Future Mils™

Panel on the Future of Highly Trustworthy Systems, Networks, Apps, and Clouds

December 5, 2011

Rance DeLong
Staff Scientist, LynuxWorks
Adjunct Lecturer, Santa Clara University
Consulting Researcher
RDeLong@lnxw.com
RDeLong@engr.scu.edu
MILSresearch@me.com
MILS (the historical* view)

- Physical Display, Keyboard & Mouse
- Trusted Path
- Console Manager (MLS)
- E-Mail (MLS)
- File Sys. Driver (MLS)
- Web Browser
- IPv6 (MLS)
- PCS (MLS)
- RT CORBA/DDS/WEB
- RT CORBA/DDS/WEB
- Minimal Middleware
- Minimum Run-Time Library

Separation Kernel

Automatic Reload/Restart from Secure File System

Processor

* MILS workstation concept, Calloni and others, circa 2004
A desired MILS goal – MLS Server / Workstation*

<table>
<thead>
<tr>
<th>Untrusted Apps</th>
<th>MLS Server</th>
<th>MLS Workstation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untrusted Guest Operating System(s)</td>
<td>MLS DBMS, MLS Webserver, MLS Generic Guard/Regrader, Other MLS Services</td>
<td>DDS, CORBA</td>
</tr>
<tr>
<td>MLS Filesystem: Dirs, Polyinstantiation</td>
<td>MLS Networking: Labels, Crypto, Routing</td>
<td>MLS Console: Windows, Trusted Path</td>
</tr>
<tr>
<td>MLS Resources: Subjects, Objects, Namespaces, Label Interpretation, Device Allocation</td>
<td>Ident’ n, Authent’ n, Authoriz’ n, Acct’ g</td>
<td></td>
</tr>
<tr>
<td>Audit, Crypto Primitives, Extended Security Attributes & Reference Validation Mechanisms</td>
<td>Virtual Devices, PCS, Devices, Interrupts, Exceptions</td>
<td></td>
</tr>
<tr>
<td>Minimal High-Assurance APIs: POSIX, ARINC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation Kernel: Isolation & Information Flow Control Policy, Partitions, Subjects, Exported Resources, Communication, Synchronization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware: Instruction Set Architecture, MMU, VM Support, Privileged Operations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* MILS workstation/server notional architecture, DeLong January 2005
Some components needed for a high-assurance Server or Workstation . . .

- Console with trusted window system
- Trusted global naming service, identity/integrity attestation
- Trusted disk and other mass storage devices and filesystems
- Trusted networking
- PCS, DDS, CORBA
- System-level attestation services
- Session management (interactive sessions: command env, session lock/unlock, suspend/resume)
- Application management of MILS multi-resource applications (dynamic instantiation, dynamic resource mgmt)
- System management (user admin, app admin, dev mgmt, sys update, plugins)
- System operations management
- System self-test, integrity and recovery
- Auditing (daemon, storage, configuration, analysis)
- Security management (user/group security attributes, RBAC, label encoding admin)
- MLS objects, attributes and MLS policy arbiter (label interpretation and decision part of any MLS RVM)
- User IAAA - Identification, Authentication, Authorization, Accounting
- Cryptographic services support
- Generic guard/regrader (rule-driven, type-driven)
- DBMS
- Web server
- Web browser
- Daemons (system log, printer, e-mail)
- Hardware for high-performance trusted graphics
- MLS USB device management
- High-integrity programming language runtime support and MLS JVM
- Hardware micro-architecture resource partitioning support
- ...

THE POINT IS: reliable composition of many components is needed.
Operational Component Architecture Implemented on MILS Foundational Components

The “policy architecture” of a system

System Implementation*

SK \oplus foundational components form a resource-sharing substrate, providing isolation and information flow control, enforcing the architecture

R. DeLong

* MILS “two-level view”, Rushby & DeLong, circa 2006
MILS Foundational, Operational, Monitoring, and Configuration Planes – other orthogonal

Configuration Data

MILS Platform (dynamic re-config)

Supply Chain (static config)

Configuration Data

Configuration Data

Separation Kernel ©
“MILS”, “MILS Initiative”, and “Mils™”

- “MILS” – originally an acronym for “Multiple Independent Levels of Security”. Its usage referred primarily to the concept of strong partitioning on a single platform, such as that provided by a separation kernel.

- “MILS Initiative” – a community of vendors, system integrators, research sponsors, researchers, educators and customers, fostered within The Open Group, pursuing the “MILS idea” for nearly a decade. Upshot: to achieve its objectives, “MILS” must be refined and systematized.

