Rigorous Component-based
System Design Using the BIP
Framework

Saddek Bensalem

Join work with

A. Basu, M. Bozga, P. Bougos, J. Sifakis

VERIMAG Laboratory (Grenoble, France)
Fifth Annual Layered Assurance Workshop

December 5-6, 2011 Orlando, Florida

Outline

Introduction

The BIP Framework

— Basic Concepts and Results
— The BIP Language and the associated tools

The Rigorous System Design Flow

Discussion

We master, at high cost:
= critical systems of low to medium
complexity
ex: flight controllers
» complex best effort systems
ex: telecommunication systems

Tomorrow

We need
= affordable critical systems
ex: active safety, health, robots
= integration of systems of systems
ex: internet of things, smart grids,
ambient intelligence

System Design

A long way to go ...

Complexity: mainly for building systems
by integration of existing components

Design Approaches:

« empirical and based on the expertise
of the teams

* reuse/extend/improve solutions that
have been proven efficient and robust

Lack of constructivity results:
correctness cannot be guaranteed by
design, validation is mandatory

System Design

System design is the process leading to a mixed software-hardware system
meeting given requirements

The expected behavior of the

: Requirements system to be designed with
Different G respect to its potential users

and its environment

from
pure SW
or pure HW

design! Executable platform-
Program independent model meeting
the requirements

I.I System composed of HW

and SW — the HW platform
may be given

System Design vs Software Design

ﬂ'ogr‘ams and Algorithms Gsfcms \

« Terminating * Non-terminating
e Deterministic * Non-deterministic
. Behaviour: relations * Behaviour: relations

between histories of
inputs and histories of
outputs

independent from physical
resources heeded for
their execution

+ Correctness independent * Correctness dependent on

mh’rhe iynqr;\fc £ th the dynamic
characrerisTiCs oT The characteristics of the

\execu‘rion platform / Kexecu‘rion platform J

Trends in System Design

ES must jointly meet technical requirements
— Reac‘l'ivi‘l'y: responding within a known and bounded delay.
— Autonomy: providing continuous service without human

intervention.

— Dependability: invulnerability to threats including attacks,
hardware failures, software execution errors

— Scalabili'ry: performance increase is commensurable with the
increase of resources

In addition

— ES must meet requirements for optimal/quality as they are
integrated in mass-market products

What is heeded?

Foundations for a rigorous system design

Rigorous System Design

Three grand Challenges

1. Marrying Physicality and Computation

» theory and models encompassing continuous and discrete dynamic to predict
the global behavior of a system interacting with its physical environment.

2. Component based Design

» theory, models and tools for the cost-effective building of complex systems
by assembling heterogeneous components

3. Adaptivity
« systems must provide a service meeting given requirements in interaction with
uncertain environments.

Rigorous System Design — Essential Properties: Productivity

Efficiency of the design process

Tools

Rigorous System Design — Essential Properties:. Performance

O Languages for describing feasible (correct) design solutions

O Optimal use of resources through design space exploration to resolve
choices such as

= reducing parallelism (through mapping on the same processor)
= reducing non determinism (through scheduling)

= fixing parameters (quality, frequency, voltage)

—)
e Sy
= = =

J

U

System Design - Essential Properties: Correctness

 Avoid design errors or eliminate them as early as
possible
* Incremental construction and validation — scalability

- Traceability between application software and
Implementation

11

Our Approach

Develop the BIP framework:
* model-based and component-based design

Component-Based Construction: Formal Framework

Build a component C satisfying a given property P, from
* C, a set of atomic components modeling behavior
« GL ={ql,, ..., gl, ...} a set of glue operators on components

Glue operators
» model mechanisms used for communication and control such as protocols,
controllers, buses.

» restrict the behavior of their arguments, that is
gl(C,,C,,.., C)| A, refines C,

Our Approach

Develop the BIP framework:

« expressive enough to encompass heterogeneity of
— execution: synchronous and asynchronous components
— interaction: function call, broadcast, rendez-vous
— abstraction levels: hardware, middleware, application software

Our Approach

Develop the BIP framework:

e using a minimal set of constructs and principles for
guaranteeing correctness by construction.

