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Abstract. Providing assurance that a software system satisfies its critical properties is difficult, particularly when
the system must satisfy many classes of properties, such as safety, fault-tolerance, timing, and security. This paper
describes the application of an incremental development and verification approach [13, 14], based on composition
and refinement, to an airlock system. Initially, amodel of the basic functional behavior of the system is developed
and proved to satisfy a set of safety properties. This basic model is then extended with timing behavior. This timed
model is a full refinement of the basic model, and related safety properties are shown to still hold for the timed
model. In the third and last step, the timed model is extended with fault handling behavior. This “fault-tolerant”
model, a partia refinement of the other two models, is shown to satisfy both weakened versions of the safety
properties and additional fault-tolerance properties.

1 Introduction

Providing assurance that a software system satisfiesits critical propertiesis difficult, particularly when the system must
satisfy different classes of properties, such as safety, fault-tolerance, timing, and security. Two well-known theoretical
approaches to devel oping high assurance software are refinement [1] and composition [2]. In arefinement-based devel -
opment, an abstract model of the system is developed and critical properties are provedto hold for the model. Then, the
mode isiteratively refined, adding more detail about the system behavior during each iteration. Each model is shown
to be a refinement of the model from the previous iteration, and thus, many properties which hold in the previous
model may be inherited by the new model. (Thisistrue for alarge class of properties, including all safety properties.)
A magjor difficulty with refinement-based approaches is that maintaining a refinement throughout the development
process is difficult, unless the original model contains some mention of every possible system behavior.

Compositional approachesto software construction generally rely on proof rulesthat allow properties of individual
components to be used to infer properties of the composite system. The proof rules require each component and its
properties to satisfy a set of conditions before the rules can be applied. Applying the rules in practice is challenging
because it is difficult either 1) to find components whose composition is a system with the desired composite behavior
and that also satisfy the requirements for applying therule, or 2) to decompose the system into components that satisfy
the requirements for applying the rule.

In[13, 14], we describe a software construction and verification method that combines refinement and composition.
Like other development methods, our method builds a system model (in the form of a state machine) iteratively,
starting with an abstract model of the functional behavior (e.g., services) required of the basic system. In each new
iteration, the model is extended by composing it with anew component that describes a different aspect of the system’s
behavior (e.g., fault-tolerance). This extended model is a partial refinement of the previous model because it inherits
the behavior of the basic model but may also add new externally visible behavior. For example, the basic system model
may assume that no faults occur; the extended system model removes the no-faults assumption, thus allowing faults
to occur (e.g., notification of an engine failure in aflight control system), and adds externally visible behavior (e.g.,
an alarm to notify the pilot of an engine failure). Using the property inheritance rules that are part of our method,
and assuming that the extended model has been constructed appropriately, we have shown that the extended model
inherits weakened versions of the properties proven to hold in the basic model [13, 14]. Using the compositional proof
rules associated with our method, we can prove properties of the extended model from properties already proven of
the basic model. These proof rules can be used to prove additional properties about the extended model, for example,
to prove fault-tolerance properties when the model has been extended to support fault-tolerance.



In[13, 14], an example is presented to illustrate how our method might be applied in two phases; the basic model
was developed in the first phase, and the extended model, a fault-tolerant model, in the second phase. This paper
extends that work by showing how our method can be applied in many steps (in our new example, three steps), where
at step n + 1, additional behavior is added to the model developed at step n. The paper provides an example where
it makes sense to use a full refinement step in addition to the partia refinement step used in [13,14]. In particular,
this paper describes how our method can be applied to an airlock system, based on the example introduced in [16], by
1) specifying a model of the basic safety-critical behavior of the system and proving properties of this basic model,
2) extending the basic model with timing behavior and proving properties about the timed model, and 3) extending
the timed model with fault-tolerance and proving more properties about this fault-tolerant model. In developing these
three models of the airlock system, some new theoretical results, including a new compositional proof rule, were
needed. This paper presents these new results and discusses some lessons learned in applying our method to the
airlock example.

The paper is organized as follows. Section 2 reviews the key theoretical results of [13, 14]. Section 3 presents the
airlock example, Section 4 discusses lessoned learned, and Section 5 presents some conclusions and our plans for
future work.

2 lterative Software Construction and Verification Process

References [13, 14] describe a method for compositionally constructing and verifying fault-tolerant systems, illustrate
how the method can be applied to a two-phase specification of afault-tolerant system, and present aformal theory to
support the method, based on composition and partial refinement. Many popular state-machine-based formalisms are
suitable for use with the method, including Abstract State Machines (ASM) [5], 1/0O Automata (I0A) [7], Lustre [8],
Requirements State Machine Language (RSML) [10], Software Cost Reduction (SCR) [11], StateCharts [9], and
Temporal Logic of Actions (TLA) [15].

