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Modern SoCs

Functionality is determined by power/energy issues
Hardware accelerated solutions consume dramatically 
less power than pure software solutions
⇒ Most SoC’s have many specialized blocks

Many SoCs have to support full software stacks which at 
the bottom must interact with special purpose hardware 
efficiently 
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Kinds of Hardware-
Software Interactions

Hardware accelerators
H.264: any block can be 
implemented in HW or SW

Hardware calling software 
for functionality not 
supported in hardware

Software driving hardware 
as in testing or simulation

Different scenarios but similar problems 
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Standard HW/SW Design
HW/SW IFC is complex; 
must deal with:

Marshalling of data on 
fixed-datapath bus 
Arbitration of requests
Low-level parallelism 
needed for efficient 
communication and 
control

IFC needs to be set 
early in design

Software

Hardware

SW 
Team

HW 
Team

Bus IFC

4

IFC is difficult to get right the first time around and 
changes in IFC later in the design is hard
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Define a more abstract 
interface and give the 
responsibility of low-
level software to the 
HW team

Isolated most of the 
SW task, but HW team 
still needs to deal with 
both HW and SW

Improving the Interface

Software

Hardware

SW 
Team

HW 
Team

Stable 
Interface

Physical 
Bus 

Interace

SW 
Team

HW 
Team

Interface:
reqIMDCT(…)
respIMDCT(…)
enable()
interruptOperations()
…

Interface:
writeDataToMem(0x00,…) 
startFU(i)
resetFU(i)
getDataFromMem(0xA0,…) 
…
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The Real problem
The issue is that HW and SW do not have 
the same underlying semantic model

HW is gates and wires operating in parallel
SW is a sequence of instructions 

This mismatch leads to this confusion 
and errors

Also makes verification expensive and 
brittle
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A unified Abstraction
Represent HW and low-level SW in the 
same language:

Both need fine grained parallelism
“HW” team only has to deal with 1 language
Provide tools to generate both hardware and 
software

Consequences:
Easy to move HW/SW boundary
No data representation/ interfacing issues from 
semantic mismatch of C and RTL
Complex bus interface is subsumed in a single 
language and can be abstracted cleanly
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Panacea for HW-SW CoDesign
A compiler that takes

A sequential program description
Some performance, cost and power constraints

Automatically:
Identifies what part should be implemented in HW
Parallelizes HW part of design and parallelizes SW 
enough to exploit HW’s parallelism
Insert proper HW-SW communication channels 
between HW and SW

This is an unrealistic expectation – it is difficult to 
convey high-level performance goals, constraints,  

suitable microarchitectures and come up with 
appropriate partitions
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Our Goal: Facilitate 
Exploration

A single parallel language to express both HW and 
parallel SW parts of an algorithm

Should be easy to express parallelism naturally

Easy In-source specification of HW/SW partitioning
Should be easy to change partitioning
Designers should be able to reason about communication 
channel multiplexing directly in language.

Compiler can easily separate the HW and SW 
compilation tasks and generate parts independently

Modularizes compilation and reasoning tasks

Compiler should generate no-compromise hardware and 
high-quality software

Clean model for fast verification / testing
99
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BCL:  State and Rules organized 
into modules

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: guard action
Semantics: Repeatedly any rule with valid guard & execute it

interface

module
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Bluespec Codesign Language 
(BCL)

BCL is like Bluespec SystemVerilog (BSV)
Conditionals, guards, and action composition
Action and resource-level modularity
Expressing nondeterminsm/parallelism comes 
naturally via rules

Extensions for efficient SW specification
Sequential composition and looping constructs

BCL designs are partitioned into HW and SW 
domains which can be compiled separately 
and then integrated

HW/SW compiler developed at MIT
HW translates to RTL via BSV Compiler
SW converted to C++

12
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BCL

Example: Ogg Vorbis Decoder
Stream 
Parser 

Floor 
Decoder 

Residue 
Decoder 

Windowing

PCM Output

Bits

IMDCT

Ogg Vorbis is a audio 
compression format 
roughly comparable to 
other compression 
formats: e.g. MP3, AAC, 
WMA.