Component-Based Construction: Incremental Description

1. Decomposition

IR

ol
S
O
2
N

2. Flattening

ql
o/l

Flattening can be achieved by using a (partial) associative
operation ® on GL

Component-Based Construction: constructivity — Compositionality

Building correct systems
from correct components @

ar_

C1 e oo

c, satP; implies Vgl 3 satgl(Py, ..,P,)

Component-Based Construction. Constructivity - Composability

Make the new without
breaking the old: Rules
guaranteeing non
interference of solutions

sat 7

C1 Cn

and

sat PAP

implies

C1 Cn

Property stability phenomena are poorly understood.
We need composability results e.q. feature interaction in middleware,
composability of scheduling algorithms, theory for reconfigurable systems

Our Approach

Develop the BIP component framework:

 treating interaction and system architectures as first
class entities that can be composed and analyzed
independently of the behavior of individual
components

Our Approach

Develop the BIP component framework:

« providing automated support for efficient implementation
on given platforms

« providing automated support for validation and
performance analysis

BIP System Design

Application Software

(Programming Models)

(Multi-Core) Platform
Model

Translation

—>

Model

H

Transformation ()

Functional Validation
Invariant Generation
Deadlock Detection,

Functional Simulation,

System Ilel - BIP

B Software Model - BIP \L

Profiling/
Calibration

Performance

Analysis
Timed Simulation

:E
System | - BIP

Model
Transformation (I1)

Software liel - BIP

Code generation

Deployed Software

Middleware

(Multi-Core) Platform

Outline

Introduction

The BIP Framework

— Basic Concepts and Results
— The BIP Language and the associated tools

The Rigorous System Design Flow

Discussion

Component-Based Construction: The
BIP Framework

Layered component model

Priorities (Conflict resolution)

Interaction Model (Collaboration)

B EHAWNV I OR

Composition (incremental description)

IM1 ® IM2 ® IM12

1/06/2007
/06/)3

The BIP Framework: Behavior

An atomic component has

* A set of ports P, for interaction with other @ ®
components d b
» A set of control states S *‘/ /\ X
* A set of variables V /\}<
* A set of transitions of the form . b
=p is aport ‘:"Il [x>0
= g, is a guard, boolean expression on V ‘) / X ::/,f(’f)
= f,is a function on V (block of C code) < /2>, K l'.

{ |
int f(int x) {D
int * p;
while (...) {

return = p;

O———=—0

S, S,

1/06/2007
08/ 24

The BIP Framework: Interaction Model

« A connector is a set of ports which can be involved in an interaction

* Port attributes (complete', incomplete() are used to distinguish between
rendezvous and broadcast.

» An interaction of a connector is a set of ports such that: either it contains some
complete port or it is maximal.

tick, tick, tick,
out, in, ing
Interactions:

{tick,,tick,,tick;} {out,} {out,,in,} {out,,ins} {out,,in,, in5}

A Inrmr In~Ann~n=—
1/006/2007

25

The BIP Framework: Interaction Model

cly,cl,
cl cl CN:{cl,,cl,}
CP: O v

CN:{out,in}
out in CP: {out}
_ _ in ,out,in,
out in, CN:{in,,out,in,}
CP:{out}

BIP Construction Space

A

* separation of concerns:
between behavior and priorities

71 A @ architecture

architecture (interaction and
priority) Fa
 semantic unification: system@® | |
heterogeneous components v [mgactons
can be unified through ¢ _invariance >
_d-fre

transformation in the edom
construction space HARRERRTI,

e correctness by
construction: basis for study
of preservation of
properties under
architecture or behavior
transformations

