<table>
<thead>
<tr>
<th>The Real-Time Middleware Experts</th>
<th>Gabriela F. Ciocarlie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heidi Schubert</td>
</tr>
<tr>
<td></td>
<td>Rose Wahlin</td>
</tr>
</tbody>
</table>

A Data Centric Approach for Modular Assurance

The Fourth Layered Assurance Workshop
December 6th 2010
Any system that has multiple assurance requirements

- Safety, at different assurance levels
- Security, at different assurance levels

Example: Unmanned Air Vehicle

- Flight control is safety critical
- Payload management is mission critical

Ideally a system is built from components each with their own assurance requirements
The Challenge

- Design a modular plug-and-play architecture to reduce cost and reuse components

- Components must interact
 - The behavior of one component can affect another
 - It can be advantageous to have components at different criticality levels exchange data
 - Once a component interacts with another, then the whole system must be certified, not the individual components
The Solution

- Move from a component-interaction model to a **data-centric model**
- The data-centric model defines the data types and attributes in the system
- A component complies with the data model in terms of data it sends and receives
- This **decouples** applications
Agenda

- Introduction
- Data Centric Architecture
 - Modularity
 - Separation Kernels
 - Anonymous Publish-Subscribe
 - OMG Data Distribution Service
- Feasibility Study
- Conclusions
- Future Work
The Modular Approach

Monolithic Approach
• Certify whole system
• Connection oriented
• Tightly coupled
• Hard to evolve

Modular approach
• Certify components
• Data oriented
• Loosely coupled
• Evolvable

Smart Data Bus
Standardized Data Services
QoS Controlled Communication
The Data Contract

- First, all exchanged data in the system is defined
- Next, data characteristics are defined
 - For example “airspeed” is flagged as flight critical
- Then components define data delivery attributes
 - A flight critical component specifies data rate that flight critical data must be delivered
- This creates a “data contract”
Data Centric Approach for Mixed-Criticality Systems

- Data contract includes
 - Data type
 - Name
 - Quality of Service

- Validation
 - Component validation – does it conform to the data model
 - System validation – is there a producer at correct assurance level for each required data
Realization of a Mixed-Criticality System

- **Separation kernels**
 - Guarantees isolation of components
 - Controls data flow

- **Anonymous publish-subscribe**
 - Used to implement the data model and distribute data
Separation Kernels

- Partial solution for mixed-criticality systems certification

- Isolation and Control
 - Each guest operating system (OS) runs in its own partition
 - Each guest OS is isolated over both time and space
 - Information flows are tightly controlled
 - Components can be pre-certified and composed quickly into new configurations

- Challenge
 - Do not address interdependency between components or interactions between components on separate computers
Anonymous Publish-Subscribe

- Effective communication architecture
- Applications simply publish what they know and subscribe to what they need
- Networking middleware provides the functionality for:
 - discovering publishers and subscribers
 - handling network traffic and errors
 - delivering the data

- Challenge
 - Require effort to migrate from a point-to-point component interaction model
OMG Data Distribution Service (DDS)

- Data-centric publish-subscribe middleware for real-time communication
 - Strong data typing
 - Quality-of-Service (QoS) parameters
 - e.g., deadlines for message delivery, bandwidth control, reliability model control, failover and backup specification, data filtering etc.

- DDS QoS parameters characterize:
 - the **data contracts** between participants
 - the **properties of** the overall **data model**
 - **real-time communication and delivery requirements** on a per-data-stream basis
Agenda

- Introduction
- Data Centric Architecture
- Feasibility Study
- Conclusions
- Future Work
Wind River VxWorks MILS and RTI Data Distribution Service

Hardware (Processor + Board)

VxWorks MILS Separation Kernel

Wind River Hypervisor Technology

Apps

General Network Stack

VxWorks Guest OS

DDS shared lib

Linux Guest OS

Linux Network Stack

Linux Guest OS

Linux Network Stack
Study Overview

UAV Components

DDS Bus

Ground control (laptop 1)

Remote monitor (laptop 2)

DDS provides location-independence!

© 2010 Real-Time Innovations, Inc.
Scenario 1: Failover of Lower Criticality

DDS Bus

Secondary Mission Plan
Primary Mission Plan
Alarm Viewer
DDS-Web Services bridge

Flight critical
Logging
MILS Kernel

High criticality
Lower criticality

© 2010 Real-Time Innovations, Inc.
Scenario 2: Lower Criticality Floods the Network

- **MILS Kernel**
- **DDS Bus**
- **Secondary Mission Plan**
- **Primary Mission Plan**
- **Alarm Viewer**
- **DDS-Web Services bridge**
- **Flight critical**
- **Logging**
- **Filters excess data**

Floods network

- **High criticality**
- **Lower criticality**

© 2010 Real-Time Innovations, Inc.
Conclusions

- Mixed-criticality systems certification still has a long way to go

- We can leverage:
 - Isolation and control capabilities through separation kernels
 - Modularity through a data-centric architecture

- It is possible to build mixed criticality systems that provide:
 - Modularity
 - Evolvability
 - Fault tolerance
Future Work

- Identify and analyze the characteristics of the DDS data models that lead to an efficient certification process

- Formally demonstrate the applicability of our approach to mixed-criticality systems
Acknowledgments

- **Wind River** – provided their MILS platform as well as for valuable feedback

- **United States Air Force** - contract FA8650-10-M-3025
 - The content of this work is the responsibility of the authors and should not be taken to represent the views or practices of the U.S. Government or its agencies.