IMDCT takes the most 
computation

Consider only the 
backend for BCL

Frontend is natural in 
SW 
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A Closer look at IMDCT
Array imdct(int N, Array vx){
// preprocessing loop
for(i = 0; i < N; i++){
vin[i]   = convertLo(i,N,vx[i]);
vin[i+N] = convertHi(i,N,vx[i]); 

}

// postprocessing loop
for(i = 0; i < N; i++){
int idx = bitReverse(i);
vout[idx] = convertResult(i,N,vifft[i]);

}
return vout; 

}

// do the IFFT
vifft = ifft(2*N, vin);

Suppose we want to use 
hardware to accelerate 
FFT/IFFT computation
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Combinational IFFT
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4-way Butterfly
function Vector#(4,Complex) bfly4

(Vector#(4,Complex) t,  Vector#(4,Complex) k);

Vector#(4,Complex) m, y, z;

m[0] = k[0] * t[0]; m[1] = k[1] * t[1]; 
m[2] = k[2] * t[2]; m[3] = k[3] * t[3];

y[0] = m[0] + m[2]; y[1] = m[0] – m[2]; 
y[2] = m[1] + m[3]; y[3] = i*(m[1] – m[3]);

z[0] = y[0] + y[2]; z[1] = y[1] + y[3];
z[2] = y[0] – y[2]; z[3] = y[1] – y[3];

return(z);
endfunction

Polymorphic code: 
works on any type 
of numbers for 
which *, + and -
have been defined
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Note: Vector does not mean storage
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Code for stage_f
function Vector#(64, Complex) stage_f

(Bit#(2) stage, Vector#(64, Complex) stage_in);
begin
for (Integer i = 0; i < 16; i = i + 1)
begin
Integer idx = i * 4;
let twid = getTwiddle(stage, fromInteger(i));
let y = bfly4(twid, stage_in[idx:idx+3]);
stage_temp[idx]   = y[0]; stage_temp[idx+1] = y[1];
stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];

end
//Permutation
for (Integer i = 0; i < 64; i = i + 1)

stage_out[i] = stage_temp[permute[i]];
end

return(stage_out);
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Code: Combinational IFFT
function Vector#(64, Complex) ifft 

(Vector#(64, Complex) in_data);
//Declare vectors
Vector#(4,Vector#(64, Complex)) stage_data;
//Define stage results
stage_data[0] = in_data;

for (Integer stage = 0; stage < 3; stage = stage + 1)
stage_data[stage+1] = stage_f(stage,stage_data[stage]);
return(stage_data[3]);

endfunction
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Suppose we wanted to 
pipeline the IFFT…



Elastic pipeline

x
fifo1inQ

f0 f1 f2

fifo2 outQ

rule stage1 (True);
fifo1.enq(f0(inQ.first());
inQ.deq(); endrule

rule stage2 (True);
fifo2.enq(f1(fifo1.first()); 

fifo1.deq(); endrule
rule stage3 (True);

outQ.enq(f2(fifo2.first()); 
fifo2.deq(); endrule

Represent each 
stage as a rule

Firing conditions?

Can only fire when 
it has data and 
space in next buffer



Suppose we want to reduce 
the area
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Reuse the same circuit three times 



Folded pipeline

rule folded-pipeline (True);
if (stage==0) 

begin sxIn= inQ.first(); inQ.deq(); end
else sxIn= sReg; 
sxOut = f(stage,sxIn);
if (stage==n-1) outQ.enq(sxOut);
else sReg <= sxOut;
stage <= (stage==n-1)? 0 : stage+1;

endrule

x

sReg
inQ

f

outQstage
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Dilemma: Designing to the 
substrate

HW generation is well understood and automatable
Combinational – single-cycle large combinational cloud
Elastic Pipeline – Full throughput pipeline
Folded Pipeline – Multi-cycle FSM 