Outline

Introduction

The BIP Framework

— Basic Concepts and Results
— The BIP Language and the associated tools

The Rigorous System Design Flow

Discussion

The BIP Framework: An example

Priorities
[2,>0] l P1234
Glue
p1|23 \'
Pv:i=max(u,x,)
Ju,x;5i=v Piys | v
Pu:=max(x, X
Interactions VK X;=u Py, | U
Glue [)
pl X1 p2 Xz p3 X3 p4 X4
P4 d,; P> a, ds P3 P4
Y1:=X, X ++ 2:=F5(xy) [85(
Fy
Yi| a4 Y2| q, qs | %3] rq Za| 1,
[V1<y7] q123 23 r3
? F34
29

The BIP Language

// atomic component definitio
atomic type Atom(int p, int ¢

data int x, y, z,

data
port
port

DataType u, v, w,
MyPort pl (x)
TypePort2 p2(y, u)

place sl, s2, s3, s4,

initial to sl
do { /* initialization co

on

pl from sl to s2
provided guardl
do {
on p2 from s2 to s3

provided x < y
do { {# plain C code #}

/* transition code

export port MyPort pl is rl

end

// connector type definition

connector type Bus (PortTypel pl

PortType2 p2

define port-expression
data int y

on interactionl provided guard
up { /*interaction code */
down { /* interaction code

on pl p2 provided pl.x > 0
up {y = pl.x + p2.x }
down { {# pl.x = p2.x =y, #

export port PortType pO(y)

end

// compound component type definition

compound type Compo (int p, ..)
component CompType 1 cl(p, ..)

component CompType n cn

connector ConType 1 x1(cl.p, .. c2.q)

connector ConType k xk(x1.p0, cn.r)

priority priol
provided guard
xi:interactionl < xj:interaction2

export port PortTypel cl.p is p
export port PortTypek xk.p0 is g

end

30

Sequential Implementation

The reference

implementation for BIP | 8, B, B,
models

33 2
Separate compilation Pa
of component’'s code U
and coordination code

The sequential engine runs one execution
trace according to the BIP semantics

The sequential engine provides extra-
functionality for run-time verification and
model-checking

31

Sequential Implementation

 Execution of the Engine

compute feasible
interactions

filter using
priorities

execute chosen
interaction data transfer

choose a maximal
interaction

32

The BIP Toolbox

ﬁ.uﬁ |SimuLink!! ﬂ BIP

Language

Source250urce transformers

Language BIR_ COMPILER |
Factory Parser

BIP

Meta- Model

Validation

BIP Model

! Tra nsformers}

S/R BIP Model

Code Generation & v
Runtimes [C++ Generator | (Distributed BIP
| (engine based) Generator

Communication Primitives (Send/Recelv\e/)}

QDistributed Platform;

BIP Executable
BIP Engine Runtime

=8

Outline

Introduction

The BIP Framework

— Basic Concepts and Results
— The BIP Language and the associated tools

The Rigorous System Design Flow

Discussion

Application Software
(Programming Models)

BIP System Design

(Multi-Core) Platform

Model

) Model

Software Model - BIP

Functional Validation
Invariant Generation
Deadlock Detection,

Functional Simulation,

Performance

Analysis
Timed Simulation

v

Model
Transformation ()

System Ilel - BIP

Profiling/
Calibration

:E
System | - BIP

H

Transformation (I1)

Software liel - BIP

> Code generation

Deployed Software

Middleware

_——
(Multi-Core) Platform

BIP Language Factory

« Use BIP as a unifying semantics model for various programming
models

Translations defined so far:
— (Discretized) Timed and Hybrid Systems
— Synchronous Systems (Lustre, MATLAB/Simulink, Scicos, ...)
— Architecture Description Languages (AADL)

— Domain Specific Languages and MoCs
« Autonomous Robotic Applications (GeNoM)
« Wireless Sensor Network Applications (TinyOs + nesC)
* Process Networks in the Distributed Operation Layer (DOL)

« Systematic approach based on two level translation into BIP:
— structural translation of the language constructs,
the programmers view
— structural translation of the language operational semantics,

the execution model view
36

DOL (Distributed Operation Layer)

A framework from ETHZ for programming parallel

nnlicatinne and enacifuinna their

mapping onto multicore arch

<l--arm core 1 -->
<processor name="ARM1" type="RISC">
<configuration name="memory" value="pm1"/>
</processor>

