DBIuespec Codesign
Language: A Unified
able

HW/SW Codesign

Nirav Dave
SRI International

LAW

December 6, 2011

N

Modern SoCs

[CHINK'S ECONDMY

X DY BERD L T e
BusinessWeek

EE Bk B
=

€ Functionality is determined by power/energy issues
€ Hardware accelerated solutions consume dramatically
less power than pure software solutions
= Most SoC’s have many specialized blocks
€ Many SoCs have to support full software stacks which at
the bottom must interact with special purpose hardware
efficiently

Kinds of Hardware-

N

& Hardware accelerators

Bits

Software Interactions

— NAL {[[>cavic

Inv-Quant |_

Trans

m H.264: any block can be
iImplemented in HW or SW L]]]]-»

€ Hardware calling software
for functionality not
supported in hardware

Inter
Pred

Intra
Pred iII}

request

Deblock ===

response

& Software driving hardware
as in testing or simulation

CPU
v

)
MAC

t v
HW/SW IFC

Frames

B SW
-2l Channel

Different scenarios but similar problems

Standard HW/SW Design

f‘\

@ HW/SW IFC is complex;
must deal with:

| Bus IFC

= Marshalling of data on sw Software
fixed-datapath bus Team)
= Arbitration of requests
= Low-level parallelism
needed for efficient r
communication and
control HW
Team = Hardware

¢ |IFC needs to be set
early in design

IFC is difficult to get right the first time around and

changes in IFC later in the design is hard

N

Improving the Interface

—

& Define a more abstract
iInterface and give the sw
responsibility of low- Teg(n
level software to the

V- taais Team L Stable
Interface
Physical
Interface: | n’?elﬂg o
writeDataToMem(0x00,...)
startFU(i) 2 Hardware
resetFU(i)
getDataFromMem(0OxAO,...)
=

interruptOperations()

The Real problem

| ®The issue is that HW and SW do not have
the same underlying semantic model

= HW Is gates and wires operating in parallel
= SW Is a segquence of instructions

@®This mismatch leads to this confusion
and errors

= Also makes verification expensive and
brittle

A unified Abstraction

N

@ Represent HW and low-level SW in the
same language:

= Both need fine grained parallelism

= “HW?” team only has to deal with 1 language

= Provide tools to generate both hardware and
software
@ Conseqguences:
= Easy to move HW/SW boundary

= No data representation/ interfacing issues from
semantic mismatch of C and RTL

= Complex bus interface Is subsumed In a single
language and can be abstracted cleanly

Panacea for HW-SW CoDesign

N

€ A compiler that takes
s A sequential program description
= Some performance, cost and power constraints

& Automatically:
= ldentifies what part should be implemented in HW

m Parallelizes HW part of design and parallelizes SW
enough to exploit HW’s parallelism

= Insert proper HW-SW communication channels
between HW and SW

This I1s an unrealistic expectation — it is difficult to
convey high-level performance goals, constraints,

suitable microarchitectures and come up with
appropriate partitions

Our Goal: Facilitate
Exploration

N

€ A single parallel language to express both HW and
parallel SW parts of an algorithm

s Should be easy to express parallelism naturally

& Easy In-source specification of HW/SW partitioning
= Should be easy to change partitioning

= Designers should be able to reason about communication
channel multiplexing directly in language.

® Compiler can easily separate the HW and SW
compilation tasks and generate parts independently

= Modularizes compilation and reasoning tasks

® Compiler should generate no-compromise hardware and
high-quality software

® Clean model for fast verification / testing

N

Outline

&
®Bluespec Codesign Language
#Compilation

#®Partitioning
#Encapsulating the Bus
®Compilation Results
#Verification

N

BCL: State and Rules organized
INto modules

L

module
o F - o
e
/—

—
interface [//_/ =

Vi
|y =D
—

_

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: guard = action
Semantics: Repeatedly any rule with valid guard & execute it

Bluespec Codesign Language
(BCL)

N

" @ BCL is like Bluespec SystemVerilog (BSV)

= Conditionals, guards, and action composition
s Action and resource-level modularity

s EXpressing nondeterminsm/parallelism comes
naturally via rules

Extensions for efficient SW specification
s Sequential composition and looping constructs

@ BCL designs are partitioned into HW and SW
domains which can be compiled separately
and then integrated

