
11

Bluespec Codesign
Language: A Unified
Language to Enable
HW/SW Codesign

Nirav Dave
SRI International

LAW
December 6, 2011

1

22

Modern SoCs

Functionality is determined by power/energy issues
Hardware accelerated solutions consume dramatically
less power than pure software solutions
⇒ Most SoC’s have many specialized blocks

Many SoCs have to support full software stacks which at
the bottom must interact with special purpose hardware
efficiently

22

33

Kinds of Hardware-
Software Interactions

Hardware accelerators
H.264: any block can be
implemented in HW or SW

Hardware calling software
for functionality not
supported in hardware

Software driving hardware
as in testing or simulation

Different scenarios but similar problems

FPGAFPGA

SW
Channel

FPGArequest

response

NAL CAVLC Inv-Quant
Trans

DeblockIntra
Pred

Inter
Pred

B
it
s

Fr
am

es

33

44

Standard HW/SW Design
HW/SW IFC is complex;
must deal with:

Marshalling of data on
fixed-datapath bus
Arbitration of requests
Low-level parallelism
needed for efficient
communication and
control

IFC needs to be set
early in design

Software

Hardware

SW
Team

HW
Team

Bus IFC

4

IFC is difficult to get right the first time around and
changes in IFC later in the design is hard

4

55

Define a more abstract
interface and give the
responsibility of low-
level software to the
HW team

Isolated most of the
SW task, but HW team
still needs to deal with
both HW and SW

Improving the Interface

Software

Hardware

SW
Team

HW
Team

Stable
Interface

Physical
Bus

Interace

SW
Team

HW
Team

Interface:
reqIMDCT(…)
respIMDCT(…)
enable()
interruptOperations()
…

Interface:
writeDataToMem(0x00,…)
startFU(i)
resetFU(i)
getDataFromMem(0xA0,…)
…

55

66

The Real problem
The issue is that HW and SW do not have
the same underlying semantic model

HW is gates and wires operating in parallel
SW is a sequence of instructions

This mismatch leads to this confusion
and errors

Also makes verification expensive and
brittle

66

77

A unified Abstraction
Represent HW and low-level SW in the
same language:

Both need fine grained parallelism
“HW” team only has to deal with 1 language
Provide tools to generate both hardware and
software

Consequences:
Easy to move HW/SW boundary
No data representation/ interfacing issues from
semantic mismatch of C and RTL
Complex bus interface is subsumed in a single
language and can be abstracted cleanly

77

88

Panacea for HW-SW CoDesign
A compiler that takes

A sequential program description
Some performance, cost and power constraints

Automatically:
Identifies what part should be implemented in HW
Parallelizes HW part of design and parallelizes SW
enough to exploit HW’s parallelism
Insert proper HW-SW communication channels
between HW and SW

This is an unrealistic expectation – it is difficult to
convey high-level performance goals, constraints,

suitable microarchitectures and come up with
appropriate partitions

88

99

Our Goal: Facilitate
Exploration

A single parallel language to express both HW and
parallel SW parts of an algorithm

Should be easy to express parallelism naturally

Easy In-source specification of HW/SW partitioning
Should be easy to change partitioning
Designers should be able to reason about communication
channel multiplexing directly in language.

Compiler can easily separate the HW and SW
compilation tasks and generate parts independently

Modularizes compilation and reasoning tasks

Compiler should generate no-compromise hardware and
high-quality software

Clean model for fast verification / testing
99

Outline

Motivation
Bluespec Codesign Language
Compilation
Partitioning
Encapsulating the Bus
Compilation Results
Verification

1111

BCL: State and Rules organized
into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: guard action
Semantics: Repeatedly any rule with valid guard & execute it

interface

module

11

1212

Bluespec Codesign Language
(BCL)

BCL is like Bluespec SystemVerilog (BSV)
Conditionals, guards, and action composition
Action and resource-level modularity
Expressing nondeterminsm/parallelism comes
naturally via rules

Extensions for efficient SW specification
Sequential composition and looping constructs

BCL designs are partitioned into HW and SW
domains which can be compiled separately
and then integrated

HW/SW compiler developed at MIT
HW translates to RTL via BSV Compiler
SW converted to C++

12

1313

BCL

Example: Ogg Vorbis Decoder
Stream
Parser

Floor
Decoder

Residue
Decoder

Windowing

PCM Output

Bits

IMDCT

Ogg Vorbis is a audio
compression format
roughly comparable to
other compression
formats: e.g. MP3, AAC,
WMA.