<memory name="sc_mem1" type="CACHE">
<configuration name="cycles" value="1"/>
</memory>

<hw_channel name="lbus1" type="BUS">
<configuration name="frequency"
value="200000000"/>
<configuration name="bytespercycle"
value="1"/>
</hw_channel>

<!-- distributed external memory -->
<memory name="sh_mem" type="RAM">
<configuration name="cycles" value="1"/>
<l--configuration name="cycles" value="6"/

-—->
</memory>
<l-- bus -->

<hw_channel name="ahb" type="BUS">
<configuration name="frequency"
value="100000000"/>
<configuration name="bytespercycle"
value="4"/>
</hw_channel>

rocess network of sw-prog
process behavi

C
L),

Computation resources in
nication paths (XML desc

es communication between

<process name="square">
<port type="input" name="1"/>
<port type="output" name="2"/>

<source type="c" location="square.c"/>

</process>

<l-- sw_channels -->

<sw_channel type="fifo" size="10" name="C1">

<port type="input" name="0"/>
<port type="output" name="1"/>
</sw_channel>

<connection name="g-c">
<origin name="generator">
<port name="1"/>
</origin>
<target name="C1">

\
| I
1 1
1 [}
1 1
1 1
: Local Bus (LB1) [~ |
1 [}
1 1
1 1
1 [}
1 [}
1 [}

Shard Bus
OT SW-PrOCeSS 10 NW-Pr
description)

<!-- process bindings -->
<binding name="binding_generator"
xsi:type="computation">
<process name="generator"/>
<processor name="ARM1"/>
</binding>

<!-- channel bindings -->
<binding name="binding_fifoC1"
xsi:type="communication">
<sw_channel name="C1"/>
<writepath name="pm1ahbsh_mem"/>
<readpath name="sh_memahbpm2"/>
</binding>

37

Generation of Application SW Model

#define IN 1
#define OUT 2
typedef struct _local_states {
int index;
int len;
} Square_state;
void square_init(DOLProcess *p) {
p->local->index = 0;
p->local->len = LENGTH,;
}
int square_fire(DOLProcess *p) {
float I;
if (p->local->index < p->local->len) {
DOL_read((void*)IN, &i, sizeof(float), p);

i =i*i;

DOL_write((void*)OUT, &i, sizeof(float), p);

p->local->index++;

}

if (p->local->index >= p->local->len) {
DOL_detach(p);
return -1;

}

return O;

}

erated fre

=+1)%N;

var: x, v, i, j, count, buff[N];

index=0; [size |
an d evel len=LENGTH,; :_a_d_die_s§_ ouT
i T ouT T :
atom IC Cc [lndex<|en] index++: : size :
i=0; j=0;count=0; | X
«--| recv
. recv send ==
[count<N] [count>0] LY
bufffi]=x;count++; y=buff[j];count--; send
i=(i+1)%N;

generator

send

FIFO

g

| recv |

square

@

i*-

send IN
FIFO consumer
| rec |

o=

AI_Of—T\

38

Application Software
(Programming Models)

Translation

Functional Validation
Invariant Generation
Deadlock Detection,

Functional Simulation,

B Software Model - BIP

Performance

Analysis
Timed Simulation

BIP System Design

(Multi-Core) Platform

Model

—>

System Ilel - BIP

Cal

Profiling/

ibration

System

E

pros
| - BIP

Model
Transformation (I1)

Software liel - BIP

Code generation

Deployed Software

Middleware

(Multi-Core) Platform

Construction of HW Template

 Collection of HW-processor, memory and bus
components connected as defined in the architecture

— HW-processor and memory are placeholder
— uses HW component library

r—————=-==== r
I ARM1 I I
Tilel | Tile2 r=—=—=—=-=-=-=-- 'IE ey W Wi Ml @ ¥ r—-————-—--- |
ARM1 F ARM2 I | |
I I
| | ! :
d ! i I Bus- Bus- z |
Loca| Bus |LB1) == Lo Local Bus (LB2) == Lo HW-Bus- Path Path | e :
- Fo ! : Scheduler : Scheduler :
oca !
wem > | | : TN A 4 ! Moo (B2 ;
LM l ! 1 —— -
_____________ A R V¢ LM1 |

