
CTSRDCRASH-worthy
Trustworthy

Systems
Research and
Development

Robert N. M. Watson
Peter G. Neumann

DARPA CRASH PI Meeting
Arlington, VA, USA
8 November 2011

Approved for public release. This research is sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-0237.
The views, opinions, and/or findings contained in this article/presentation are those of the author/
presenter and should not be interpreted as representing the official views or policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

CTSRD

2

May 2011 CTSRD review meeting in Cambridge, UK:
SRI, Cambridge, DARPA, external oversight group

CAP computer
(1970-77)

CTSRD

3

CTSRD continuously validates security design principles
and enforces application security structure using a

formally grounded hybrid capability architecture.

CHERI processor and software

!"#$$#"#
!%#
!&#
'#
'#
'#

!(%#

)*+*,-.#/0,123*#
!*4536*,3#

/7#

7-1-85.569#!*4536*,3#

1*,:3# 2691*# 8-3*# .*+46;#
1*,:3# 2691*# 8-3*# .*+46;#
1*,:3# 2691*# 8-3*# .*+46;#

'#
'#
'#

1*,:3# 2691*# 8-3*# .*+46;#

1*,:3# 2691*# 8-3*# .*+46;#7/7#

7!"#<4*+*,-.#10,123*#=-1-85.569>#
7!%#
7!&#

7!(%#

Hybrid code blending general-purpose
registers and capabilities

Legacy application code compiled for
general-purpose registers

Per-address space memory management
and capability executive

High-assurance capability-only code;
stand-alone or in "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application +
kernel
stacklibc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

tes
la_

sy
sc

all
_re

tur
n

mac_vnode_check_write(cred, vp) == 0

previously(mac_vnode_check_write(cred, vp) == 0) true

audit_submit()

trueeventually(audit_submit())

tes
la_

as
se

rt

unknown

au
dit

_s
ub

mit

Point and quantified TESLA expressions Events over time

unknown

tes
la_

sy
sc

all
_e

nte
r

tes
la_

as
se

rt

mac
_v

no
de

_c
he

ck
_w

rite

Events over timePoint and quantified TESLA expressions

expression evaluated !

!expression evaluated

int
vn_rdwr(enum uio_rw, struct vnode *vp, ...,
 struct ucred *active_cred, struct ucred
 *file_cred, ...)
{
 if (rw == UIO_WRITE) {
 tassert_syscall(previously(mac_vnode_check_write(
 active_cred, file_cred, vp) == 0));
 tassert_syscall(eventually(audit_submit());
 ...
}

TESLA assertion system

C Analysis

Spec
instrumentation.cTEAL

Compiler

Codegen
object
files

Parsing

Clang

Analysis

TESLA

Instrumentation

assertions

CTSRD elements

CTSRD

Observations from
Capsicum

• Software designs that employ the principle
of least privilege are neither easily nor
efficiently represented in current hardware.

• Kernels and programming language
runtimes (TCBs) building directly on
hardware in C are enormous and unsound.

• Software TCB implementations embody
artifacts of security policies rather than
design principles.

4

CTSRD

CTSRD elements
CHERI: capability hardware enhanced RISC instructions

Produce formally analysed Bluespec RISC soft core
supporting granular protection via a hybrid capability model.

Develop separation kernel, hybrid Capsicum OS, and a future
capability-enabled operating system.

TESLA: temporally enforced security logic assertions

Translate security principles from design into software
implementation by blending temporal logic expressions and
software / hardware-assisted runtime validation.

5

CTSRD research threads

• TESLA design and prototype

• BERI platform

• CHERI ISA and prototype

• PI meeting demonstration

• CHERI ISA formal methods

• Bluespec formal methods

6

CTSRD

The security assertion problem
• Good programmers enforce invariants through extensive use

of software assertions

• Tens of thousands of assertions in the FreeBSD kernel, as
well as complex assertion infrastructures (WITNESS, …)

• In C/C++, assertions test instantaneous properties

• Interesting security properties are generally temporal
(relating multiple points in time) rather than instantaneous!

• Check before use, eventual audit, security meta-data cycles

• Memory safety, protocol state machine conformance

• Programmers resort to manual instrumentation: verbose,
time-consuming, and error-prone

7

CTSRD

Temporally Enhanced Security
Logic Assertions (TESLA)

• Embed design-time security principles into executable code

• Borrow liberally from model checking, but as a dynamic technique:

• Represent assertions as temporal logic or automata (TEAL)

• Program events are symbols consumed by automata

• Instantiate automata instances on demand, check for violations

• Assertions are tested on experienced paths rather than all paths

• Continuous validation of principles by the program runtime

• On failure: panic(), stack trace, DTrace events allowing scripting

• Potential for CHERI hardware assist via tightly coupled threads

• Combined with CHERI, checks can become “mandatory”

8

CTSRD

Since the PI meeting
• Ilias Marinos summer intern (continuing with TESLA during

masters)

• Conversion of external TESLA toolchain into clang plugins

• Extensions to automata syntax to support more assertion
types

• Progress towards inline assertions

• Ben Laurie (Google) exploring TESLA support for OpenSSL:
check that security APIs are being used correctly by consumers