SW generation from rule is new
Good conversions from combinational is trivial
Generating good code from the pipelines is a little tricky 
(selecting a schedule to factor out bookkeeping operations) 

In general different algorithms are more appropriate 
for hardware than software (or vice versa)

Designers should be aware of these tradeoffs and reason 
about them as a first-order concern
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Generating HW
Each rule in the design is executed in a 
single clock cycle
Convert each rule into (State Bool x 
State) function
Greedy algorithm to select which rules 
to fire each cycle:

Static total ordering of rules
Must have a total ordering of rules executed
Considers port resources

As good as hand-written RTL!
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SW Compilation:
Syntax Directed Scheme

Each Module definition becomes a C++ class
Each BCL method/rule is a class method
Methods to create and merge shadow copies (parallel 
and sequence)

Lazy STM-style conversion of rules
Keep a mapping to current notion of state which is 
committed when complete
Actions translate to C++ statements
Expressions to an C++ expression and a statement 
which must be evaluated before expression is valid
Rule translate to methods which return a boolean 
signifying success of execution

Runtime instantiates top-level design and decides 
how run our rule procedures
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SW Optimizations
Sequentialization – Convert Parallel 
compositions to sequential ones 

Guard Lifting – Exit early on failing executions

Shadow Minimization – higher granularity 
shadow generation reduces copying

Shadow Reuse – Reuse the same shadow 
across different rule executions

28
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Future Work: Scheduling
Choice of what order to execute rules is a key 
decision for efficiency

In HW rules execute in parallel (“free”
parallelism)

In SW, we must balance between:
Locality – Merge rules into larger rule (StreaMIT-
style synchronous data flow)
Thread Parallelism – pipeline parallelism

Lots of work remaining (Myron King’s PhD)

29
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Computational Domains

Any expression/action can be 
implemented in either HW or SW

To ease implementation burden and 
understandability we insist that each 
rule operates in a single domain

Same follows for methods and expressions
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Partitioning Rules

Only touched by 
one domain

Methods in red and 
green domains

A method in each 
domain

32
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We need primitive domain-
crossing modules

Simple directional channel
enq in one domain and deq/first/pop in another
full/empty signals are conservative approximations

(e.g. may not be full when full signal is true)
Can be modeled precisely by 3 FIFOs in sequence

Other interfaces are possible
e.g. split-phase memory

FIFO

We call such modules synchronizers
33
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Partitioning the Ogg 
Vorbis Example
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Ogg Vorbis Backend code 
//State
FIFO#(IMDCTReqData) toimdctQ <- mkFIFO;
IFFT  ifft   <- mkIFFT(); Windower window <- mkWindow;
Reg   icnt   <- mkReg(0);  Reg   ocnt   <- mkReg(0);
Array iFrame <- mkArray(); Array oFrame <- mkArray(); 
//Rules & Methods
method addData(x) = toimdctQ.enq(x);
rule setConfiguration;…ifft.config…window…
rule putFrameInIFFT when (icnt < n);
ifft.inputData(iframe[icnt]);
icnt <= icnt+1;

rule getFrameFromIFFT when (ocnt < n);
rv <- ifft.outputData();
oframe[ocnt] <= rv;
ocnt <= ocnt+1;

rule enterWindow(ocnt == n);
window.enter(oframe); ocnt <=0;

method pcmoutput() = window.getOutput();

How do we partition 
this?

35
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Partitions
Two partitions