In [13, 14], our application of the method to a fault-tolerant system was applied in two phases. In the first phase,
the normal behavior (assumes no faults are possible) is specified, and critical system properties are proved to hold
for the model. In the second phase, the no-faults assumption is removed, and the model is extended to include fault
detection, handling, and recovery. The extended model is then shown to satisfy the critical system properties (possibly
weakened) and additional fault-tolerance properties.

In this paper, we extend the method to allow multiple development/verification steps, where at step n+ 1 additional
behavior is added to the model developed at step n. In each step, the additional behavior captures some new aspect
of the system behavior (e.g., security, fault-tolerance, timing). A system model in our method is a state machine
(S4,604,pa4), Where S4 isanonempty set of states, @4 C S, isaset of initial states, and p4 C S4 x S isaset
of transitions that contains the stutter step (sa, s4) for every s4 in S4. An execution sequence (execution) of A isa
sequence of states s, 1, - - . Sp, (S0, S1, - - - Sn,--.) iNS4 suchthat (s;—1,s;) € pa foreveryiwithl <i <n (1 <1).
A state s4 € S4 isreachable if there is an execution segquence sg, s1, - - - s, Of A such that s isan initial state and
sn = s4. A transition (s4, s’y) € pa isareachabletransition if s 4 isareachable state. In our extended method, the
new system model created at each step is required to be a partial refinement of the previous system model. A special
case of a partial refinement is (ordinary) refinement. Specifically, we define a refinement and a partia refinement as
follows:

Definition 1. Refinement. LetA = (S4,04,p4)andC = (S¢, Oc¢, pc) betwo state machines, andlet o : S — Sa
be a mapping from the states of C to the states of A. Then « is a refinement mapping if 1) for every s¢ in ©¢, a(sc)
isin©4,and 2) pa(a(sc), a(sy)) for every pair of states s¢, si, in S¢ such that pc(sc, s¢).

Definition 2. Partial refinement. Let A = (S4,04,p4) andC = (S¢, Oc, pc) betwo state machinesand v : S 5
S 4 be a partial mapping from states of C to states of A. Then « isa partia refinement mapping if 1) for every s in
Oc, asc) isdefined and in © 4, and 2) pa(a(sc), sy )) for every pair of states sc, s, in the domain a1 (S4) of
a suchthat pe(sc, si). When a partial refinement mapping o existsfrom C to A, we say that C isa partial refinement
of A (with partial refinement mapping «).



An extended model that is a refinement of an existing model will inherit many properties of the existing model,
including all safety properties; hence, it is useful to establish that the extended model is a refinement. One natural
approach to constructing a refinement is to add detail to an existing state machine model by describing individual
transitions as being implemented by sequences of smaller transitions. The more detailed state machine thus has ad-
ditional (intermediate) states and additional (intermediate) transitions. When the additional states can be mapped to
existing states in such a way that all transitions in the detailed state machine map to transitions in the original state
machine, the detailed state machine will be arefinement of the original state machine. Note that including stutter steps
in our definition of state machine helps to make this possible by allowing intermediate transitions in the detailed state
machine to map to stutter stepsin the original state machine.

In a (proper) partial refinement step in our method, we extend the current model by composing it with a new
component model, where transitions to, from, and inside the new component represent visible system behavior. In this
case, the extended model has visible behavior not present in the previous model, and cannot be a proper refinement of
that model. The partial refinement relation is still useful to establish, however, for verification purposes, sinceit alows
a weakened version of property inheritance. Finally, we have also proved that the composition of partial refinements
is apartial refinement. Hence, every system model obtained by applying our compositional method will be a partial
refinement of the original, basic system model.

In [14], we define a special relationship between two models called fault-tolerant extension.

Definition 3. Fault-tolerant extension. Given a state machine model 1D of a system, a second state machine model
FT of the system s a fault-tolerant extension of 1D if:

— thestate set Spr of FT partitions naturally into two sets: 1) IV, the set of normal states, which includes © g7, and
2) F, the set of fault-handling states that represent the system state after a fault has been detected, and

—thereisamap 7 : N — S;p and a two-state predicate O C N x N suchthat s € N = O(s,s), and
S1,82 € Spr A 0(81,82) A pFT(Sl,Sz) = p[D(ﬂ'(Sl),W(SQ)) and W(QFT) C @rp.

The map 7 and predicate O are called, respectively, the normal state map and normal transition predicate for FT.
When O = N x N, FT isasimple fault-tolerant extension of I D.