• Bjoern Zeeb (FreeBSD) investigating TESLA support for the
FreeBSD network stack: check TCP, ND6, IPSEC state machines

• Poster at the LLVM workshop in London; lots of industrial
interest

9

CTSRD

TESLA next steps

• Complete conversion to pure clang without external tools

• Revisit decision to use clang AST transform

• Motivated by greater type awareness than afforded by LLVM IR

• We may move instrumentation into LLVM and do analysis in clang

• Bring industry/open source visitors back to the Computer
Laboratory for followups now that we support the syntax and
features they require

• Deploy in FreeBSD, Xen, OpenSSL communities

• Site visits to various bay area companies in Spring 2012

• Add support for real time, distribution assertions

10

CTSRD

Bluespec extensible RISC implementation (BERI)
and the hardware-software research problem

• Hardware, software, and network protocol researchers work in largely
independent silos

• Treat each others’ corpuses as constants for experiments

• But we want to answer multi-variable research questions:

• What happens as we vary both TLB size and OS strategy?

• Was conflation of CPU memory virtualisation and protection a mistake?

• What are the interactions of energy efficiency optimisation across both
hardware and software?

• How should “portable” OS message passing interfaces span a variety of
hardware semantics?

• Create a reusable open source foundation from CHERI

• Recently presented idea at Barrelfish workshop in Cambridge

• Immediate opportunities due to inadequate hardware and research
platforms

11

CTSRD

BERI
Bluespec Extensible RISC Implementation

12

Complete hardware-software research platform

Apache/BSD-licensed from top to bottom

Apache

FreeBSD

Hypervisor
Xen/MIPS?

BERI

clang/LLVM, BSD ELF tools

Reference applications

Reference compiler/toolchain

Reference operating system

Reference hypervisor

Hardware research stack

X.org ChromiumPostgres

C simulation FPGA synthesis
tPad / DE4 / NetFPGA10G

Hardware simulation/
implementation substrates ...

...

CTSRD

13

BERI status
• Over the last year

• Soft single-core 64-bit MIPS processor

• Terasic DE-4, tPad - Altera FPGA + some peripherals

• Commodity Uboot boot loader, research Deimos microkernel

• In progress

• FreeBSD adaptation -- creeping up on single-user mode

• 64-bit MIPS LLVM backend

• First research project: CPU capability protection model

• Just starting on...

• Multithreading, multicore; rack-scale memory interconnects

• Port to NetFPGA 10G platform

• FreeBSD device drivers for common Altera and Xilinx peripherals

• First open source release in Spring 2012 including OS/toolchain stack

Unusual OS port
perspective: fix

hardware rather than
work around in

software!

CTSRD

Capability Hardware Enhanced
RISC Instructions (CHERI)

• Goal: orders of magnitude more protection domains than
current CPUs to better support fine-grained software
compartmentalisation

• Hardware enforcement of program protection structure

• Memory capabilities (segments) and object capabilities

• New capability registers, tagged memory

• VM context switches → hardware message passing within an
address space

• RISC philosophy: minimal, compiler friendly hardware support to
provide efficient and debuggable protection

• Capsicum’s hybrid capability model principles

• Run legacy code, capability code, and blends within a single
process!

• Compiler changes: LLVM IR extensions to support protection

14

CTSRD

15

Evolving CHERI picture

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance capability-only code; stand-alone or "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web

browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application
+ kernel

stack
libc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

Capsicum
kernel

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s
su

pp
or

te
d

by
 p

ag
ed

 V
M

Classic
UNIX

application

zlib

Chromium
web

browser

Java
Script

C++ RT
OCaml runtime

OCaml
application

stack

libc malloc libc malloc

Device
drivers

Hybrid applications,
capability-aware libraries, JIT, ...

Per-address space executive
blends memory and capability
management, IPC links to other

rings and processes

Hybrid capability
approaches within the
Capsicum OS kernel

The separation kernel
will support both MMU

separation from guests and
capability interfaces to pure

capability guests.

CTSRD

1. Develop hybrid capability ISA and hardware
architecture supporting efficient

2. Prototype CHERI on BERI foundation
3. Investigate decomposition and minimisation of low-

level TCBs: hypervisor, OS kernel, language
runtimes, key applications

4. Map languages into new primitives
5. Pragmatically apply formal methods to HW and SW
6. Apply Capsicum’s hybrid capability philosophy:

short-term security benefits, long-term capability
system vision

16

CHERI activities

CTSRD

17

CHERI prototype
26 October 2011 - 2:00am BST

• Deimos capability microkernel in simulation and FPGA

• Majority of Deimos is commodity MIPS ISA

• Protection implemented using the capability coprocessor

• Capability-based separation between applications

• Applications compiled from C into unaugmented MIPS ISA

• Simple GUI-based applications: VGA display, touch screen

• Hardware trusted path using capability model

• Demonstration

• Capability-based delegation of hardware frame buffer regions

• Early hybridised applications

• Application code compiled from C into MIPS ISA

• Portions of graphics library code, device drivers in CHERI ISA

• FreeBSD port remains “in progress” -- post-PI meeting focus

CTSRD

18

Sandbox 0: drawing application

~140 lines of conventional C code
compiled to 64-bit MIPS

Sandbox 1: footer bar

~90 lines of conventional C code
compiled to 64-bit MIPS

Deimos microkernel

~1800 lines of conventional C code compiled to 64-bit MIPS:
trusted path, device drivers, diagnostics