HW IFFT, SW IMDCT FSM & Windower
HW IMDCT (IFFT & FSM), SW 
Windower

WindowingWindowing

IMDCTIMDCT

FrontEndFrontEnd

ParameterParameter
TablesTables

IFFTIFFT
CoreCore

IMDCT FSMsIMDCT FSMs

WindowWindow
ParamsParams

Adder Adder 
FSMFSM

WindowingWindowing

IMDCTIMDCT

FrontEndFrontEnd

ParameterParameter
TablesTables

IFFTIFFT
CoreCore

IMDCT FSMsIMDCT FSMs

WindowWindow
ParamsParams

Adder Adder 
FSMFSM
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Partitioning the Design
IFFT in HW
//State
FIFO#(IMDCTReqData) toimdctQ <- mkFIFO;
IFFT  ifft   <- mkIFFT(); Windower window <- mkWindow;
Reg   icnt   <- mkReg(0);  Reg   ocnt   <- mkReg(0);
Array iFrame <- mkArray(); Array oFrame <- mkArray(); 
//Rules
method addData(x) = toimdctQ.enq(x);
Rule setIMDCTData;
rule setConfiguration;…ifft.config
rule putFrameInIFFT when (icnt < n);
ifft.inputData(iframe[icnt]);
icnt <= icnt+1;

rule getFrameFromIFFT when (ocnt < n);
rv <- ifft.outputData();
oframe[ocnt] <= rv;
ocnt <= ocnt+1;

rule enterWindow(ocnt == n);
window.enter(oframe); ocnt <= 0;

method pcmoutput() = window.getOutput();

Fails our 1 
domain per 
rule restriction

37

Red is HW
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Making Single Domain Rules
IFFT in HW
Synchronizer#(2,1) sync <- mkBusSynchronizer(SW, HW);  
rule sendDataToIFFT when (icnt < n);
let x <- sync.toHW[0].put(iframe[icnt]);
icnt <= icnt+1;

rule putFrameInIFFT;
let x <- sync.toHW[0].get();
ifft.inputData(x);

rule sendDataFromIFFT();
let v <- ifft.outputData();
sync.toSW[0].put(v);

rule getFrameFromIFFT when (ocnt < n);
rv <- sync.toSW[0].get();
oframe[ocnt] <= rv; ocnt <= ocnt+1;

rule setConfigurationSW …
… sync.toHW[1].put(…)… window.config(…)

rule setConfigurationHW …
… sync.toHW[1].get(…)… ifft.config(…)

Add bidirectional 
synchronizer (2 
virtual channels SW 
to HW, 1 HW to 
SW)

Split rules to fix 
domain restrictions

38
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Partitioning the Design
IMDCT in HW
//State
FIFO#(IMDCTReqData) toimdctQ <- mkFIFO;
IFFT  ifft   <- mkIFFT(); Windower window <- mkWindow;
Reg   icnt   <- mkReg(0);  Reg   ocnt   <- mkReg(0);
Array iFrame <- mkArray(); Array oFrame <- mkArray();
//Rules
method addData(x) = toimdctQ.enq(x);
rule setConfiguration;…
rule setIMDCTData;…
rule putFrameInIFFT when (icnt < n);
ifft.inputData(iframe[icnt]);
icnt <= icnt+1;

rule getFrameFromIFFT when (ocnt < n);
rv <- ifft.outputData();
oframe[ocnt] <= rv;
ocnt <= ocnt+1;

rule enterWindow(ocnt == n);
window.enter(oframe); ocnt <=0;

method pcmoutput() = window.getOutput(); 39

Breaks
Domain 

Restriction
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Making Single Domain Rules
IMDCT in HW
//State
Synchronizer#(2,1) sync <- mkBusSynchronizer(SW, HW);

rule setIMDCTDataSW(hasDatainQ)
imdctQ.deq(); sync.toHW[1].put(imdctQ.first);

rule setIMDCTDataHW;…
let x <- sync.toHW[1].get(…);
iframe[idx] = …

rule setConfigurationSW(hasConfiginQ);…
sync.toHW[1].put(…);

rule setConfigurationHW;…
sync.toHW[1].get(…);

rule enterWindowHW(ocnt == n);
sync.toSW[0].put(oframe); ocnt <= 0;
rule enterWindowSW;
let x <- sync.toSW[0].get(); 
window.enter(x);

