty-word operation over a binary tree of
messages. When applied to a message, the operation could leave it unchanged,
could change it, or could reject it. If the message is rejected, an audit message

is immediately returned; otherwise, processing the tree of messages continues.

Packages In Guardol, an entire program is represented by a set of packages. A
package collects data declarations, program declarations (procedures and func-
tions), and specifications. An element of one package may be referred to in
another by use of the ‘dot’ notation, e.g., Pkg.foo. In our example, there is
only one package, named DWOTree:

package DWOTree = begin <body of package> end

Data declarations Now we will explore the body of the package. To provide
a degree of abstraction, one can declare type synonyms, or abbreviations. In
our case, the type of messages is Msg, which will stand for string:

type Msg = string;

The use of abbreviations allows altering the representation of messages in the
future without having to further edit the remainder of the package. Now we
define the recursive datatype of message trees. These are binary trees, with
messages being held at internal nodes.

type MsgTree =
{ Leaf
| Node : [Value: Msg; Left: MsgTree; Right: MsgTreel]
I

The two constructors of the datatype are Leaf and Node. A Leaf has no ar-
guments, so is just used to signal the ends of paths in the tree. A Node has a
single argument, a record with three fields. The Value field contains a message,
and the Left and Right fields hold the two subtrees of the node.

When the guard processes a MsgTree it either returns a new, possiby modi-
fied, tree, or it returns an audit message. These two kinds of return values are
represented in the following datatype declaration:

type TreeResult = { TreeOK : MsgTree | TreeAudit: string };

External procedures Now we discuss the behavior of the code that performs
the dirty-word operation on messages in the tree. This operation will be pro-
vided externally, via a library, or some other means. All that is known about
it is that it processes a message, and either: succeeds, returning a message; or
fails, returning an audit string. These return values are elements of the following
datatype:

type MsgResult = { MsgOK : Msg | MsgAudit : string};

The externally-provided dirty-word operation is declared using format which is,
by design, quite similar to the header format for Ada progams. The declaration
tells us only that the dirty word operation takes a message as input via the Text
argument and assigns the result of its processing to the Output variable.

imported function
DIRTY_WORD_OPR(Text : in Msg, Output : out MsgResult);

The guard The guard procedure takes its input tree in variable Input and
the return value, which has type TreeResult, is placed in Output. The body
uses local variables for holding the results of recursing into the left and right
subtrees, as well as for holding the result of calling the external dirty-word
operation. Thus the beginning of the guard function is written as follows:

function Guard (Input : in MsgTree, Output : out TreeResult) =
begin
var
ValueResult : MsgResult;
LeftResult, RightResult : TreeResult;
in ... end

Match statements The guard processes a tree by a pattern-matching style
case analysis on the structure of the tree. The format of such code is

match exp with pat; = stmiy;...; pat,, = stmi,

where each of pat;, is a constructor pattern giving one of the possible ways that
ezp could be built. In the guard, the Input variable is the exp being analyzed:

match Input with ...

Now let’s consider the possible cases. If Input is a leaf node, processing suc-
ceeds. This is accomplished by tagging the leaf with TreeOK and assigning to
Output:

MsgTree’Leaf => QOutput := TreeResult’TreeOK(MsgTree’Leaf);

Otherwise, the tree under scrutiny is an internal node. In that case the guard
recurses through the subtrees and also applies the dirty-word operator to the
message held at the node. This computation is fairly straightforward to describe,
except for the added complication that an audit may be generated by any of
the three subcomputations.

MsgTree’Node node => begin
DIRTY_WORD_OPR(node.Value, ValueResult);

end

First, the pattern match checks that the tree is a node (MsgTree’Node
node). In the remainder of the clause, the elements of the node can be re-
ferred to with the dot notation, e.g., node.Value, node.Left, and node.Right.
The clause starts by invoking the dirty-word operator on node.Value, storing
the result in ValueResult. The result of the call must then be examined to

see if the operation succeeded or failed. This is again implemented by pattern-
matching. If the operator decides that the message should be rejected, it returns
MsgAudit, with an accompanying message A. This is then converted to a mes-
sage rejecting the original input tree, by constructing a tree-level audit message,
and assigning it to the Output variable.

match ValueResult with
MsgResult’MsgAudit A => Output := TreeResult’TreeAudit(A);
MsgResult’MsgOK ValueMsg =>

Otherwise, computation proceeds to the subtrees. Since the processing is essen-
tially symmetric, we will look at only the left subtree. A recursive call is made
to Guard, and then the result (held in LeftResult) is scrutinized. An audit is
immediately propagated.

