CRASH-WORTHY
TRUSTWORTHY

SYSTEMS
RESEARCH AND
DEVELOPMENT

Robert N. M.Watson
Peter G. Neumann

DARPA CRASH Pl Meeting
Arlington, VA, USA
8 November 201 |

/4%\ Approved for public release. This research is sponsored by the Defense Advanced Research Projects

R. Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-0237.
s The views, opinions, and/or findings contained in this article/presentation are those of the author/
International presenter and should not be interpreted as representing the official views or policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

2 UNIVERSITY OF

IR - P

» CAMBRIDGE

May 201 | CTSRD review meeting in Cambridge, UK:
SRI, Cambridge, DARPA, external oversight group

SRI

2.5 UNIVERSITY OF
2% CAMBRIDGE

CTSRD elements

TESLA ASSERTION SYSTEM

CHERI PROCESSOR AND SOFTWARE

Classic
UNIX Chromium
application web browser

___ImiE=a

libc executive libc executive

OCaml runtime

Capsicum
kernel

Independent capability domains

Kernel address space executive

Separation kernel executive

General Purpose

N Capability Registers
Registers

PC cPC |

CRO (general purpose capability)_

CR1

CR2

CR31

OCaml runtime

Legacy application code compiled for @ High-assurance capability-only code;

general-purpose registers

stand-alone or in "pools of capabilities"

Hybrid code blending general-purpose [0 Per-address space memory management

registers and capabilities

and capability executive

bluespec

CTSRD continuousl

formally groun

/
int
vn_rdwr(enum uio_rw, struct vnode *vp, ...,
struct ucred *active_cred, struct ucred
*file cred, ...)
{
if (rw == UIO_WRITE) {
tassert_syscall (previously(mac_vnode_check_write(
active_cred, file_cred, vp) == 0));
tassert_syscall (eventually(audit_submit());

~

Clang

¢ TESLA

[Analysis]—»[Inslrumentation]/>

4\
\

—
instrumentation.c

~
assertions

TEAL
Compiler

bj

Point and quantified TESLA expressions Events over time

mac_vnode_check_write(cred, vp) == [

previously(mac_vnode_check_write(cred, vp) == 0) lunknown

expression evaluated

Point and quantified TESLA expressions Events over time

audit_submit() <

eventually(audit_submit()) unknown

expression evaluated

validates security designh principles
and enforces application security structure using a
ded hybrid capability architecture.

UNIVERSITY OF
CAMBRIDGE

Observations from

Capsicum

® Software designs that employ the principle
of least privilege are neither easily nor
efficiently represented in current hardware.

® Kernels and programming language
runtimes (TCBs) building directly on
hardware in C are enormous and unsound.

® Software TCB implementations embody
artifacts of security policies rather than
design principles.

2.5 UNIVERSITY OF

lAll

&P CAMBRIDGE

CTSRD elements

CHERI: capability hardware enhanced RISC instructions

Produce formally analysed Bluespec RISC soft core
supporting granular protection via a hybrid capability model.

Develop separation kernel, hybrid Capsicum OS, and a future
capability-enabled operating system.

TESLA: temporally enforced security logic assertions

Translate security principles from design into software
implementation by blending temporal logic expressions and
software / hardware-assisted runtime validation.

UNIVERSITY OF
& ¥ CAMBRIDGE

CTSRD research threads

® TESLA design and prototype

e BERI platform
® CHERI ISA and prototype

® Pl meeting demonstration

® CHERI ISA formal methods

® Bluespec formal methods

2. UNIVERSITY OF

4% CAMBRIDGE

CTSRD

The security assertion problem

® Good programmers enforce invariants through extensive use
of software assertions

® Tens of thousands of assertions in the FreeBSD kernel, as
well as complex assertion infrastructures (WITNESS, ...)

® |n C/C++ assertions test instantaneous properties

® |nteresting security properties are generally temporal
(relating multiple points in time) rather than instantaneous!