40

Split different 
rules but same 
procedure

Red is HW
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Making Single Domain Rules
Synchronizer#(2,1) sync <- mkBusSynchronizer(SW, HW);  
rule sendDataToIFFT;
let x <- sync.toHW[0].put(iframe[icnt]);
icnt <= icnt+1;

rule putFrameInIFFT when (icnt < n);
let x <- sync.toHW[0].get();
ifft.inputData(iframe[icnt]);

rule sendDataFromIFFT();
let v <- ifft.outputData();
sync.toSW[0].put(v);

rule getFrameFromIFFT when (ocnt < n);
rv <- sync.toSW[0].get();
oframe[ocnt] <= rv;
ocnt <= ocnt+1;

rule setConfigurationSW …
… sync.toHW[1].put(…)… window.config(…)

rule setConfigurationHW …
… sync.toHW[1].get(…)… ifft.config(…)…

41

Same idea. Different 
rules need to be split
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Implementing a Bus-based 
Synchronizer

FIFO
C code to
interface 
With Bus

RTL to
interface 
With Bus

Physical
Bus

This is a natural abstraction for the communication channel

May be complicated by burst reads/writes, Random access memory-
like communication, failing writes, multiplexing onto same bus.
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Retargeting Design

Initial: “Embedded FPGA” design
HW: FPGA
SW: on FPGA PowerPC
Communication via Processor Local Bus (PLB)

New: Accelerator for General Purpose Processor
HW: FPGA
SW: On CPU
Communication via PCI-Express 

All design specific aspects limited to synchronizer
Easy to replace. Some variations due to bursts, etc. 

Sync

SW HW

44
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Making it more Complicated:
Sharing a Bus Interface

3 bus interfaces on the same bus is generally not reasonable
Large HW cost, redundant 

User can multiplex onto a single synchronizer
We can represent the Multiplexing logic in BCL directly
Query: How does this affect performance/correctness?

SW
state

HW
state

Synchronizer

Synchronizer

Synchronizer

Sync

45
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Ogg Vorbis Implementations: 
Platforms

FPGA Accelerator
HW: XUPv5-LX110T FPGA 
SW: 2.8GHz Nehalem Westmere CPU with 3GB of 
RAM
Communication: PCI-Express using the Standard Co-
Emulation and Modeling Infrastructure (SCE-MI)

Embedded System:
HW: XUPv5-LX110T FPGA 
SW: Microblaze softcore implemented in FPGA
Communication: point-to-point communication 
channels called the Fast Simplex Links (FSLs). 

47
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FrontEnd SW

IMDCT HW Hybrid SW

Windowing HW SW HW SW HW SW

FPGA Accelerator Platform

Speed (s) 8.9 28.1 84.9 102 316 38.9

FPGA (Regs) 36% 32% 40% 36% 34% 0

FPGA (Slices) 22% 22% 20% 21% 23% 0

Embedded FPGA Platform

Speed (s) 114 231 414 424 876 896

FPGA (Regs) 36% 35% 38% 37% 35% 33%

FPGA (Slices) 36% 35% 33% 34% 37% 39%

Results

48

All done in a matter of minutes!



Software Overhead

The rule-based abstraction introduces overhead:
Overhead of running incorrect rules
Shadowing state for rule which may fail partway through 
execution

4 implementations of a Ray Tracer:
Hand coded C++ software model (1x)
Our automatically generated HW/SW design (1.7x)
Automaticallt generated HW/SW with ideal schedule (1.2x)
Handtuned schedule on generated design and optimized to 
remove unneeded shadowing (~1.01x)

Initial performance results are promising.
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The problem with 
Verification

Formal abstractions are too 
complicated for most users

Temporal logic spec of a FIFO

Most successes from models with 
simple abstractions & modularity

Type checking
Language-level equivalence (FSM)

Leverage these in the BCL context
51
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BCL Verification 
Consider the equivalence of BCL programs

Can be converted to module equivalence

BCL is inherently nondeterministic at this level
Can represent more “spec”-like behavior in the 
language itself
Intuitively, we expect to find errors with shorter 
number of rules executions (minimal trace)