IMDCT takes the most
computation

Consider only the
backend for BCL

Frontend is natural in
SW

13

1414

A Closer look at IMDCT
Array imdct(int N, Array vx){
// preprocessing loop
for(i = 0; i < N; i++){
vin[i] = convertLo(i,N,vx[i]);
vin[i+N] = convertHi(i,N,vx[i]);

}

// postprocessing loop
for(i = 0; i < N; i++){
int idx = bitReverse(i);
vout[idx] = convertResult(i,N,vifft[i]);

}
return vout;

}

// do the IFFT
vifft = ifft(2*N, vin);

Suppose we want to use
hardware to accelerate
FFT/IFFT computation

1515

Combinational IFFT

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

P
erm

u
te

P
erm

u
te

P
erm

u
te

All numbers are complex
and represented as two
sixteen bit quantities.
Fixed-point arithmetic is
used to reduce area,
power, ...

*

*

*

*

+

-

-

+

+

-

-

+

*j
t2

t0

t3

t1

1616

4-way Butterfly
function Vector#(4,Complex) bfly4

(Vector#(4,Complex) t, Vector#(4,Complex) k);

Vector#(4,Complex) m, y, z;

m[0] = k[0] * t[0]; m[1] = k[1] * t[1];
m[2] = k[2] * t[2]; m[3] = k[3] * t[3];

y[0] = m[0] + m[2]; y[1] = m[0] – m[2];
y[2] = m[1] + m[3]; y[3] = i*(m[1] – m[3]);

z[0] = y[0] + y[2]; z[1] = y[1] + y[3];
z[2] = y[0] – y[2]; z[3] = y[1] – y[3];

return(z);
endfunction

Polymorphic code:
works on any type
of numbers for
which *, + and -
have been defined

*

*

*

*

+

-

-

+

+

-

-

+

*i

m y z

Note: Vector does not mean storage

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

P
erm

u
te

P
erm

u
te

P
erm

u
te

stage_fstage_f stage_f

Stage_f Function

18

Code for stage_f
function Vector#(64, Complex) stage_f

(Bit#(2) stage, Vector#(64, Complex) stage_in);
begin
for (Integer i = 0; i < 16; i = i + 1)
begin
Integer idx = i * 4;
let twid = getTwiddle(stage, fromInteger(i));
let y = bfly4(twid, stage_in[idx:idx+3]);
stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1];
stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];

end
//Permutation
for (Integer i = 0; i < 64; i = i + 1)

stage_out[i] = stage_temp[permute[i]];
end

return(stage_out);

19

Code: Combinational IFFT
function Vector#(64, Complex) ifft

(Vector#(64, Complex) in_data);
//Declare vectors
Vector#(4,Vector#(64, Complex)) stage_data;
//Define stage results
stage_data[0] = in_data;

for (Integer stage = 0; stage < 3; stage = stage + 1)
stage_data[stage+1] = stage_f(stage,stage_data[stage]);
return(stage_data[3]);

endfunction

2020

Suppose we wanted to
pipeline the IFFT…

Elastic pipeline

x
fifo1inQ

f0 f1 f2

fifo2 outQ

rule stage1 (True);
fifo1.enq(f0(inQ.first());
inQ.deq(); endrule

rule stage2 (True);
fifo2.enq(f1(fifo1.first());

fifo1.deq(); endrule
rule stage3 (True);

outQ.enq(f2(fifo2.first());
fifo2.deq(); endrule

Represent each
stage as a rule

Firing conditions?