& HW/SW compiler developed at MIT
= HW translates to RTL via BSV Compiler
= SW converted to C++

12

Example Ogg Vorbis Decoder

f‘\

Stream
Parser

|
* '

Bits

& Ogg Vorbis is a audio
compression format
roughly comparable to

other compression

: |

Residue 8“ Floor

WMA.

e

v
Windowing

A\ 4

Decoder l Decoder

BcL @ IMDCT takes the most
computation

& Consider only the
backend for BCL

m Frontend is natural in
SW

PCM Output

formats: e.g. MP3, AAC,

13

A Closer look at IMDCT

N

Array imdct(int N, Array vx){ Suppose we want to use

// preprocessing loop hardware to accelerate
for(i = 0; i < N; i++){ FFT/IFFT computation

vin[i] convertLo(i,N Ax[1]);
vin[i+N]

' // do the IFFT
vifft = IFFE(2*N, vin);
// postprocessing loop
for(hn = 0; 1 < N; 1++){
Int 1dx = bitReverse(l);
vout[1dx] = convertResult(i,N,vifft[i1]);
+

return vout;

14

N

inO
inl
in2

in3

Bfly4

Bfly4

VLVLW‘} VYV V¥

in4

xX16

Bfly4

w%%w

in63

a1nwad

Bfly4

VLVWVL VLVWVL

Bfly4

Combinational IFFT

Wy

Bfly4

/outO
» Bfly4d > —|joutl
R — 1 2 Nooe
3) Bflya 3] 3
= g 1 S
3 S \out3
> > |0ut4
| Bfly4 >

o

ut63

All numbers are complex
and represented as two
sixteen bit quantities.
Fixed-point arithmetic is
used to reduce area,
power, ...

15

4-way Butterfly

\qunction Vector#(4,Complex) bfly4

Vector#(4,Complex) m, y, z;

m[0] = k[O] * t[O]; m[1] = k[1] * t[1];
m[2] = k[2] * t[2]; m[3] = k[3] * t[3]:
y[0]1 = m[0] + m[2]; y[1] = m[O0] — m[2];
yl[2]1 = m[1] + m[3]; Yy[3] =
z[0] = y[O]1 + yI2]: z[1]1 = yI[11 + yI3]1:
z[2] = yI[0] - yI21: z[3]1 = yI[1]1 - vyI[3]:
return(z);

endfunction

Note: Vector does not mean storage

(Vector#(4,Complex) t, Vector#(4,Complex) k);

i*(n[1] - ms;
m

Polymorphic code:
works on any type
of numbers for
which *, + and -
have been defined

16

Stage f Function

VLVLW‘} VYV V¥

w%%w

A
J
stage f
inO
inl »
____///, Bfly4
in2
....///4 Bfly4
in3
/ xX16
in4
/J Bfly4
in63//

a1nwad

stage f

45 —
| Bflya |—

— —_—

= Bfya -

= Bflya >

2lnwiad

stage f

Bfly4

VVVYVY VYV VY

Bfly4

VLVLW‘} VYV V¥

Bfly4

VYV VN

w%%w

9lnwisad

outO

outl

out2

7/ |\
o A v\

out3

Iout4

ut63

il

N

Code for stage T

function Vector#(64, Complex) stage T
(Bit#(2) stage, Vector#(64, Complex) stage i1n);
begin

for (Integer 1 = 0; 1 <16; 1 =1 + 1)
begin
Integer 1dx = 1 * 4;
let twid = getTwiddle(stage, fromlnteger(i));

let y = bfly4(twid, stage in[1dx:1dx+3]);

stage temp[i1dx] = y[0]; stage temp[idx+1l] = y[1];
stage temp[i1dx+2] = y[2]; stage temp[idx+3] = y[3];
end
//Permutation

for (Integer 1 = 0; 1 <64; 1 =1 +1)
stage out[i1] = stage temp|[permute[i]];

end

return(stage out);

18

Code: Combinational IFFT

N

/%unction Vector#(64, Complex) i1fft
(Vector#(64, Complex) i1n_data);
//Declare vectors
Vector#(4,Vector#(64, Complex)) stage data;
//Define stage results
stage data[O] = 1n_data;
for (Integer stage = 0; stage < 3; stage = stage + 1)
stage data|stage+l] = stage f(stage,stage data]stage]);
return(stage_datal[3]);
endfunction

19

Suppose we wanted to
pipeline the IFFT...