All the awkwardness of HW/SW timing is 
abstracted

Safe over approximation
Can reach closer to the realized schedule in 
implementation by representing scheduling as program 
transform

5252
KEY: Verifying the actual design



prod-cons

f1 f2

r1 r2

x zy

inQ outQ

A rule-based description

53

rule producer-consumer when (!inQ.empty && !outQ.full):
let x = inQ.first; 
let y = f1(x,r1);
let z = f2(y,r2);
r1 := y; r2 := z
outQ.enq(z); inQ.deq; 

register r1 = 0, r2 = 0
fifo inQ, outQ

53



prod cons

f1 f2

r1 r2

x zy y’

inQ

Rules for the Refined System

54

rule consume when
(!q.empty && !outQ.full):

let y = q.first;
let z = f2(y,r2);
outQ.enq(z); q.deq;
r2 := z;

rule produce when
(!q.full && !inQ.empty):

let x = inQ.first; 
let y = f1(x,r1);
q.enq(y); inQ.deq;
r1 := y

register r1 = 0, r2 = 0
fifo q, inQ, outQ

54



Possible executions of the 
two rule system

55

rule consume when
(!q.empty && !outQ.full):

let y = q.first; let z = f2(y,r2);
outQ.enq(z); q.deq; r2 := z;

rule produce when
(!q.full && !inQ.empty):

let x = inQ.first; let y = f1(x,r1);
q.enq(y); inQ.deq; r1 := y;

Some schedules worth considering:

prod; cons; prod; cons; prod; cons;…
prod; prod; cons; prod; cons; prod; cons;…
prod; prod; cons; cons; prod; prod;…

55

prod cons
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x zy y’

inQ



In what sense are these 
two systems the same?

56

rule producer-consumer when (!inQ.empty && !outQ.full):
let x = inQ.first; 
let y = f1(x,r1);
let z = f2(y,r2);
r1 := y; r2 := z;
outQ.enq(z); inQ.deq;

register r1 = 0, r2 = 0
inQ, outQ

rule consume when
(!q.empty && !outQ.full):

let y = q.first;
let z = f2(y,r2);
outQ.enq(z); q.deq;
r2 := z;

rule produce when
(!q.full && !inQ.empty):

let x = inQ.first;
let y = f1(x,r1);
q.enq(y); inQ.deq;
r1 := y

register r1 = 0, r2 = 0
fifo q, inQ, outQ

Original System
Refined System

same set 
of state 

transitions
?

56



When are states equivalent?

If q is empty: the remaining state matches

If q is non-empty: many choices (Run cons, 
Undo prod, etc.)

Practically, user can only give a partial 
condition

57

prod cons

f1 f2

r1 r2

inQ

prod-cons

f1 f2

r1 r2

inQ outQ

In our example: (f: T -> S) elides q and is defined 
only when q is empty.

S: T:

Tricky to encode in function 



Equivalence: Intuition
Programs S and T equal if for each schedule of 
S, there’s a schedule of T where each state 
that could match, does. 

(i.e. if S reaches a state with a match, then T 
reaches the corresponding state and vice versa)

58

S0 S2

T0 T1

S3

T3

S1

T2

ff f

…

…



Automatic Verification

This can be verified by coinduction 
on the schedules

Find finite prefix cover for schedules 
of T which has a correspondence to a 
schedule in S
Can be reduced to relatively small set 
of simple SMT queries

59



A more interesting example: 
4-stage Pipeline

Speculative w/ multi-cycle memory
Unpipelined: (FD;E;M;W)*
Pipelined: (W;M;E;FD)*

60
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Split Fetch and Decode

Initial tool verifies this refinement in a 
matter of minutes 

21 queries considering length 3 prefixes
Can be made much faster (>10x)

61
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Summary
BCL provides:

A clean abstraction allowing HW and 
SW to be unified
Has enough precision in result to 
allow the user to partition, evaluate, 
and tune a design easily.

HW is already there, SW is within reach

Provides good abstraction for 
verification purposes
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Thanks

ndave@csl.sri.com
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