Can only fire when
it has data and
space in next buffer

Suppose we want to reduce
the area

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

P
erm

u
te

P
erm

u
te

P
erm

u
te

Reuse the same circuit three times

Folded pipeline

rule folded-pipeline (True);
if (stage==0)

begin sxIn= inQ.first(); inQ.deq(); end
else sxIn= sReg;
sxOut = f(stage,sxIn);
if (stage==n-1) outQ.enq(sxOut);
else sReg <= sxOut;
stage <= (stage==n-1)? 0 : stage+1;

endrule

x

sReg
inQ

f

outQstage

2424

Dilemma: Designing to the
substrate

HW generation is well understood and automatable
Combinational – single-cycle large combinational cloud
Elastic Pipeline – Full throughput pipeline
Folded Pipeline – Multi-cycle FSM

SW generation from rule is new
Good conversions from combinational is trivial
Generating good code from the pipelines is a little tricky
(selecting a schedule to factor out bookkeeping operations)

In general different algorithms are more appropriate
for hardware than software (or vice versa)

Designers should be aware of these tradeoffs and reason
about them as a first-order concern

Outline

Motivation
Bluespec Codesign Language
Compilation
Partitioning
Encapsulating the Bus
Compilation Results
Verification

Generating HW
Each rule in the design is executed in a
single clock cycle
Convert each rule into (State Bool x
State) function
Greedy algorithm to select which rules
to fire each cycle:

Static total ordering of rules
Must have a total ordering of rules executed
Considers port resources

As good as hand-written RTL!

26

2727

SW Compilation:
Syntax Directed Scheme

Each Module definition becomes a C++ class
Each BCL method/rule is a class method
Methods to create and merge shadow copies (parallel
and sequence)

Lazy STM-style conversion of rules
Keep a mapping to current notion of state which is
committed when complete
Actions translate to C++ statements
Expressions to an C++ expression and a statement
which must be evaluated before expression is valid
Rule translate to methods which return a boolean
signifying success of execution

Runtime instantiates top-level design and decides
how run our rule procedures

2828

SW Optimizations
Sequentialization – Convert Parallel
compositions to sequential ones

Guard Lifting – Exit early on failing executions

Shadow Minimization – higher granularity
shadow generation reduces copying

Shadow Reuse – Reuse the same shadow
across different rule executions

28

2929

Future Work: Scheduling
Choice of what order to execute rules is a key
decision for efficiency

In HW rules execute in parallel (“free”
parallelism)

In SW, we must balance between:
Locality – Merge rules into larger rule (StreaMIT-
style synchronous data flow)
Thread Parallelism – pipeline parallelism

Lots of work remaining (Myron King’s PhD)

29

Outline

Motivation
Bluespec Codesign Language
Compilation
Partitioning
Encapsulating the Bus
Compilation Results
Verification

3131

Computational Domains

Any expression/action can be
implemented in either HW or SW

To ease implementation burden and
understandability we insist that each
rule operates in a single domain

Same follows for methods and expressions

3232

Partitioning Rules

Only touched by
one domain

Methods in red and
green domains

A method in each
domain

32

3333

We need primitive domain-
crossing modules

Simple directional channel
enq in one domain and deq/first/pop in another
full/empty signals are conservative approximations

(e.g. may not be full when full signal is true)
Can be modeled precisely by 3 FIFOs in sequence

Other interfaces are possible
e.g. split-phase memory

FIFO

We call such modules synchronizers
33

3434

Partitioning the Ogg
Vorbis Example

3535

Ogg Vorbis Backend code
//State
FIFO#(IMDCTReqData) toimdctQ <- mkFIFO;
IFFT ifft <- mkIFFT(); Windower window <- mkWindow;
Reg icnt <- mkReg(0); Reg ocnt <- mkReg(0);
Array iFrame <- mkArray(); Array oFrame <- mkArray();
//Rules & Methods
method addData(x) = toimdctQ.enq(x);
rule setConfiguration;…ifft.config…window…
rule putFrameInIFFT when (icnt < n);
ifft.inputData(iframe[icnt]);
icnt <= icnt+1;

rule getFrameFromIFFT when (ocnt < n);
rv <- ifft.outputData();
oframe[ocnt] <= rv;
ocnt <= ocnt+1;

rule enterWindow(ocnt == n);
window.enter(oframe); ocnt <=0;

method pcmoutput() = window.getOutput();

How do we partition
this?