® Check before use, eventual audit, security meta-data cycles
® Memory safety, protocol state machine conformance

® Programmers resort to manual instrumentation: verbose,
time-consuming, and error-prone

Temporally Enhanced Security

Logic Assertions (TESLA)

® Embed design-time security principles into executable code

® Borrow liberally from model checking, but as a dynamic technique:
® Represent assertions as temporal logic or automata (TEAL)
® Program events are symbols consumed by automata
® |[nstantiate automata instances on demand, check for violations
® Assertions are tested on experienced paths rather than all paths

® Continuous validation of principles by the program runtime

® On failure: panic(), stack trace, DTrace events allowing scripting
® Potential for CHERI hardware assist via tightly coupled threads
® Combined with CHERI, checks can become “mandatory”

2.5 UNIVERSITY OF

lAll

@Y CAMBRIDGE

CTSRD

Since the Pl meeting

® |lias Marinos summer intern (continuing with TESLA during
masters)

® Conversion of external TESLA toolchain into clang plugins

® [Extensions to automata syntax to support more assertion
types

® Progress towards inline assertions

® Ben Laurie (Google) exploring TESLA support for OpenSSL:
check that security APIs are being used correctly by consumers

® Bjoern Zeeb (FreeBSD) investigating TESLA support for the
FreeBSD network stack: check TCP, ND6é6, IPSEC state machines

® Poster at the LLVM workshop in London; lots of industrial
Interest

CTSRD

TESLA next steps

® Complete conversion to pure clang without external tools
® Revisit decision to use clang AST transform
® Motivated by greater type awareness than afforded by LLVM IR
® We may move instrumentation into LLVM and do analysis in clang

® Bring industry/open source visitors back to the Computer
Laboratory for followups now that we support the syntax and
features they require

® Deploy in FreeBSD, Xen, OpenSSL communities
® Site visits to various bay area companies in Spring 2012

® Add support for real time, distribution assertions

@58 UNIVERSITY OF
4P CAMBRIDGE

CTSRD

Bluespec extensible RISC implementation (BERI)
and the hardware-software research problem

® Hardware, software, and network protocol researchers work in largely
independent silos

® Treat each others’ corpuses as constants for experiments
® But we want to answer multi-variable research questions:
® What happens as we vary both TLB size and OS strategy?
® Was conflation of CPU memory virtualisation and protection a mistake!?

® What are the interactions of energy efficiency optimisation across both
hardware and software!

® How should “portable” OS message passing interfaces span a variety of
hardware semantics?

® Create a reusable open source foundation from CHERI
® Recently presented idea at Barrelfish workshop in Cambridge

® Immediate opportunities due to inadequate hardware and research
platforms

CTSRD

BERI

Bluespec Extensible RISC Implementation

Reference applications Apache | Postgres | X.org | Chromium
Reference compiler/toolchain clang/LLVM, BSD ELF tools
Reference operating system FreeBSD
: Hypervisor
Reference hypervisor Xen/MIPS?
Hardware research stack BERI
Hardware simulation/ : : FPGA synthesis
implementation substrates Sl tPad / DE4 / NetFPGA10G

Complete hardware-software research platform

Apache/BSD-licensed from top to bottom

12 2% UNIVERSITY OF

lAll

&% CAMBRIDGE

CTSRD

BERI status

® Over the last year
® Soft single-core 64-bit MIPS processor
® Terasic DE-4, tPad - Altera FPGA + some peripherals
¢ Commodity Uboot boot loader, research Deimos microkernel

® |n progress

® FreeBSD adaptation -- creeping up on single-user mode

® 64-bit MIPS LLVM backend Unusual OS port
perspective: fix

hardware rather than
work around in

software!

® First research project: CPU capability protection model

® Just starting on...

® Multithreading, multicore; rack-scale memory interconnects
® Port to NetFPGA 10G platform
® FreeBSD device drivers for common Altera and Xilinx peripherals

® First open source release in Spring 2012 including OS/toolchain stack

Capability Hardware Enhanced

RISC Instructions (CHERI)

® Goal: orders of magnitude more protection domains than
current CPUs to better support fine-grained software
compartmentalisation

® Hardware enforcement of program protection structure
® Memory capabilities (segments) and object capabilities
® New capability registers, tagged memory

® VM context switches = hardware message passing within an
address space

® RISC philosophy: minimal, compiler friendly hardware support to
provide efficient and debuggable protection

e Capsicum’s hybrid capability model principles

® Run legacy code, capability code, and blends within a single
process!