If FT isasimple fault-tolerant extension of 1D, then 7 isapartial refinement mapping from FT to ID. A construction
method is provided in [14] which, when used to obtain FT, guarantees FT to be afault-tolerant extension of 1D that is
“faithful” inthe sensethat every execution possiblein ID ispossiblein FT (with essentially the same visible behavior).
The construction method builds a fault-tolerant extension by extending a model in three ways:

1. New variables are added to the set of existing variables. These variables may include new input variables, e.g.,
to signal that a fault occurred or a time-out expired (often a symptom of a fault). Other variables may also be
added—for example, a new output variable to warn a system operator that a fault has been detected, or new
“history variables,” such asinternal variables which record the time a system has been in a given state.

2. New values may be added to ranges of existing variables. For example, to describe afault-handling state, the range
of some existing variable may be extended to allow an extravalue fault.

3. New transitions are added to the existing set of transitions. Two classes of additional transitions are possible. One
class consists of brand new transitions—for example, a transition from a state in the original system to a new
fault-handling state, or a transition from a new fault state back to some normal state (i.e., fault recovery). The
other class of new transitions arise from a “split”, i.e., a transformation of an original transition in ID into two
new transitions based on the value of a predicate involving new variables or new values of existing variables: if
the predicate is true, then the transition in the fault-tolerant system corresponds to the original system transition;
if false, then thetransition is to a new fault-handling state.

Once the three extensions above have been specified, the user may “compose’ them with the original specification
of the state machine model 1 D to obtain aspecification of the extended state machine model FT. First, the new variables
areinserted into the set of original variablesto produce anew set of state variables. Next, the type sets of variableswith
new values are modified to include the new values. These two extensions lead to the set S of possible statesin FT.
Finally, the new transitions areinserted into the set of transitions of the original state machine model to form anew set
pr Of transitions. The state set Sr can be naturally partitioned into IV, the set of normal operating states augmented



with the new variables, and F', the set of fault-handling states. The faithfulness to ID of the extension FT follows
because the extensions to the specification of FT satisfy the “non-interference” notion of Aroraand Kulkarni [3], i.e.,
do not interfere with the original system behavior described by I1D. In Section 3, we construct a fault-tolerant extension
of the airlock asthe final step in the software development process.

Reference [14] defines a set of property inheritance rules for fault-tolerant extensions that allow FT to inherit
weakened versions of properties proved for | D, and two compositional proof rulesthat can be used to prove properties
of FT using properties already proved for | D. Those property inheritance and compositional proof rules only allow a
property P proved for 1D to be used in establishing that a property @ holdsin FT. Sometimes, thisinformation is not
sufficient to prove the desired property. In such cases, allowing the proof to use an auxiliary invariant is sometimes
all that is necessary to obtain a proof. Since the publication of [14], additional property inheritance rules have been
developed that allow an auxiliary invariant to be used in proving transition invariants and state invariants of FT.

3 Case Study: Applyingthe Method to an Airlock System

This section shows how the method described in Section 2 can be applied to a practical system, an airlock, which, for
example, alows divers to exit and enter a submarine or astronauts to exit and enter a space vehicle. An airlock is a
chamber connecting two areas with differing pressures. Each area has a door connecting it to the airlock, and the door
between the chamber and one of the areas should only be opened after the pressure in the chamber has been equalized
with the pressure of that area. In applying the method, the initial specification describes the safety-critical behavior
of the airlock. In the second and third phases, the specification is extended first with timing behavior and then with
fault-tolerance behavior.

All three of the specifications presented in this paper are represented in the SCR tabular notation [11]. In SCR
a set of tables are used to define a state machine model A = (Sa,04,p4). The set of states S4 is determined by
the values assigned to the set of state variables which specify the required system behavior. In SCR, monitored and
controlled variables represent the externally visible input and output behavior of the system. SCR also has additional
“hidden” variables—namely, mode classes and terms, which are used to make the specification of the relationship of
the monitored and controlled variables more concise. SCR tables are used to specify how the value of each controlled
variable, mode class, or term changes in response to changes in the monitored variables. In SCR tables, two other
constructs are important: conditions and events. A condition is a predicate on a single state, while an event is a two-
state predicate on an old state and new state indicating achange in some variablevalue. If condition c’svaluesintheold
and new states are denoted ¢ and ¢, then the semantics of the basic event QT(c) is defined by —¢ A ¢/, the semantics
of QF(c) by ¢ A ¢/, and the semantics of QC(c) by ¢ # ¢’. A conditioned event, denoted QT(c) WHEN d, adds a
qualifying condition d to an event and has the semantics —c A ¢’ A d. A monitored event represents a change in value
of amonitored variable. In SCR, each transition in p 4 isuniquely determined by astate s in .S 4 and amonitored event
permitted in s, and an execution, which starts in some initial statein 64, is driven by a nondeterministic sequence of
monitored events. Each new state in the execution is defined by the new value of the monitored variable that changed,
no change in the values of other monitored variables, and updates to the remaining state variables deterministically
defined by the SCR tables. This process is synchronous: the system completely processes one monitored event before
processing the next monitored event.