35

3636

Partitions
Two partitions

HW IFFT, SW IMDCT FSM & Windower
HW IMDCT (IFFT & FSM), SW
Windower

WindowingWindowing

IMDCTIMDCT

FrontEndFrontEnd

ParameterParameter
TablesTables

IFFTIFFT
CoreCore

IMDCT FSMsIMDCT FSMs

WindowWindow
ParamsParams

Adder Adder
FSMFSM

WindowingWindowing

IMDCTIMDCT

FrontEndFrontEnd

ParameterParameter
TablesTables

IFFTIFFT
CoreCore

IMDCT FSMsIMDCT FSMs

WindowWindow
ParamsParams

Adder Adder
FSMFSM

3737

Partitioning the Design
IFFT in HW
//State
FIFO#(IMDCTReqData) toimdctQ <- mkFIFO;
IFFT ifft <- mkIFFT(); Windower window <- mkWindow;
Reg icnt <- mkReg(0); Reg ocnt <- mkReg(0);
Array iFrame <- mkArray(); Array oFrame <- mkArray();
//Rules
method addData(x) = toimdctQ.enq(x);
Rule setIMDCTData;
rule setConfiguration;…ifft.config
rule putFrameInIFFT when (icnt < n);
ifft.inputData(iframe[icnt]);
icnt <= icnt+1;

rule getFrameFromIFFT when (ocnt < n);
rv <- ifft.outputData();
oframe[ocnt] <= rv;
ocnt <= ocnt+1;

rule enterWindow(ocnt == n);
window.enter(oframe); ocnt <= 0;

method pcmoutput() = window.getOutput();

Fails our 1
domain per
rule restriction

37

Red is HW

3838

Making Single Domain Rules
IFFT in HW
Synchronizer#(2,1) sync <- mkBusSynchronizer(SW, HW);
rule sendDataToIFFT when (icnt < n);
let x <- sync.toHW[0].put(iframe[icnt]);
icnt <= icnt+1;

rule putFrameInIFFT;
let x <- sync.toHW[0].get();
ifft.inputData(x);

rule sendDataFromIFFT();
let v <- ifft.outputData();
sync.toSW[0].put(v);

rule getFrameFromIFFT when (ocnt < n);
rv <- sync.toSW[0].get();
oframe[ocnt] <= rv; ocnt <= ocnt+1;

rule setConfigurationSW …
… sync.toHW[1].put(…)… window.config(…)

rule setConfigurationHW …
… sync.toHW[1].get(…)… ifft.config(…)

Add bidirectional
synchronizer (2
virtual channels SW
to HW, 1 HW to
SW)

Split rules to fix
domain restrictions

38

3939

Partitioning the Design
IMDCT in HW
//State
FIFO#(IMDCTReqData) toimdctQ <- mkFIFO;
IFFT ifft <- mkIFFT(); Windower window <- mkWindow;
Reg icnt <- mkReg(0); Reg ocnt <- mkReg(0);
Array iFrame <- mkArray(); Array oFrame <- mkArray();
//Rules
method addData(x) = toimdctQ.enq(x);
rule setConfiguration;…
rule setIMDCTData;…
rule putFrameInIFFT when (icnt < n);
ifft.inputData(iframe[icnt]);
icnt <= icnt+1;

rule getFrameFromIFFT when (ocnt < n);
rv <- ifft.outputData();
oframe[ocnt] <= rv;
ocnt <= ocnt+1;

rule enterWindow(ocnt == n);
window.enter(oframe); ocnt <=0;

method pcmoutput() = window.getOutput(); 39

Breaks
Domain

Restriction

4040

Making Single Domain Rules
IMDCT in HW
//State
Synchronizer#(2,1) sync <- mkBusSynchronizer(SW, HW);

rule setIMDCTDataSW(hasDatainQ)
imdctQ.deq(); sync.toHW[1].put(imdctQ.first);

rule setIMDCTDataHW;…
let x <- sync.toHW[1].get(…);
iframe[idx] = …

rule setConfigurationSW(hasConfiginQ);…
sync.toHW[1].put(…);

rule setConfigurationHW;…
sync.toHW[1].get(…);

rule enterWindowHW(ocnt == n);
sync.toSW[0].put(oframe); ocnt <= 0;
rule enterWindowSW;
let x <- sync.toSW[0].get();
window.enter(x);