Shard Bus | r——=—=-=-=---= - -
I
I
I -
Shared |
Mem 1 HW-Bus-
(SM) : Scheduler
|Shared Bus
_________ e —
r - I

b - 40

Mapping: Fill up the HW Templates

HW-CPU- ARM1
Scheduler

HW-CPU-
Scheduler

* Transformation on sw model:
- Splitting FIFO channel
- Breaking atomic read/write
- Adding interactions with
CPU-Scheduler
- FIFO buffers mappedto | °N No- o s - dd -
memory P FE---FEF---

* Transformations fully preserve |
functional behavior !
|
|
I

|
|
A

* Uses HdS component library HW-Bus-

Scheduler

Scheduler

b o e o o o o o o

generator consumer | e e e e e -——— - -

1 1
1 1
1 1
1 1
| Bus Bus- |
_______ ! HW-Bus- Path Path :
1
t ! ! | Scheduler | I sw
1 1 1 1
! ! \Shared Bus ____TT]__IT1 __ . Bl Hds
1 1
: : Buffer M : I:] HW
1 1
1 1

- ——— — e ———

I Shard\us

5 :

42

System Model Construction

System model generated by applying a fixed number
oz transformafions on the software model

— splitting software channels

— breaking atomicity of read/write operations in processes

— inserting HdS components

Transformations fully preserve functional behavior
— ensure correctness-by-construction !

No deadlocks are introduced

Using a given set of BIP library components
(characterized by the HW architecture, OS)

BIP System Design

Application Software

> Code generation

E (Programming Models) (Multi-Core) Platform

i Model

E Translation

| = ransiormat (I

B Software Model - BIP L \L enermEmen

i Modell e |

: Transformation (l)

| Software el - BIP

Profiling/
Calibration Deployed Software

Pe;f:;r\:i_rsice - Middleware
Analysis P —
System ll - BIP

Timed Simulation
(Multi-Core) Platform

Compositional Verification

« Compositional rule for proving state invariants:

(B |=0®,)_,, YEI(Yy(By ..,B), Py, ..., D)
Aoy D AY=P

i=1,n~i

v(B, ...,B,) [=OP

« Combine two categories of particular invariants:
« Component Invariants (®))
* Interaction Invariants W

automatically generated from BIP models !

i=1,n

Compositional Verification

« Compositional rule for proving state invariants:

N 0, B,

« Combine two categories of particular invariants:
« Component Invariants (®))
* Interaction Invariants W

automatically generated from BIP models !

i=1,n

Compositional Verification

« Compositional rule for proving safety properties:

(B |=0®;)_,, YEI(Yy(By ..,B), Py, ..., D)
Niogn®@iAW=P

v(B, ...,B,) [=OP

Component Invariants:

- over-approximations of the set of reachable states of
atomic components
« computed using static analysis of behavior

Compositional Verification

« Compositional rule for proving safety properties:

(B |=0®,)_,, YEI(Yy(By ..,B), Dy, ..., D)
Niogn®@iAW=P

v(B, ...,B,) [=OP

Interaction Invariants:

characterize constraints on the global state space induced
by synchronizations between components.

« computed by static analysis of interaction structures

Expression

1'i’
3
D
«Q
[
\
\
N
\

~ T

Implementation: D-Finder

Analysis
Predicate- feasibility
abstraction check
--------- SeCigl Model
g BIP
- “ - \\‘
OF D1S
Abstraction [« » :
i generation generation
v \
RrOIDIS
| generation
. R KX v
IR S satisfiability CEX