Guard (node.Left, LeftResult);

match LeftResult with
TreeResult’TreeAudit A => Output := LeftResult;
TreeResult’TreeOK LeftTree =>

On the other hand, if processing the left tree is successful, the right tree is
scanned. If no messages in the right subtree generate an audit, processing of
the entire tree succeeds and the result tree is assigned to Output:

Output := TreeResult’Tree0K (MsgTree’Node
[Value: ValueMsg, Left: LeftTree, Right:RightTreel);

The entire guard code follows:

function Guard (Input : in MsgTree, Output : out TreeResult) =
begin var
ValueResult : MsgResult;
LeftResult, RightResult : TreeResult;
in
match Input with
MsgTree’Leaf => Qutput := TreeResult’TreeOK(Tree’Leaf);
MsgTree’Node node => begin
DIRTY_WORD_OPR(node.Value, ValueResult);
match ValueResult with
MsgResult’MsgAudit A => Output := TreeResult’TreeAudit(A);
MsgResult’MsgOK ValueMsg => begin
Guard(node.Left, LeftResult);
match LeftResult with
TreeResult’TreeAudit A => Output := LeftResult;
TreeResult’TreeOK LeftTree => begin
Guard(node.Right, RightResult);
match RightResult with
TreeResult’TreeAudit A => Output := RightResult;
TreeResult’TreeOK RightTree => Output :=
TreeResult’TreeOK (MsgTree’Node
[Value:ValueMsg,Left:LeftTree,Right:RightTree]) ;
end end end end

3 Generating Implementations

Once a guard has been written in Guardol, one of the things we may want to do
is generate an implementation from it. The Guardol system automatically gen-
erates guard implementations—currently in Ada—from Guardol descriptions.
We use the Gryphon framework developed at Rockwell Collins to translate
from Guardol source text to Ada. For the most part, this is conceptually simple
since much of Guardol is a subset of Ada. However, one major difference is that
Guardol allows ML-style datatypes, plus pattern-matching. The latter requires
an ML-style pattern-match compiler. The former requires automatic memory
management, which we have implemented via a reference-counting style garbage
collection scheme.

Even after code has been generated from a Guardol program however, some
more work has to be done to achieve an executable:

e Implementations for external functions and types have to be provided, say
from a pre-existing library.

e A computational environment for the guard to run in has to be imple-
mented. This will supply the guard with messages and deal with the
output of the guard (success or audit).

For lack of space, we will omit further details.

4 Specifying guard properties by example

A specification in Guardol looks somewhat like a parameterized unit test: it
presents some code to be executed, sprinkled with assertions. An assertion
needs to hold on every computation path reaching the assertion. Following is
the specification for the guard:

spec Guard_Correct =
begin var t : MsgTree;
r : TreeResult;

in
if (forall (M : Msg). DWO_Idempotent(M)) then
begin
Guard(t,r);
match r with
TreeResult’TreeO0K u => check Guard_Check(u);
TreeResult’TreeAudit A => skip;
end
else skip;
end

How does this ensure correctness? Recall that the behavior of the external
function DIRTY_WORD_OPR is completely unconstrained, other than that it takes
a MsgTree as input and returns a value of type TreeResult as output. Thus the

guard code is, in essence, parameterized by an arbitrary policy on how messages
are treated. One way of capturing the desired behavior is to require that the
result tree has been cleaned according to the policy. In other words, suppose
we run the guard on tree ¢, obtaining tree u. If we now run the dirty-word
operation on every message in u, we should get u back unchanged, since all
dirty words have already been scrubbed out in the passage from ¢ to w. This
property is a kind of idempotence check, which we have coded up in the function
Guard_Check; note that it has the shape of a catamorphism, which is a simple
form of recursion exploited by our automatic proof component.

function Guard_Check (MT : in Tree) returns Output : bool =
begin var R : MsgResult;
in
match MT with
MsgTree’Leaf => Output := true;
MsgTree’Node node =>
begin
DIRTY_WORD_OPR(node.Value, R);
match R with
MsgResult’MsgOK M => Qutput := (node.Value = M);
MsgResult’MsgAudit A => Output := false;
Output := Output and Guard_Check(node.Left)
and Guard_Check(node.Right);
end
end

The ultimate success of the proof depends on the assumption that the external
dirty-word operation is idempotent on messages. This is expressed by the func-
tion DWO_Idempotent® which calls DIRTY WORD_OPR twice, and checks that the
result of the second call is the same as the result of the first call. If the first call
returns an audit, then there is no second call, so the idempotence property is
vacuously true. On the other hand, if the first call succeeds, but the second is
an audit, that means that the first call somehow altered the message into one
provoking an audit, so idempotence is definitely false.

