
Evaluating Multicore Architectures for Application in High Assurance

Systems

Ryan Bradetich, Paul Oman, Jim Alves-Foss, and Theora Rice

Center for Secure and Dependable Systems

University of Idaho
Contact: rbradetich@gmail.com, {oman, jimaf}@uidaho.edu, rice2381@vandals.uidaho.edu

Abstract

Multiple Independent Levels of Security (MILS) systems require the ability to cleanly isolate various

processes from each other in order to ascertain separation of differing data classification levels. This

has been traditionally performed using a four layer approach: Applications, Middle-ware, Separation

Kernel, and Hardware. This paper introduces a framework for evaluating information flows in

multicore architectures and then showing how these information flows may be mapped to the Separation

Kernel layer.

1 Background

Advances in microprocessor manufacturing technologies and limitations of memory access speeds have

led to the development of multicore processors. With multiple execution units within a single chip (or

package), the expectation is that applications can better overcome memory and I/O latencies through

parallel processing of independent processes. While this new architectural approach has proven to be

advantageous and popular, it has also brought some interesting new security concerns. Of particular

interest is how these security concerns might be managed so that these multicore processors might be

effectively deployed in high assurance environments and situations.

In a traditional Multi-Level Security (MLS) system, the operating system, run-time executive, or

security kernel has control over the system resources, and is able to manage them in a way that provides

controls over unauthorized access and information flow. One way to use a multicore processor in a MLS

environment is to separate applications of different security domains onto separate cores. This approach

is similar to the popular idea of using virtualization to ensure isolation. However, just as with

virtualization, this assumption of isolation may be optimistic: in a multicore processor, the different cores

will have access to some shared resources, which may result in unforeseen security vulnerabilities.

An alternative approach is to have a security monitor running in one core observing and controlling

behavior in another. The University of Idaho's MILS approach has taken this later path by employing a

separation kernel as the run-time executive, which implements time and space separation and controls

information flows between partitions [1]. Both of these approaches are still subject to some degree of

shared resources within the multicore process, possibly leading to covert channels or other security

concerns.

In this paper we introduce a framework for evaluating the information flow within multicore

architectures so that vulnerabilities and covert channels can be identified and mitigated. We start with an

overview of four relatively recent multicore architectures, then introduce a sketch of our framework, and

apply that framework to one of the example architectures.

2 Multicore Architectures

Prior to 2003, the traditional methods for boosting processor performance were to increase the clock

frequency, add high-speed, on chip cache, and optimize instructions [2]. These traditional methods

worked for many years until physical issues limited the processor clock frequency to around 4 GHz in

2003. Although physical issues limited the processor clock frequency, the transistor still continues to

shrink. Multicore architectures capitalize on smaller process sizes and increased transistor counts to

provide multiple execution units on a single chip. The following four multicore processor architectures

illustrate the variety and complexity of multicore architectures.

2.1 Cell Broadband Engine Architecture (CBEA)

The CBEA processor application environment ranges from gaming consoles (e.g., PlayStation 3) to high

performance supercomputing (e.g., the Roadrunner super computer at Los Alamos National Laboratory).

The CBEA provides the Power Processing Element (PPE) as a single, general purpose

Simultaneous Multi-threading (SMT) processor core, with two logical cores [3]. The CBEA also

provides Synergistic Processor Element (SPE) cores (typically eight) which are designed for

computationally intensive tasks. These specialized cores implement a different instruction set from the

general purpose SMT core. Each specialized core has its own local memory store.

Each CBEA component is connected via four one-way buses configured in a ring. Two of these

rings run clockwise while the other two rings run counter-clockwise. The CBEA uses Direct Memory

Access (DMA) to move data between the CBEA Components.

The CBEA provides a hardware security architecture where one or more of the specialized cores

can be put into a secure processing mode. When in this secure processing mode, the hardware isolates

the core so no other core, operating system, or hypervisor can interrogate the internal state of the isolated

core. Figure 1 provides a block diagram of the CBEA processor.

Figure 1: CBEA Processor

2.2 Tilera TILE64

The TILE64 processor is targeted towards advanced network embedded applications such as: In-Line

deep packet inspection, Network Security Appliances, and Network Monitoring.

The TILE64 multicore processor contains 64 independent, general purpose cores [4]. Each core

has its own private Level 1 (L1) and Level 2 (L2) cache as well as a distributed Level 3 (L3) virtual

cache. The cores are connected using non-blocking switches in an intelligent mesh (iMesh). The iMesh

provide extremely low-latency and high-bandwidth communication between the cores, memory, and other

I/O. Each core is capable of running an independent operating system, or can be grouped to run a

Symmetric Multiprocessing (SMP) operating system. In addition to the processing cores, this processor

also includes memory and I/O controllers. Figure 2 provides a block diagram of the TILE64 processor.