20

N

Elastic pipeline

INQ fifol fifo2

— ()

rule stagel (True);
fifol.enq(FOCinQ.first());
1INQ.deq(); endrule

rule stage2 (True);
fifo2.enq(fl1(fifol.first());
fifol.deq(); endrule

rule stage3 (True);
outQ.enq(f2(fifo2.first());
fifo2.deq(); endrule

outQ

Represent each
stage as a rule

Firing conditions?
Can only fire when

It has data and
space in next buffer

Suppose we want to reduce

N

the area

inO
inl
in2

in3

.

— | Bfly4

7

in4

Bfly4
xX16

/‘ Bfly4

in63

outO
> | Bfly4 |/ Bfly4 —s|out1
> —_—
I > S 3 > 2N\
32 2| Blys e 33 Qutz
m. —> — 3 Bfly4 = 3
= - 1 5 S
5 o @ out3
> i > > jout4
-+ —| Bily4 > Bfly4 >
\Eut62

/

Reuse the same circuit three times

N

X

Folded pipeline

A\ -
LT

INQ [stage outQ
sReg

rule folded-pipeline (True);

iIT (stage==0)

begin sxIn= InQ.Ffirst(); inQ.deq(); end

else sxIn= sReg;

sxOut = f(stage,sxln);

IT (stage==n-1) outQ.enq(sx0Out);

else sReg <= sxOut;

stage <= (stage==n-1)? 0 : stage+l;
endrule

Dilemma: Designing to the

substrate

® HW generation is well understood and automatable
= Combinational — single-cycle large combinational cloud
s Elastic Pipeline — Full throughput pipeline
= Folded Pipeline — Multi-cycle FSM

N

€ SW generation from rule is new
s Good conversions from combinational is trivial

= Generating good code from the pipelines is a little tricky
(selecting a schedule to factor out bookkeeping operations)

€ In general different algorithms are more appropriate
for hardware than software (or vice versa)

= Designers should be aware of these tradeoffs and reason
about them as a first-order concern

24

N

Outline

&
&
#Compilation

#®Partitioning
#Encapsulating the Bus
®Compilation Results
#Verification

N

Generating HW

@ Each rule in the design is executed in a
single clock cycle

& Convert each rule into (State = Bool x
State) function

#® Greedy algorithm to select which rules
to fire each cycle:
s Static total ordering of rules
= Must have a total ordering of rules executed
= Considers port resources

®As good as hand-written RTL!

26

SW Compilation:
Syntax Directed Scheme

f - - -
T4 Each Module definition becomes a C++ class
s Each BCL method/rule is a class method

» Methods to create and merge shadow copies (parallel
and sequence)

® Lazy STM-style conversion of rules

s Keep a mapping to current notion of state which is
committed when complete

s Actions translate to C++ statements

m EXpressions to an C++ expression and a statement
which must be evaluated before expression is valid

m Rule translate to methods which return a boolean
signifying success of execution

® Runtime instantiates top-level design and decides

how run our rule procedures -

SW Optimizations

€ Seguentialization — Convert Parallel
compositions to sequential ones

N

€ Guard Lifting — Exit early on failing executions

& Shadow Minimization — higher granularity
shadow generation reduces copying

& Shadow Reuse — Reuse the same shadow
across different rule executions

28

Future Work: Scheduling

N

€ Choice of what order to execute rules is a key
decision for efficiency

€ In HW rules execute In parallel (“free”
parallelism)

¢ In SW, we must balance between:

s Locality — Merge rules into larger rule (StreaMIT-
style synchronous data flow)

s Thread Parallelism — pipeline parallelism

& Lots of work remaining (Myron King’s PhD)

29

N

Outline

&
®
®

#®Partitioning
#Encapsulating the Bus
®Compilation Results
#Verification

N

Computational Domains

€ Any expression/action can be
Implemented in either HW or SW

® To ease implementation burden and
understandability we insist that each
rule operates in a single domain

= Same follows for methods and expressions

31

N

Partitionina R

A method in each
domain

Only touched by
one domain

Methods in red and
green domains

32

N

We need primitive domain-
crossing modules

— FIFO —

¢ Simple directional channel

= eng in one domain and deg/first/pop in another

s full/empty signals are conservative approximations
(e.g. may not be full when full signal is true)