40

Split different
rules but same
procedure

Red is HW

4141

Making Single Domain Rules
Synchronizer#(2,1) sync <- mkBusSynchronizer(SW, HW);
rule sendDataToIFFT;
let x <- sync.toHW[0].put(iframe[icnt]);
icnt <= icnt+1;

rule putFrameInIFFT when (icnt < n);
let x <- sync.toHW[0].get();
ifft.inputData(iframe[icnt]);

rule sendDataFromIFFT();
let v <- ifft.outputData();
sync.toSW[0].put(v);

rule getFrameFromIFFT when (ocnt < n);
rv <- sync.toSW[0].get();
oframe[ocnt] <= rv;
ocnt <= ocnt+1;

rule setConfigurationSW …
… sync.toHW[1].put(…)… window.config(…)

rule setConfigurationHW …
… sync.toHW[1].get(…)… ifft.config(…)…

41

Same idea. Different
rules need to be split

Outline

Motivation
Bluespec Codesign Language
Compilation
Partitioning
Encapsulating the Bus
Compilation Results
Verification

4343

Implementing a Bus-based
Synchronizer

FIFO
C code to
interface
With Bus

RTL to
interface
With Bus

Physical
Bus

This is a natural abstraction for the communication channel

May be complicated by burst reads/writes, Random access memory-
like communication, failing writes, multiplexing onto same bus.

43

4444

Retargeting Design

Initial: “Embedded FPGA” design
HW: FPGA
SW: on FPGA PowerPC
Communication via Processor Local Bus (PLB)

New: Accelerator for General Purpose Processor
HW: FPGA
SW: On CPU
Communication via PCI-Express

All design specific aspects limited to synchronizer
Easy to replace. Some variations due to bursts, etc.

Sync

SW HW

44

4545

Making it more Complicated:
Sharing a Bus Interface

3 bus interfaces on the same bus is generally not reasonable
Large HW cost, redundant

User can multiplex onto a single synchronizer
We can represent the Multiplexing logic in BCL directly
Query: How does this affect performance/correctness?

SW
state

HW
state

Synchronizer

Synchronizer

Synchronizer

Sync

45

Outline

Motivation
Bluespec Codesign Language
Software Compilation
Partitioning
Encapsulating the Bus
Compilation Results
Verification

4747

Ogg Vorbis Implementations:
Platforms

FPGA Accelerator
HW: XUPv5-LX110T FPGA
SW: 2.8GHz Nehalem Westmere CPU with 3GB of
RAM
Communication: PCI-Express using the Standard Co-
Emulation and Modeling Infrastructure (SCE-MI)

Embedded System:
HW: XUPv5-LX110T FPGA
SW: Microblaze softcore implemented in FPGA
Communication: point-to-point communication
channels called the Fast Simplex Links (FSLs).

47

3/28/2011 483/28/2011 48

FrontEnd SW

IMDCT HW Hybrid SW

Windowing HW SW HW SW HW SW

FPGA Accelerator Platform

Speed (s) 8.9 28.1 84.9 102 316 38.9

FPGA (Regs) 36% 32% 40% 36% 34% 0

FPGA (Slices) 22% 22% 20% 21% 23% 0

Embedded FPGA Platform

Speed (s) 114 231 414 424 876 896

FPGA (Regs) 36% 35% 38% 37% 35% 33%

FPGA (Slices) 36% 35% 33% 34% 37% 39%

Results

48

All done in a matter of minutes!

Software Overhead

The rule-based abstraction introduces overhead:
Overhead of running incorrect rules
Shadowing state for rule which may fail partway through
execution

4 implementations of a Ray Tracer:
Hand coded C++ software model (1x)
Our automatically generated HW/SW design (1.7x)
Automaticallt generated HW/SW with ideal schedule (1.2x)
Handtuned schedule on generated design and optimized to
remove unneeded shadowing (~1.01x)

Initial performance results are promising.