® Compiler changes: LLVM IR extensions to support protection

2.5 UNIVERSITY OF

lAll

&P CAMBRIDGE

CTSRD

Evolving CHERI picture

= 1 | eve Hybrid applications, Java . N
3 Script | capability-aware libraries, |IT, ... Script Hybrid capability
g Classic “é’r]'r;'n;ium Classic S approaches within the
> UNIX web UNIX web Capsicum OS kernel
— application = plication
3 browser & browser
S " Zlib ' C++RT | 3 Zlib C++ RT
Q Le e m - lemm e — OCaml runtime > : :
@ libc malloc libc malloc libc malloc = libc executive libc executive runtime application
P | ks + kernel
8 stack
| |~—~Q~—~~~~~~>0¢ e~ ="=-==== |
> ' Network ! Capsicum Device | é Network Capsicum Device
@ | stack i kernel ' drivers 3 stack kernel drivers
O | | T """ i c
@© Kernel VM and . Kernel address space executive OCaml runtime
=) > Per-address space executive N S e T
= - eparation kerne
kS Xen h(blends memory and capability :
> . Separation kern

* management, |[PC links to other

e rings and processes

The separation kernel
will support both MMU
separation from guests and
capability interfaces to pure
capability guests.

|:| Legacy application code compiled for general-purpose registers

[[] Hybrid code blending general-purpose registers and capabilities

|:| High-assurance capability-only code; stand-alone or "pools of capabi

[] Per-address space memory management and capability executive

5 UNIVERSITY OF

5 &% CAMBRIDGE

CTSRD

CHERI activities

|. Develop hybrid capability ISA and hardware
architecture supporting efficient

2. Prototype CHERI on BERI foundation

3. Investigate decomposition and minimisation of low-
level TCBs: hypervisor, OS kernel, language
runtimes, key applications

4. Map languages into new primitives
5. Pragmatically apply formal methods to HW and SW

6. Apply Capsicum’s hybrid capability philosophy:
short-term security benefits, long-term capability
system vision

CHERI'prototype
26 October 2011 - 2:00am BST

Deimos capability microkernel in simulation and FPGA

® Majority of Deimos is commodity MIPS ISA

® Protectionimplemented using the capability coprocessor
Capability-based separation between applications

® Applications compiled from C into unaugmented MIPS ISA

® Simple GUI-based applications:VGA display, touch screen

® Hardware trusted path using capability model
Demonstration

e (Capability-based delegation of hardware frame buffer regions

® FEarly hybridised applications

® Application code compiled from C into MIPS ISA

® Portions of graphics library code, device drivers in CHERI ISA

FreeBSD port remains “in progress™ -- post-Pl meeting focus

CTSRD

CHERI demo

Sandbox 0: drawing application Sandbox 1: footer bar ¢ Sing|e-COI‘e, PiPelineCI CHERI
synthesised in Altera FPGA

® Microkernel and apps

~140 lines of conventional C code ~90 lines of conventional C code
compiled to 64-bit MIPS compiled to 64-bit MIPS

Sandboxed user library code . .
® Deimos microkernel

~600 lines of conventional C code compiled to 64-bit MIPS: .
memcpy, memset, strlen, printf, framebuffer, touch screen ® Touchscreen drawmg app

~40 lines of inline MIPS and CHERI assembly: ® Footer bar application
framebuffer, touch screen

® (Capability-enforced sandboxing
Deimos microkernel

| | | | ® Trusted path for user |/O
~1800 lines of conventional C code compiled to 64-bit MIPS:

trusted path, device drivers, diagnostics ® H)’bl‘ld capability model
~700 lines of CHERI-specific C code: o
capability management, context switching ® 84% portable C
~450 lines of MIPS and CHERI ISA assembly: ® |0% CHERI assembly

bootstrap, exception handling, capability management

® 6% 64-bit MIPS assembly
® Extended GNU assembler
® Unmodified gcc

CHERI prototype

~10,500 lines of Bluespec

578 UNIVERSITY OF
P CAMBRIDGE

CTSRD

BERI platform goals

® Re-multithreading of prototype

® Basic multicore support

® Finish support for attaching to processor using GDB
® Finish 64-bit MIPS LLVM back end

® Netboot via Uboot

® FreeBSD booting is immediate post-Pl meeting goal
® FreeBSD device drivers for additional peripherals

® Bring up the X server, Apache, and other applications

9 &% CAMBRIDGE

CHERI goals

® Finish FreeBSD multi-user mode support for CHERI
® Boot-time configuration (FDT)

® CHERI context switch code -- allow user applications to
start to use capabilities!