= Can be modeled precisely by 3 FIFOs in sequence

€ Other interfaces are possible
s e.g. split-phase memory

We call such modules synchronizers

33

Partitioning the Ogg
Vorbis Example

34

Ogg Vorbis Backend code

g
T//State

FIFO#(IMDCTReqData) toimdctQ <- mkFIFO;

IFFT 1fft <- mkIFFT(); Windower window <- mkWindow;
Reg icnt <- mkReg(0); Reg ocnt <- mkReg(0);
Array i1Frame <- mkArray(); Array oFrame <- mkArray();
//Rules & Methods

method addData(x) = toimdctQ.enqg(x);

rule setConfiguration;..ifft.config..window..

rule putFramelnlFFT when (icnt < n);
How do we partition
this?

ifft.inputData(iframe[icnt]);
icnt <= i1cnt+l;

rule getFrameFromlFFT when (ocnt < n);
rv <- 1fft.outputData();
oframefocnt] <= rv;
ocnt <= ocnt+1;

rule enterWindow(ocnt == n);
window.enter(oframe); ocnt <=0;

method pcmoutput() = window.getOutput();

35

N

Partitions

- #Two partitions
= HW IFFT, SW IMDCT FSM & Windower

s HW IMDCT (IFFT & FSM), SW
Windower

4

FrontEnd

36

N

Partitioning the Design
IFFT iIn HW Red is HW

“//State

FIFO#(IMDCTReqData) toimdctQ <- mkFIFO;

IFFT 1fft <- mkIFFT(); Windower window <- mkWindow;
Reg icnt <- mkReg(0); Reg ocnt <- mkReg(0);

Array i1Frame <- mkArray(); Array oFrame <- mkArray();
//Rules

method addData(x) = toimdctQ.enqg(x);
Rule setIMDCTData;
rule setConfiguration;..ifft.config
rule putFramelnlFFT when (icnt < n);
ifft.inputData(iframe[icnt]);
icnt <= i1cnt+]1;
rule getFrameFromlFFT when (ocnt < n);
rv <- i1fft.outputData();
oframefocnt] <= rv;
ocnt <= ocnt+1;
rule enterWindow(ocnt == n);
window.enter(oframe); ocnt <= O;
method pcmoutput() = window.getOutput();

Fails our 1

domain per
rule restriction

37

Making Single Domain
IFFT iIn HW

N

rule sendDataTolFFT when (icnt < n);
let X <- sync.toHW[O].put(iframe[icnt]);
icnt <= 1Ccnt+l; @
rule putFramelnlFFT;
let X <- sync.toHW[O0].get();
ifft. inputData(x);
rule sendDataFromlFFT();
let v <- 1fft.outputData();
sync.toSW[O] .-put(v);
rule getFrameFromlFFT when (ocnt < n); ¢
rv <- sync.toSW[0].get();
oframefJocnt] <= rv; ocnt <= ocnt+]l;
rule setConfigurationSw ..
. sync.toHW[1]-put(.).. window.config(..)
rule setConfigurationHw ..
~SYRC-EOHW]1}-get)« FFE-config)

Rules

JSynchronizer#(Z,l) sync <- mkBusSynchronizer(SW, HW);

Add bidirectional
synchronizer (2
virtual channels SW
to HW, 1 HW to
SW)

Split rules to fix
domain restrictions

38

N

Partitioning the Design
IMDCT Iin HW

J//State

FIFO#(IMDCTReqData) toimdctQ <- mkFIFO;
IFFT 1fft <- mkIFFT(); Windower window <- mkWindow;
Reg icnt <- mkReg(0); Reg ocnt <- mkReg(0);

Array i1Frame <- mkArray(); Array oFrame <- mkArray();
//Rules

method addData(x)

0|mdctQ enq(x);

rule setConfiguration
rule setIMDCTData;.

rule putFrameInIFFT when (icnt < n); \\\\\\\\\\
ifft.inputData(iframe[icnt]);
icnt <= icnt+l; Breaks
rule getFrameFromlFFT when (ocnt < n); Domain
rv <- 1fft.outputData(); Restriction

oframefocnt] <= rv;
ocnt <= ocnt+l;

rule enterWindow(ocnt == n);
window.enter(oframe); ocnt <=0;

method pcmoutput() = window.getOutput(); 39

N

Making Single Domain Rules

|PV4[:)(:T1_ ir] F{\J\/ Red is HW

J//State

Synchronizer#(2,1) sync <- mkBusSynchronizer(SW, HW);

rule setIMDCTDataSW(hasDatainQ)

imdctQ.deq(); sync.toHW[1].put(imdctQ.Ffirst);

rule setIMDCTDataHW; ..
let X <- sync.toHW[1].get(.);

iframef[1dx] = ..