S ANV ADIS generation

-
\\~‘ e
- -

e, —— e e e ———— T

48

Results on deadlock-freedom checking of all the modules

I 7y [T R [[

LaserRF 220x329%34 4353 1:22
Aspect 29 160 117 217x323 3029 0:39
NDD 27 152 117 222x314x5 4013 8:16
RFLEX 56 308 227 234x33°x1045 8244 9:39
Antenna 20 97 73 212x3%%13 1645 0:14
Battery 30 176 138 222x317x5 3898 0:26
Heating 26 149 116 217x314x145 2453 0:17
PTU 37 174 151 219x322x35 8669 0:59
Hueblob 28 187 156 212x310x35 3170 5:42
VIAM 41 227 231 210x36%665 5099 4:14
DTM 34 198 201 228x320x95 4160 13:42
Stereo 33 196 199 227x320x95 3591 13:20
P3D 50 254 219 213x3°x5%x629 6322 351
LaserRF+Aspect+NDD 97 523 438 2°8x3%6x85 11395 40:57

NDD+RFLEX 82 459 344 2°6x3%9%52x209 12257 73:43
49

BIP System Design

Application Software

(Programming Models)

(Multi-Core) Platform
Model

Translation

Model

H

Transformation ()

Functional Validation
Invariant Generation
Deadlock Detection,

Functional Simulation,

System Ilel - BIP

B Software Model - BIP \L

Profiling/
Calibration

Performance

Analysis
Timed Simulation

:E
System | - BIP

Software liel - BIP

> Code generation

Deployed Software

Middleware

_——
(Multi-Core) Platform

Distributed Implementation

Requirements

« produce efficient decentralized execution models

« allow for concurrent execution of interactions and internal
computation of components

 collection of atomic processes/threads intrinsically concurrent — no
global state

« point-to-point communication by asynchronous message passing

e ensure correctness-by-construction, that is, the initial model is
equivalent to the implementation

51

Centralized Implementation

b ooy oy

Centralized Implementation: one Engine play all interactions!

Decentralized Implementation

b oty ooy 0

Decentralized Implementation: dispatch interactions across multiple engines!

53

54

11

Conflicting Interactions

|11 and 12 are using both
sides ports of a choice in port

a component

11 and 12 share a common

11 and 12 are conflicting (11 # 12)

18t sol: Conflict-Free Distributed Engines

O Distributed Engines Conflict-Free by Construction,
by grouping interactions according to the transitive closure of the conflict

relatiorg) " écl 5 (!)(!) 3 J;
Afi 14 ﬁ 15 W 16 =

11# 12 # 13
14 # 15 # 16

Conflict Resolution
Protocol

ok fail reserve

fail

Send/Receive BIP

Protocol

&

Conflict Resolution
Protocol

ok fail reserve —

reserve
= = =

Interaction Protocol

al a2

reserve
= =

Interaction Protocol
a3 a4

v ®

port offer

port offer port offer

offer port offer port offer

v L

ort
P offer

Application Software
(Programming Models)

Translation

Functional Validation
Invariant Generation
Deadlock Detection,

Functional Simulation,

E Software Model - BIP

Performance

Analysis
Timed Simulation

BIP System Design

(Multi-Core) Platform

Model

N Mode!
\L Transformation (Il)
Modell
Transformation ()
Software el - BIP

System Ilel - BIP

Profiling/
Calibration Deployed Software

Middleware
Ex
_————————————
System ll - BIP
(Multi-Core) Platform

Code Generation: Overview

Abstract System
Model - (BIP)

Code Generator
* Application task: data + thread routine
Application Mapping * Communication: API calls provided by runtime

* Main application routine
* Deployment
= threads to cores
= data to memories
* Data allocation: thread stacks; FIFO queues