- “Mils™” – Now used as a proper noun*, rather than an acronym, “Mils” refers to a refined set of concept definitions, architecture, doctrine, standards, practices and support for the development, evaluation, certification and deployment of Mils components and systems intended to achieve MILS’s original goals. “Mils™” is a trademark of The Open Group.

* What Rushby refers to as “Modern MILS”
The important thing about Mils™

- Mils™ can achieve more than MILS. It can achieve what MILS set out to do: verifiable and certifiable composition of component-based architecture, for properties and functions.

- Traditional MILS cannot achieve the integration, interoperability, and certification goals for a successful marketplace of components without the discipline of Mils™

* What Rushby refers to as “Modern MILS”
Where is Mils™ headed in the not to distant future?
Near-Term Mils™ includes: Technical Standards

- **The Open Group Mils™ Protection Profiles**
 - Community review, published by The Open Group
 - Adapted from “MILS” community and research PPs
 - Adapted from Separation Kernel Protection Profile v1.03
 - Mils™ Separation Kernel Protection Profile (MSKPP)

- **TOG Mils™ Technical Standards**
 - Mils™ Application Programming Interface (API) Standard
 - Mils™ Interoperability Standards
 - Mils™ Evaluation Methodology
 - Mils™ Compositional Certification Methodology
 - Mils™ Evaluation Laboratory Proficiency Standard
Near-Term Mils™ includes: Use of the Common Criteria

- **CC Domain**
 - Use the “vanilla” Common Criteria to greatest extent practical

- **Mils™ Domain**
 - Mils-specific, e.g., Assurance cases (Claims-Argument-Evidence Model)
 - Mils standards, e.g., APIs, interoperability standards
 - Mils compositional certification theory and practice
 - Other properties of concern in addition to Security covered by CC Domain
Near-Term Mils™ includes: Evaluation Approach

- **Apply the international CC**
 - Use the CC and CEM fully and consistently
 - Mils’ high assurance does not conflict with CCRA (EALs 1-4)
 - Contribute to the ongoing development of the CC

- **Augment with Mils-specific technical measures and methodology** to support high-assurance evaluation and certification
 - Assurance case - linking product claims to product-based evidence
 - Tools to diminish labor and increase repeatability
 - Augmentation to CC supporting high assurance and composition
 - Interoperability standards for functional composability

- **Make high-assurance evaluation objectively verifiable and more cost-effective with automation**
Near-Term Mils™ includes: Component and Composite Validation

- Components validated to TOG Mils standards
 - Mils Protection Profiles
 - Mils API standards
 - Mils evaluation methodology and standards

- Composites validated to TOG Mils compositional certification guidelines
 - Mils compositional assurance
 - Confirmation that composition requirements met

- The Open Group maintains evaluation and certification evidence and results in escrow
 - Three-way contractual relationship TOG-Applicant-Lab
 - TOG reputation sufficient in ordinary cases
 - Escrow can be opened under extraordinary circumstances
A Five-year vision for Mils™ stakeholders

- Component developers
 - Interoperability standards
 - Techniques and tools
 - Engineering Handbook

- System Integrators
 - Component marketplace
 - Interoperability standards
 - Techniques and tools
 - Application Handbook

- Gov and industry customers
 - Understand capabilities and benefits of Mils™
 - Effective Mils™ integrators
 - Design patterns and pilots available

- Educators and trainers
 - Corpus of theory, design patterns, and engr practice
 - Mils™ handbooks
 - Theory and practice training materials

- System certifiers
 - Compositional certification science, stds, methodology
 - Certification Handbook

- Product evaluators
 - MIPP conformance
 - Mils™ Protection Profiles
 - Evaluation Handbook

- Researchers
 - Research opp’ ties / wkshps
Let’s assume that will all happen… then what could Mils™ go on to become?

“Future Mils™” *

Speculate what Mils™ could be in 2021 and beyond …

* Intended by the speaker only for the purpose of discussion. Not purported to represent the intentions of The Open Group.
Future Mils™

A vision of what Mils™ could be in 2021

- Distributed Mils™
- Mils™ Clouds
- Mils™ SOA
- Self-hosted Mils development in a Mils™ Cloud
- “Recursive” Mils™
- Mils™ IDE
- Certified-by-Construction Mils™
- Just-in-Time Certification of dynamic Mils™ systems
Future Mils™ (2)

A vision of what Mils™ could be in 2021

- Capability-based Mils™ dynamic separation kernels
- Mils™-appropriate network link, e.g., TTEthernet
- Policy Domain hierarchies
- Visual architectural specification
- Coordinated formal methods languages and engines
- Synthesis of interface modules
- Pre-compute (once for all) bulk of the cert’n proof
- Compute proof conditions under actual parameters