Figure 2: TILE64 Processor

2.3 Intel Core i7

The Intel Core i7 processor is targeted towards general purpose computing. Multicore performance

improvements are achieved by: (1) replicating the core execution unit, (2) adding additional processor

instructions, and (3) improving the communication between the cores. Two major changes for the Core

i7 architecture include the large shared L3 cache and the QuickPath interconnect bus which is used for

inter-process communication [5]. Figure 3 provides the high-level block diagram of the Core i7

processor.

Figure 3: Intel Core i7 Processor

2.4 Freescale P4080

The Freescale Semiconductor QorIQ P4080 communications processor provides eight Power Architecture

cores, each with integrated L1 and L2 caches [6]. The chip is intended for embedded systems and

includes a variety of memory and I/O controllers. This processor supports a multi-megabyte shared L3

cache. Hardware provides acceleration for encryption, regular expression pattern matching, and Ethernet

Packet Management. On-chip components are connected by the CoreNet coherency fabric which

manages full cache coherency between the caches and point-to-point, concurrent connectivity between the

hardware components. Figure 4 shows a block diagram of the P4080.

Figure 4: P4080 Processor

3 A Framework for Multicore Information Flow Analysis

In the previous section, we introduced four processor architectures to illustrate the variety and complexity

of multicore architectures. The complexity of multiple execution units along with hardware acceleration

resources provides ample opportunity for covert channels and security vulnerabilities. Potential

information flows inside the hardware must be evaluated as part of the security of the system.

This section introduces a framework for simplifying the analysis of multicore architectures into

information flows, visible state, and safeguards. These information flows, visible states, and safeguards

can then be mapped to the security policy. The framework has three distinct steps or stages:

1. Hardware component identification.

2. Information flows, safeguards, and component state analysis.

3. Security policy mapping.

For illustration purposes, we now apply our framework to the Freescale P4080 multicore architecture

described in Section 2.4. This paper is not intended to provide a full analysis of the P4080 multicore

architecture using this framework, but intends to introduce the framework using the P4080 multicore

architecture.

3.1 Hardware component identification

The first step in the framework is to analyze the multicore architecture to identify and record all the major

components. This component list provides a road map during the analysis, potentially identifies under-

documented resources, and provides an executive summary of the component the components analyzed

during. For the purpose of this paper, we provide a partial analysis for the processor cores, CoreNet

coherency fabric, and the frontside L3 cache. Figure 5 highlights the P4080 components briefly analyzed

in this paper.

Figure 5: P4080 Modules

3.2 Information Flows, Safeguards, and Component State Analysis

The second step in the framework is to analyze information flows and externally visible state for each

component. To simplify the analysis of information flows and externally visible state, we introduce a

new abstraction: the polyhedron. The polyhedron completely surrounds the component or group of

components being analyzed, so any information entering, leaving, or passing through must breach one of

the polyhedron surfaces. Each component may only exist in a single polyhedron. The abstract

polyhedron concept also has a color. The color itself is arbitrary and is intended as a metaphor to

represent the externally visible state for the component(s).

Everything inside the polyhedron is considered to run in a system high mode. This means all

data inside the polyhedron is treated as a single data classification and all data access requests inside the

polyhedron are permitted. Figure 6 illustrates the polyhedron abstraction.

Figure 6: Polyhedron Abstraction

The polyhedron abstraction allows us to simplify the information flow analysis. Any

information flow which does not breach any the polyhedron or does not modify the externally visible state

(i.e., the polyhedron color) can be ignored. Figure 6 illustrates three information flows: A, B, and C.

Information flow A originates externally and terminates inside the polyhedron abstraction. Information

flow B originates inside the polyhedron abstraction and terminates somewhere outside the polyhedron

abstraction. Information flow C passes through the polyhedron abstraction, but originates and terminates

external to the polyhedron abstraction. A safeguard is any mechanism that can be tuned to control the

externally visible state and/or information flows entering, leaving, or passing through the polyhedron

abstraction.

To improve the reuse and scalability of the security analysis, the goal is to minimize the amount

of “space” inside the polyhedron abstraction while maximizing the safeguards controls on the information

flows. The next sections apply step #2 of the framework to the processor cores, CoreNet coherency

fabric, and the frontside L3 cache components.