rule setConfigurationSW(hasConfiginQ);..

sync.toHW[1] -put(..);
rule setConfigurationHw;..
sync.toHW[1] .get(..);
rule enterWindowHW(ocnt == n);
sync.toSW[O].put(oframe); ocnt <= 0;
rule enterWindowSWw;
let X <- sync.toSW[0].get();
window.enter(x);

Split different
rules but same
procedure

40

Making Single Domain Rules

rule sendDataTolFFT;

icnt <= i1cnt+1;

rule putFramelnlFFT when (icnt < n);
let X <- sync.toHW[O0].get();
ifft.inputData(iframe[icnt]);

rule sendDataFromlFFT();
let v <- 1fft.outputData();
sync.toSW[O] .-put(v);

rule getFrameFromlFFT when (ocnt < n);
rv <- sync.toSW[0].get();
oframefocnt] <= rv;
ocnt <= ocnt+1;

rule setConfigurationSw ..

g
\JSynchronizer#(Z,l) sync <- mkBusSynchronizer(SW, HW);

let X <- sync.toHW[O].put(iframe[icnt]);

Same idea. Different
rules need to be split

. sync.toHW[1].-put(..).. window.config(..)

rule setConfigurationHW ..

. sync.toHW[1] .get(..).. ifft.config(.)..

N

Outline

¢ & @@

#Encapsulating the Bus
®Compilation Results
Verification

Implementing a Bus-based

Synchronizer

N

C code to Physical

interface BuS g
With Bus

This is a natural abstraction for the communication channel

May be complicated by burst reads/writes, Random access memory-
like communication, failing writes, multiplexing onto same bus.

43

N

Retargeting Design

» Sync
_)
e
SW
® Initial: “Embedded FPGA” design
n HW: FPGA

m SW: on FPGA PowerPC
= Communication via Processor Local Bus (PLB)
® New: Accelerator for General Purpose Processor
. HW: FPGA
= SW: On CPU
= Communication via PCI-Express
® All design specific aspects limited to synchronizer
m Easy to replace. Some variations due to bursts, etc.

44

Making It more Complicated:

N

SW
state

'\

Sharing a Bus Interface

—
o

Sync

O

-
*t/
=

HW
state

& 3 bus interfaces on the same bus is generally not reasonable
» Large HW cost, redundant
& User can multiplex onto a single synchronizer
= We can represent the Multiplexing logic in BCL directly
s Query: How does this affect performance/correctness?

45

N

Outline

$Motivation
#Bluespec Codesign Language

#Software Compilation
#Partitioning
#Encapsulating the Bus
®#Compilation Results
®Verification

Ogg Vorbis Implementations:
Platforms

N

& FPGA Accelerator
= HW: XUPV5-LX110T FPGA

m SW: 2.8GHz Nehalem Westmere CPU with 3GB of
RAM

= Communication: PCIl-Express using the Standard Co-
Emulation and Modeling Infrastructure (SCE-MI)

€ Embedded System:
m HW: XUPV5-LX110T FPGA
s SW: Microblaze softcore implemented in FPGA

= Communication: point-to-point communication
channels called the Fast Simplex Links (FSLSs).

47

N
\J

W | ryona
T i = i L i

FPGA Accelerator Platform

m

7oA (Rego)

ﬂ

Embedded FPGA Platform

All done in a matter of minutes!

3/28/2011

48

Software Overhead

N

® The rule-based abstraction introduces overhead:
» Overhead of running incorrect rules

s Shadowing state for rule which may fail partway through
execution

® 4 implementations of a Ray Tracer:
= Hand coded C++ software model (1x)
s Our automatically generated HW/SW design (1.7x)
s Automaticallt generated HW/SW with ideal schedule (1.2x)
|

Handtuned schedule on generated design and optimized to
remove unneeded shadowing (—1.01x)

® Initial performance results are promising.