As we have shown, the correctness of the guard has been specified largely
in Guardol code. There is almost no logical syntax involved except for one
(necessary) quantifier. Auxiliary functions required to make the specification,
like Guard_Check and DWO_Idempotent, have also been declared as Guardol
programs. Now we turn to a discussion of how these properties are verified.

5 Verifying guard properties
The Guardol approach to verification uses formal modelling and proof, using

the HOL4 theorem prover as a semantical conduit to SMT decision procedures.
Higher order logic is used to give semantics to Guardol programs, and is also used

1Definition omitted for lack of space.

to translate from the semantic representation to a representation suitable for the
SMT prover. There are a few interesting internal steps that are made, and we
will examine them. First, the Guardol package is translated into a HOL theory.
In this stage, Guardol types are are mapped to HOL types, Guardol expressions
map to HOL expressions, and Guardol functions and procedures are translated
to a HOL type of abstract syntax trees (ASTs). Program evaluation is captured
by a conventional inductively defined operational semantics. Thus this phase of
processing maps from Guardol syntax into a semantic representation. In order
to reason about the program we reason about the semantic representation. One
way to prove program properties would be to reason about program evaluation
by using induction on the evaluation relation. However, experience has taught
us that this is an overly difficult approach.

Instead, we employ decompilation into logic as a way to soundly map from
(1) a situation in which we need to reason about programs using tools of opera-
tional semantics to (2) a situation in which we reason solely about mathematical
functions. Without going into detail, fn = D(c) is the the mathematical func-
tion resulting from decompiling code c. It always returns the same result as ¢
computes, and thus reasoning about frn can replace reasoning about c. In effect,
the execution of ¢ has been evaporated away.

Recall the Guard Correct specification. Roughly, it says If running the
guard succeeds, then running Guard_Check on the result returns true. Applying
decompilation to the code of the specification and using the resulting theorem to
map from the operational semantics to the functional interpretation, we obtain
the goal:

((Vm b. DWO_ldempotent ezt m) A

/!
(Vr. Guard ext t = TreeResult_TreeOK t')) = Guard.Check ext ¢

where DWO_ldempotent, Guard, and Guard_Check are the functional analogues
of Guardol procedures produced by the decompilation. This goal has the form
required by the SMT prover, namely that the catamorphism Guard_Check is
applied to the result of calling Guard. After a few more preparatory steps the
formula is passed to the decision procedure, which proves the goal automatically,
thus showing that the Guard procedure is idempotent on message trees, given
an external policy that is idempotent on messages.

The Suter-Kuncak decision procedure SMT systems have become very
popular in recent years because of algorithmic advances in deciding common
theories and because mechanisms for coordinating multiple decision procedures
have been redesigned to use SAT technology. In recent work [6], Suter and
Kuncak proposed a decision procedure for a fragment of functional programs
operating over algebraic datatypes. The procedure decides formulas P(cat t)
where P is a formula in a decidable theory, ¢ is an element of a tree-structured
datatype, and cat is a catamorphism (also known as a fold to functional pro-
grammers). The system design is displayed in Figure 2; it is a refinement of the
usual DPLL architecture used in SMT system design, necessitated by the fact

-
T Top Level SMT Instance: [Datatype Theory Only])
~
Preprocessor SAT-Solver Datatype Decision Procedure
Parser SMT-Level Purifier Inner
Preprocessor
> «—> SMT Instance:
l l [Element and
Simplifications Boolean Unification & ?f(})lllec.tion
Enumerator Partial Evaluation]
J
N J

Figure 2: Architecture for SMT Solver containing Suter-Kuncak

that the Suter-Kuncak decision procedure needs to control a certain amount of
pre-processing usually controlled by the DPLL architecture. As a result, our
design re-architects a standard DPLL solver somewhat to get the solver to pass
all theory terms through the Suter-Kuncak decision procedure where we could
purify and partially evaluate them and feed them back to an SMT solver.

6 Conclusion

We have introduced the Guardol language and its verification subsystem, largely
by example. Our goal is to develop the language and proof technology in or-
der to effectively and automatically prove that a wide variety of guards satisfy
important security properties. In the future we will be applying and evaluating
Guardol on real-world guards.

References

[1] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The OpenSMT
Solver. In Proceedings of TACAS 2010, pages 150-153, 2010.

[2] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer. Software model
checking takes off. Commun. ACM, 53:58-64, February 2010.

[3] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[4] Magnus Myreen. Formal verification of machine-code programs. PhD thesis,
University of Cambridge, 2009.

[5] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Proceedings
of TPHOLs 2008, volume 5170 of Springer LNCS, 2008.

[6] P. Suter, M. Dotta, and V. Kuncak. Decision Procedures for Algebraic Data
Types with Abstractions. In Proceedings of POPL 2010. ACM.

10