3.2.1 Processor cores

The P4080 multicore architecture provides eight general purpose processing cores. These processing

cores are configurable to run as individual stand alone processing cores, one big Symmetric

MultiProcessing (SMP) system, or any other combination. Each processing core is composed of

registers, private L1 and private L2 caches, and a super-scalar instruction execution unit. To provide the

maximum scalability and reuse, each processor core is analyzed as an independent system high module

(i.e., in its own polyhedron).

The primary purpose of each processor core is to execute processor instructions. The PowerPC

instructions set for the e500mc processor core can be categorized into the following categories: integer

and floating point instructions, load and store instructions, processor and flow control instructions, and

memory synchronization and control instructions.

The majority of the e500mc processor instructions are integer and floating point instructions,

most of which do not create (or cause) information flows by crossing a polyhedron surface. However, a

limited number of these instructions may cause an external state change by generating an exception (e.g.,

division by zero). These identified instructions should be reviewed in greater detail during the analysis

process.

The remaining e500mc processor instructions typically cause an information flow by either

breaching the abstract polyhedron or changing the externally visible state of the processor. For example,

the load and store instructions may breach the abstract polyhedron by reading or updating memory

mappable address space. Since most of the P4080 components are memory mappable, the information

flows from each processing core to all of the other hardware components is significant. Each e500mc

processor core provides a Memory Management Unit (MMU) which can restrict which memory addresses

are visible to the processing core. The e500mc MMU serves as a safeguard, that when configured

properly, can be used to restrict information flows from each core.

Other e500mc processor instructions (e.g., wait) do not breach the abstract polyhedron, but do

alter the externally visible state of the processor core by stopping the fetching and the execution of

instructions until an external interrupt is received. For this example, we could say the e500mc processor

core has three externally visible states: fetching instructions (green), an exception state (yellow), or a wait

state (red). When the wait instruction is executed, the abstract polyhedron color would turn from green

to red. After the interrupt was received to cause the processor core to resume fetching and executing

instructions, the abstract polyhedron color would turn from red back to green.

In addition processor instructions, a full analysis of the processor cores must include:

virtualization and virtual machine escapes, secure boot mode and the trust architecture, interrupts and

exceptions, L1 and L2 caches, memory management units, and processor debug modes. That detailed

analysis is beyond the scope of this paper.

3.2.2 CoreNet Coherency Fabric

The CoreNet coherency fabric serves as a central interconnect for processor cores, platform-level caches,

memory subsystems, peripheral devices, and I/O host bridges [7]. The main purpose of the CoreNet

coherency fabric is to provide the communication channel to move data from the source component to the

destination component. This component has information flows to pretty much everything in the system.

There are two safeguards that are able to restrict information flows through the CoreNet

coherency fabric: the processor core’s MMU and the Peripheral Access Management Unit (PAMU). The

processor core information flows are restricted by their own MMUs. Each non-CPU Direct Memory

Access (DMA) master is assigned a unique Logical I/O Device Number (LIODN) by the hypervisor for

identification. The PAMU provides access controls to prevent non-CPU DMA masters from accessing

memory which were not explicitly granted access permission.

In addition to the normal operating mode, each PAMU can be configured into a bypass mode that

changes the behavior of how the PAMU works. Setting the PAMU in bypass mode would effectively

change the “color” of the PAMU polyhedron from black to red.

The PAMU is also able to generate interrupts for two conditions: (1) Access violation error, and

(2) PAMU operation error. These conditions would also need to be modeled by the PAMU polyhedron

abstraction.

3.2.3 Frontside L3 Cache (CoreNet Platform Cache)

The frontside L3 cache (a.k.a., CoreNet platform cache) connects the memory controllers to the CoreNet

coherency fabric. The CoreNet platform cache can be configured in one or more of the following modes:

(1) a general purpose write-back cache, (2) an I/O stash, or (3) a memory mapped SRAM [7]. When the

CoreNet platform cache has a backing store (i.e., configured in the general-purpose write-back cache

mode or the I/O stash mode), the CoreNet platform cache is only able to cache address ranges present in

the memory controller behind it. Each mode defines the allowable information flows and the L3 cache

“color.”

The CoreNet platform cache provides no ability to restrict information flows entering, leaving, or

through itself, it does provide a safeguard for the cache replacement policy. When a cache miss occurs,

the CoreNet platform will look up by partition, action, and way to determine the appropriate cache

replacement policy. The CoreNet platform cache can also be disabled, thus defining two externally

visible states: enabled (green) and disabled (black).