® Address space executive = run-time linker + memory
allocation + gateway to system call interface

® Begin work on capability extensions to LLVM IR
® Experimentation with object capabilities in C

® |[nitial TLB vs. capability context switch performance analysis

2.5 UNIVERSITY OF

20 2% CAMBRIDGE

A layered approach to

formal methods with CHERI

® Prove higher-level software properties such as isolation
® e.g,process isolation, object capability calling conventions

® Prove security properties of the capability mechanism in CHERI
® e.g., nonforgeability, nonbypassability

® Establish the correctness of the capability ISA implementation
with respect to the capability specification

® e.g,nonalterability, atomic operation

® Establish the correctness of the general-purpose ISA
implementation with respect to the MIPS specification

® e.g,arithmetic, delay branches

2.5 UNIVERSITY OF

lAll

@Y CAMBRIDGE

21

CTSRD

Ly T
Java
Script
Classic : OCaml
Chromium .
" UNIX application
£ application il stack MirageOS:
© browser
g provable
© zlib C++RT OCaml
= — _ — _ — application
Ie Ibc executive Ibc executive aml runtime
5 1 + kernel
S stack
= Network Capsicum Device
3 stack kernel drivers
-
(D)
o
% Kernel address space executive OCaml runtime
£t _ n
Separation kernel
v Separation kernel executive v
CHERI

Legacy application code compiled for general-purpose registers

Hybrid code blending general-purpose registers and capabilities

High-assurance capability-only code; stand-alone or "pools of capabilities"

Per-address space memory management and capability executive

22

CTSRD

ISA-layer verification

® Developed initial capability ISA specification hand-written Z
® Have recoded the specification in the PVS theorem prover to
® prove security properties of instruction sequences and

® execute the ISA specification

® Are now exploring a mechanical conversion from Bluespec
into a model checker

® We would like to show refinement (i.e., equivalence
between unpipelined and pipelined implementations)

® We would like to prove that the implementation
implements the ISA

23

Bluespec verification

® Prove correspondence between the implementation
and the various models

® Expose high-level internals of Bluespec compiler

® Extend the executable PVS model to work off Bluespec
compiler intermediate output

® Allow CHERI implementation to be checked directly

® Exercise tests generated automatically from the

executable PVS model against the implemented
hardware in the FPGA

24

CTSRD

Formally designing CHERI;
design for verification

® We are not just building a design and then proving its
properties

® |SA documentation generated from formal specification

® Goal of running our test suite on an executable form of
the specification

® Redesign in Bluespec underway to restructure the CPU
to make proofs of refinement and correctness easier

® |mprovements to the Bluespec compiler to support direct
feeding into formal methods tools, including PVS and SAL

2.5 UNIVERSITY OF

lAll

@Y CAMBRIDGE

25

Collaboration

® |ncreasing industry, open source interest in
TESLA and CHERI

® Direct engagement with Google Research
® Ongoing dialog within the CRASH programme
e BAE/Harvard, UTexas Austin

e (MRC)% MRC contract to extend notions
from CHERI into data centre switching

% &% CAMBRIDGE

CTSRD

TESLA and BERI
conclusions

® TESLA - temporal assertion system now a
prototype

® Engaging directly with open source and
industry over last 6 months, and going forward

® Larger-scale deployment over next |2 months
® BERI - Bluespec extensible RISC implementation

® Invested a bit more time now in building
CHERI to be generalisable

® First open source release aiming for mid-201]2

2.5 UNIVERSITY OF

lAll

&P CAMBRIDGE

27

CTSRD

CHERI conclusions

e CHERI hybrid capability architecture: MIPS +
capabilities

® Bluespec-based prototype in simulation and
synthesised to Altera-based boards

® Port to NetFPGA 110G (Xilinx) in progress

® (apability-aware separation kernel/executive now
running (small) MIPS applications

® Exciting demonstration to show off separation

® Demonstrates hybrid capability model: commodity
MIPS code side-by-side with CHERI code

28

CTSRD

SRI

29