Outline

Motivation
Bluespec Codesign Language
Software Compilation
Partitioning
Encapsulating the Bus
Compilation Results
Verification

The problem with
Verification

Formal abstractions are too
complicated for most users

Temporal logic spec of a FIFO

Most successes from models with
simple abstractions & modularity

Type checking
Language-level equivalence (FSM)

Leverage these in the BCL context
51

5252

BCL Verification
Consider the equivalence of BCL programs

Can be converted to module equivalence

BCL is inherently nondeterministic at this level
Can represent more “spec”-like behavior in the
language itself
Intuitively, we expect to find errors with shorter
number of rules executions (minimal trace)

All the awkwardness of HW/SW timing is
abstracted

Safe over approximation
Can reach closer to the realized schedule in
implementation by representing scheduling as program
transform

5252
KEY: Verifying the actual design

prod-cons

f1 f2

r1 r2

x zy

inQ outQ

A rule-based description

53

rule producer-consumer when (!inQ.empty && !outQ.full):
let x = inQ.first;
let y = f1(x,r1);
let z = f2(y,r2);
r1 := y; r2 := z
outQ.enq(z); inQ.deq;

register r1 = 0, r2 = 0
fifo inQ, outQ

53

prod cons

f1 f2

r1 r2

x zy y’

inQ

Rules for the Refined System

54

rule consume when
(!q.empty && !outQ.full):

let y = q.first;
let z = f2(y,r2);
outQ.enq(z); q.deq;
r2 := z;

rule produce when
(!q.full && !inQ.empty):

let x = inQ.first;
let y = f1(x,r1);
q.enq(y); inQ.deq;
r1 := y

register r1 = 0, r2 = 0
fifo q, inQ, outQ

54

Possible executions of the
two rule system

55

rule consume when
(!q.empty && !outQ.full):

let y = q.first; let z = f2(y,r2);
outQ.enq(z); q.deq; r2 := z;

rule produce when
(!q.full && !inQ.empty):

let x = inQ.first; let y = f1(x,r1);
q.enq(y); inQ.deq; r1 := y;

Some schedules worth considering:

prod; cons; prod; cons; prod; cons;…
prod; prod; cons; prod; cons; prod; cons;…
prod; prod; cons; cons; prod; prod;…

55

prod cons

f1 f2

r1 r2

x zy y’

inQ

In what sense are these
two systems the same?

56

rule producer-consumer when (!inQ.empty && !outQ.full):
let x = inQ.first;
let y = f1(x,r1);
let z = f2(y,r2);
r1 := y; r2 := z;
outQ.enq(z); inQ.deq;

register r1 = 0, r2 = 0
inQ, outQ

rule consume when
(!q.empty && !outQ.full):

let y = q.first;
let z = f2(y,r2);
outQ.enq(z); q.deq;
r2 := z;

rule produce when
(!q.full && !inQ.empty):

let x = inQ.first;
let y = f1(x,r1);
q.enq(y); inQ.deq;
r1 := y

register r1 = 0, r2 = 0
fifo q, inQ, outQ

Original System
Refined System

same set
of state

transitions
?

56

When are states equivalent?

If q is empty: the remaining state matches

If q is non-empty: many choices (Run cons,
Undo prod, etc.)

Practically, user can only give a partial
condition

57

prod cons

f1 f2

r1 r2

inQ

prod-cons

f1 f2

r1 r2

inQ outQ

In our example: (f: T -> S) elides q and is defined
only when q is empty.

S: T:

Tricky to encode in function

Equivalence: Intuition
Programs S and T equal if for each schedule of
S, there’s a schedule of T where each state
that could match, does.

(i.e. if S reaches a state with a match, then T
reaches the corresponding state and vice versa)

58

S0 S2

T0 T1

S3

T3

S1

T2

ff f

…

…

Automatic Verification

This can be verified by coinduction
on the schedules

Find finite prefix cover for schedules
of T which has a correspondence to a
schedule in S
Can be reduced to relatively small set
of simple SMT queries

59

A more interesting example:
4-stage Pipeline

Speculative w/ multi-cycle memory
Unpipelined: (FD;E;M;W)*
Pipelined: (W;M;E;FD)*

60

F D

PC

E M W

July 18, 2011

Split Fetch and Decode

Initial tool verifies this refinement in a
matter of minutes

21 queries considering length 3 prefixes
Can be made much faster (>10x)

61

F D

PC

E M W

July 18, 2011

Summary
BCL provides:

A clean abstraction allowing HW and
SW to be unified
Has enough precision in result to
allow the user to partition, evaluate,
and tune a design easily.

HW is already there, SW is within reach

Provides good abstraction for
verification purposes

62

6363

Thanks

ndave@csl.sri.com

63