3.3 Security Policy Mapping

The final step of the framework is to map the separation kernel layer (i.e., security policy) to the hardware

layer. The polyhedron abstraction simplifies this process by identifying which information flows are

possible, how these flows are generated, and what safeguards are in place to restrict them. A separation

kernel security policy is often defined as partitions with directional arrows representing information

flows. In addition to the directional information flows, the whitespace (or lack of information flows) is

also important to the security policy. Ideally, a one-to-one mapping between the polyhedron abstractions

and the separation kernel partitions would exist. When the one-to-one mapping does not exist, the

hardware is not able to enforce the separation kernel security policy and a compensating control will need

to be considered.

To illustrate how the security policy is mappable to the hardware layer, we introduce an example

security policy and map it to the P4080 hardware layer. Figure 7 provides a simple security policy

where:

 Core 0 is permitted two way communication with Memory Region 1

 Core 1 is permitted two way communication with Memory Region 0.

 All communication between Core 0 and Core 1 is prohibited.

 All communication between Memory Region 0 and Memory Region1 is prohibited.

Figure 7: Example Security Policy

 In Section 3.2.2, we identified each processor core executes instructions which have potential

information flows to the entire memory mapped address space. We also identified that each processor

core provides a MMU that is able to provide access controls for the memory mapped address range. To

implement the security policy on the P4080 hardware, the separation kernel layer would need to properly

configure the MMUs for both processor core 0 and processor core 1 to the appropriate memory regions.

Figure 8 shows the restricted information flows on the P4080 architecture after the security policy has

been implemented.

Figure 8: Example Hardware Information Flows

Additional information flows may exist due to the externally visible state (i.e., the polyhedron color)

of each processing core. These information flows may either be presented as storage or timing covert

communication channels. Due to the missing P4080 architecture details not presented in this paper, the

analysis of mapping the externally visible state to the security policy is beyond the scope of this paper.

The identification of relevant information flows is an important benefit for using the polyhedron

abstraction model when analyzing new multicore architectures. The relevant information flows provide

a road map which allows implementers to better design experiments and test cases to ensure the

separation kernel always permits authorized information flows and prohibits unauthorized information

flows.

4 Conclusions

This paper describes the increasing complexity of multicore architectures and the need for analyzing those

architectures for information flow vulnerabilities. We showcase four multicore architectures to illustrate

how the processor architecture landscape is varied and changing. To address the increasing complexity

in the processor landscape, we then introduce a framework for abstracting hardware into information

flows, safeguards, and externally visible state. In our work at the Center for Secure and Dependable

Systems we have applied the framework to the CBEA, Intel Core i7, and the Freescale P4080. In this

paper we provided a sketch showing how to apply the framework to the P4080. It was not meant to be a

complete analysis but, rather, a glimpse of how the framework addresses the variety and complexity of

subsystems now found within multicore architectures.

5 Acknowledgement

This material is based on research partially sponsored by the Air Force Research Laboratory under

agreement number FA8750-10-2-0134 and National Science Foundation under contract DUE-0621348.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, either expressed or implied, of the Air

Force Research Laboratory or the U.S. Government.

6 References

[1] J. Alves-Foss}, W. S. Harrison, P. Oman and C. Taylor. “The MILS Architecture for High Assurance

Embedded Systems”, International Journal of Embedded Systems, 2(3/4):239-247, 2006.

[2] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in software,” Dr. Dobb's

Journal, Vol. 30(3), Mar. 2005. http://www.gotw.ca/publications/concurrency-ddj.htm.

[3] S. Keckler, K. Olukotun, & H. P. Hofstee, Multicore Processors and Systems, New York, NY:

Springer, 2009.

[4] Tilera, TILE64 Processor Product Brief,

http://www.tilera.com/sites/default/files/productbriefs/PB010_TILE64_Processor_A_v4.pdf;

accessed 09-Sept-2011.

[5] Intel, An Introduction to the Intel QuickPath Interconnect,

http://www.intel.com/technology/quickpath/introduction.pdf; accessed 09-Sept-2011.

[6] Freescale Semiconductor, P4 Series - P4080 Multicore Processor,

http://cache.freescale.com/files/netcomm/doc/fact_sheet/QorIQ_P4080.pdf?fpsp=1; accessed 09-

Sept-2011.

[7] Freescale Semiconductor, P4080 QorIQ Integrated Multicore Communication Processor Family

Reference Manual, Doc. #P4080RM, Rev. 0, April 2011

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.tilera.com/sites/default/files/productbriefs/PB010_TILE64_Processor_A_v4.pdf
http://www.intel.com/technology/quickpath/introduction.pdf