N

Outline

$Motivation
#Bluespec Codesign Language

#Software Compilation
#Partitioning
#Encapsulating the Bus
$#Compilation Results
®Verification

The problem with
Verification

N

#Formal abstractions are too
complicated for most users

s Temporal logic spec of a FIFO

#Most successes from models with
simple abstractions & modularity

s Type checking
s Language-level equivalence (FSM)

€L everage these in the BCL context

o1

BCL Verification

N

% . .
€ Consider the equivalence of BCL programs
s Can be converted to module equivalence

€ BCL iIs inherently nondeterministic at this level
s Can represent more “spec”-like behavior in the
language itself

= Intuitively, we expect to find errors with shorter
number of rules executions (minimal trace)

& All the awkwardness of HW/SW timing Is
abstracted
s Safe over approximation

» Can reach closer to the realized schedule In
iImplementation by representing scheduling as program
transform

KEY: Verifying the actual design

52

N

A rule-based description

ﬁ? ﬁ{;
registerrl =0,r2=0

outQ fifo inQ, outQ

prod-cons

rule producer-consumer when (linQ.empty && 'outQ.full):
let x = IinQ.first;
lety = f1(x,rl);
let z = f2(y,r2);
ri:=vy;r2:=z
outQ.enq(z); inQ.deq;

53

N

>
inQ "fe‘

rule produce when

let x = InQ.first;
lety = f1(x,rl);

g.enq(y); inQ.deq;
ri:=y

('g.full && 'inQ.empty):

r2

cons

Rules for the Refined System

registerrl =0,r2 =0
fifo g, InQ, outQ

outQ

rule consume when
(!g.empty && loutQ.full):
let y = q.first;
let z = f2(y,r2);
outQ.enq(z); q.deq;
r2 := z;

54

Possible executions of the

N

two rule system

rule produce when } 1
('g.full && 'inQ.empty): ’

let x = inQ.first; lety = f1(x,rl); inQ '
g.enq(y); inQ.deq; rl :=vy;

‘ >
rule consume when
('qg.empty && loutQ.full):

lety = qg.first; let z = f2(y,r2);

outQ.enq(z); q.deq; r2 := z;
Some schedules worth considering:

prod; cons; prod; cons; prod,; cons;...
prod; prod; cons; prod; cons; prod; cons;...
prod; prod; cons; cons; prod; prod;...

55

In what sense are these

N

two systems the same?

let x = InQ.first;
lety = f1(x,rl);
let z = f2(y,r2);
ri:=vy;r2:=z;

outQ.enq(z); inQ.deq;

rule producer-consumer when (linQ.empty && !outQ.full):

registerrl =0,r2=0
INQ, outQ

Original System T
Refined System i

same set
of state
transitions

When are states equivalent?

N

S

prod-cons

@ If g Is empty: the remaining state matches

@ If g IS non-empty: many choices (Run cons,
Undo prod, etc.) | Tricky to encode in function

& Practically, user can only give a partial
condition

In our example: (f: T -> S) elides g and is defined
only when g is empty.

Equivalence: Intuition

N

& Programs S and T equal if for each schedule of
S, there’s a schedule of T where each state
that could match, does.

m (l.e. If S reaches a state with a match, then T
reaches the corresponding state and vice versa)

So S TS > S3

To > T, > T, > T,

58

Automatic Verification

N

®This can be verified by coinduction
on the schedules
s FInd finite prefix cover for schedules

of T which has a correspondence to a
schedule In S

= Can be reduced to relatively small set
of simple SMT queries

59

A more Interesting example:
4-stage Pipeline

BrPred DMEM

N

IMEM RF

<

@ Speculative w/ multi-cycle memory
#® Unpipelined: (FD;E;M;W)*
@ Pipelined: (W;M;E;FD)*

July 18, 2011

Split Fetch and Decode

BrPred DMEM

N

RF |

@Initial tool verifies this refinement in a
matter of minutes
s 21 queries considering length 3 prefixes
= Can be made much faster (=10x)

July 18, 2011

N

Summary

#BCL provides:

= A clean abstraction allowing HW and
SW to be unified

s Has enough precision in result to
allow the user to partition, evaluate,
and tune a design easily.

+ HW is already there, SW is within reach

= Provides good abstraction for
verification purposes

62

N

Thanks

ndave@csl.sri.com

63