~700 lines of CHERI-specific C code:
capability management, context switching

~450 lines of MIPS and CHERI ISA assembly:
bootstrap, exception handling, capability management

CHERI prototype

~10,500 lines of Bluespec

Sandboxed user library code

~600 lines of conventional C code compiled to 64-bit MIPS:
memcpy, memset, strlen, printf, framebuffer, touch screen

~40 lines of inline MIPS and CHERI assembly:
framebuffer, touch screen

CHERI demo
• Single-core, pipelined CHERI

synthesised in Altera FPGA

• Microkernel and apps

• Deimos microkernel

• Touchscreen drawing app

• Footer bar application

• Capability-enforced sandboxing

• Trusted path for user I/O

• Hybrid capability model

• 84% portable C

• 10% CHERI assembly

• 6% 64-bit MIPS assembly

• Extended GNU assembler

• Unmodified gcc

CTSRD

BERI platform goals
• Re-multithreading of prototype

• Basic multicore support

• Finish support for attaching to processor using GDB

• Finish 64-bit MIPS LLVM back end

• Netboot via Uboot

• FreeBSD booting is immediate post-PI meeting goal

• FreeBSD device drivers for additional peripherals

• Bring up the X server, Apache, and other applications

19

CTSRD

CHERI goals

• Finish FreeBSD multi-user mode support for CHERI

• Boot-time configuration (FDT)

• CHERI context switch code -- allow user applications to
start to use capabilities!

• Address space executive = run-time linker + memory
allocation + gateway to system call interface

• Begin work on capability extensions to LLVM IR

• Experimentation with object capabilities in C

• Initial TLB vs. capability context switch performance analysis

20

CTSRD

A layered approach to
formal methods with CHERI
• Prove higher-level software properties such as isolation

• e.g., process isolation, object capability calling conventions

• Prove security properties of the capability mechanism in CHERI

• e.g., nonforgeability, nonbypassability

• Establish the correctness of the capability ISA implementation
with respect to the capability specification

• e.g., nonalterability, atomic operation

• Establish the correctness of the general-purpose ISA
implementation with respect to the MIPS specification

• e.g., arithmetic, delay branches

21

CTSRD

22

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance capability-only code; stand-alone or "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web

browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application
+ kernel

stack
libc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

CTSRD

ISA-layer verification
• Developed initial capability ISA specification hand-written Z

• Have recoded the specification in the PVS theorem prover to

• prove security properties of instruction sequences and

• execute the ISA specification

• Are now exploring a mechanical conversion from Bluespec
into a model checker

• We would like to show refinement (i.e., equivalence
between unpipelined and pipelined implementations)

• We would like to prove that the implementation
implements the ISA

23

CTSRD

Bluespec verification

• Prove correspondence between the implementation
and the various models

• Expose high-level internals of Bluespec compiler

• Extend the executable PVS model to work off Bluespec
compiler intermediate output

• Allow CHERI implementation to be checked directly

• Exercise tests generated automatically from the
executable PVS model against the implemented
hardware in the FPGA

24

CTSRD

Formally designing CHERI;
design for verification

• We are not just building a design and then proving its
properties

• ISA documentation generated from formal specification

• Goal of running our test suite on an executable form of
the specification

• Redesign in Bluespec underway to restructure the CPU
to make proofs of refinement and correctness easier

• Improvements to the Bluespec compiler to support direct
feeding into formal methods tools, including PVS and SAL

25

CTSRD

Collaboration

• Increasing industry, open source interest in
TESLA and CHERI

• Direct engagement with Google Research

• Ongoing dialog within the CRASH programme

• BAE/Harvard, UTexas Austin

• (MRC)2: MRC contract to extend notions
from CHERI into data centre switching

26

CTSRD

TESLA and BERI
conclusions

• TESLA - temporal assertion system now a
prototype

• Engaging directly with open source and
industry over last 6 months, and going forward

• Larger-scale deployment over next 12 months

• BERI - Bluespec extensible RISC implementation

• Invested a bit more time now in building
CHERI to be generalisable

• First open source release aiming for mid-2012

27

CTSRD

CHERI conclusions
• CHERI hybrid capability architecture: MIPS +

capabilities

• Bluespec-based prototype in simulation and
synthesised to Altera-based boards

• Port to NetFPGA 10G (Xilinx) in progress

• Capability-aware separation kernel/executive now
running (small) MIPS applications

• Exciting demonstration to show off separation

• Demonstrates hybrid capability model: commodity
MIPS code side-by-side with CHERI code

28

CTSRD

Q&A

29