Functional Code (e.g., C)
Glue Code (e.g., C)

v

* API

Target platform

. = Thread Management
compfation tool

= Memory allocation
= Communication

binary image = Synchronization

P2012/MPARM

Example: P2012 Code Generation

generator.c

__..<

process.map

ndpfO_ins.c .
joiner.c

channel.map

#define NUM_PROCESS 14

void* genp_ins_execute(void*);
void* ndpfO_ins_execute(void*);
void* ndpfl_ins_execute(void*);

process_map_t process_map [NUM_PROCESS] = {
{ 'genp", 0, 0, genp_ins_execute},

{ "ndpf0", o, 1, ndpfO_ins_execute},

{ "ndpfl", 0, 2, ndpfl_ins_execute},

b

#tdefine NUM_CHANNEL 24
float FIFO_genp_ndpf0O_buffer[45000] L3_SHARED;
float FIFO_genp_ndpfl_buffer[30000] L3_SHARED;

g_handle_t q_handle_FIFO_genp_ndpf0O L3_SHARED;
g_handle_t g_handle_FIFO_genp_ndpfl L3_SHARED;

channel_map_t channel_map[NUM_CHANNEL] = {
*sizeof(float), &q_handle_FIFO_genp_ndpf0 },

b

{"FIFO_genp_ndpf0", (void*)FIFO_genp_ndpf0_buffer, 1, (100*100)

main.c

'\

L

Functional
> Code

Glue Code

(Resource
Allocation
&
Thread
Creation
&
Deployment)

> Runtime

\| P
“/

BIP System Design

Application Software

Functional Validation

Invariant Generation
Deadlock Detection, System el - BIP

Functional Simulation,

Code generation

i (Programming Models) (Multi-Core) Platform

i Model

| Translation

| ! ransiormat (I

B Software Model - BIP \L Anserreren)

i Modell e |

: Transformation (l)

| Software el - BIP

Profiling/
Calibration Deployed Software

Middleware
Ex
_——
System ll - BIP
(Multi-Core) Platform

Our Methodology

Context/

Environment

1. Build executable model of the overall system
2. Learn probability distribution of key characteristics impacting application
3. Plug distributions and build a stochastic abstract model of the context

4. Apply Statistical model checking on the reduced model

Statistical Model Checking (1)

Statistical methods to decide if a property is satisfied
Estimate the probability that a system satisfies a
property

An alternative to avoid exhaustive exploration of
state-space of a system

Results might not be always correct, but possible to
bound the probability of making errors

Accuracy of estimates depends on no. and length of
simulations

Simple to implement and use

Less memory and time intensive (compared to
Model Checking)

Statistical Model Checking (2)

What are the questions ?
 Qualitative Question: Does S |= P_g(¢) ?

« Quantitative Question: What is the probability for
S to satisfy ¢ ?

Principle :

« Reason on a finite set of executions and answer
the question

Discussion

Component framework encompassing heterogeneous
composition

— Separation of concerns between behavior and architecture

(Interaction + Priority) involving a minimal set of constructs
and principles

— Expressiveness : BIP is as expressive as the universal glue

Rigorous Design Flow

— Correctness-by-construction
« Source to source transformations

« Verification based on compositionality, composability and
incrementality

— System-level analysis techniques jointly taking into account
« application, hardware resources and mapping
« Component and interaction partitioning

Applications

— Software componentization

— Programming multicore systems

— Complex systems modeling and analysis e.g., IMA

ACOSE

ManyCorelabs

SPICES

COMBEST

PRO3D
SMECY
ACROSS
ASCENS

CERTAINTY

MIND
CHAPT

MARAE
GOAC
SYMPAA

BGLE
BGLE
ITEA

FP7

FP7
ARTEMIS

ARTEMIS
FP7

FP7
Minalogic
ANR

FRAE
ESA

BIP Related Projects

Speculative and Exploratory Design in System Engineering

Generic Embedded Systems Platform

Support for Predictable Integration of Mission Critical Embedded
Systems

Component-Based Embedded Systems Design Techniques
Programming for Future 3D Architectures with Many Cores
Smart Multicore Embedded Systems

Artemis Cross-Domain Architecture

Autonomic Service Component Ensembles

CErtification of Real Time Applications deslgNed for mixed criticaliTY
Technologie d'assemblage des composants logiciels embarques

Calcul Embarque Hautes Performances pour des Applications
Industrielles

Methodes et Architectures Robustes pour I'Autonomie dans I'Espace
Goal Oriented Autonomous Controller

Controlleur de Paiement Monetique de type Automate sur Autoroute

http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html o5

* Thanks for your attention.

Questions?

66