3.1 Moddingand Verifying the Safety-Critical Behavior

The basic airlock specification and some of the properties proved of it are based on the example given in [16]. The
basic airlock is designed to control two doors and the pressure in the chamber between them. These two doors and
the chamber pressure are represented in the SCR specification by the controlled variablescl nDoor , cQut Door , and
cChPr es. Intheinitia specification, no timing constraints on the opening and closing of the doors are assumed. Nor
are there constraints on the time needed to equalize the pressure in the chamber. Thus, each door has the value of
either cl osed or open, and the chamber pressure is either equal to the pressure on the other side of the inside door
(I nPr es) or on the other side of the outside door (Qut Pr es). The airlock responds to operator commands, repre-
sented as values of a monitored variable mCnd. The possible commands are OpenQut Door and Cl oseQut Door

for operating the outside door; Openl nDoor and Cl osel nDoor for operating the inside door; and ToQut Pr es

1 SCR’s One Input Assumption allows a change in only a single monitored variable



Table 1. Event table defining cInDoor in ID

Variable Event Event

@T(mCmd = OpenInDoor) @QT(mCmd = CloseInDoor)
WHEN cInDoor = closed AND cChPres = InPres WHEN cInDoor = open AND cChPres = InPres

cInDoor’ = |open closed

Table 2. Event table defining cChPres in ID

Variable Event Event

@T(mCmd = ToInPres) WHEN cChPres = QutPres @T(mCmd = ToOutPres) WHEN cChPres = InPres
AND cInDoor = closed AND cOutDoor = closed AND cInDoor = closed AND cOutDoor = closed

cChPres’ =|InPres OutPres

and Tol nPr es for changing the pressure in the chamber to match the pressure outside or inside. Tables 1 and 2 are
SCR event tables describing how the values of the controlled variables cl nDoor and cChPr es change in response
to events. The table for cQut Door , which isanalogousto that for cl nDoor , is omitted.

Table 3 lists six safety properties required of the basic airlock model. Each property was proved for the basic
model using the property checker Salsa [4]. The proofs of properties P, through Ps required no auxiliary invariants.
In contrast, to complete the proof of property P, properties P; and P were used as auxiliaries.

3.2 Adding Timing Behavior

In the second phase, the assumption that doors open and close unconstrained by time is replaced by a requirement
that the doors open and close in a fixed amount of time. (The assumption about the chamber pressure changing
unconstrained by time can be replaced in asimilar manner.) A new monitored variable nt i ne, amonotonically non-
decreasing integer, is added to the specification, and two constants Cl osi ngDur and Openi ngDur are introduced
to represent the time required to close and open a door. To represent this, the representation of the doors in the timed
model has one of four possible values: open, cl osed, openi ng, or cl osi ng. When the command to open a door
isinvoked, the door is assigned the value openi ng. If the door is opening, then when Qpeni ngDur time has passed,
the door is assigned the value open. The process is similar for closing a door. (The timed behavior of the airlock is
similar to that described in [6].) The event tablesfor cl nDoor and cOut Door are modified to reflect these additional
values; Table 4 is the modified table for cl nDoor . The table for cQut Door isanalogous. The table for cChPr es
does not change.

We can define a mapping « from the timed specification T to the original specification ID by ignoring the value
of m i me and mapping a state of T to a state of 1D based on the values of the remaining variables: (1) the values
openi ng and cl osi ng for the doors in the timed specification are mapped to open and cl osed in the untimed
specification, while values open and cl osed remain unchanged; (2) the value of cChPr es is preserved by the
mapping (the mapping for mCnd is technical and omitted here). In the mapping, in response to a command to open a
door, adoor in 1D immediately opens and then stutters while the corresponding door in T has the intermediate value
openi ng (i.e, al the variables except nCd remain unchanged). The case for closing a door is analogous. This
mapping was proved to be arefinement using PVS.

Table 3. Safety Properties for the basic airlock 1D

Name Formal Statement Informal Statement
P; |NOT(cInDoor = open A cOutDoor = open) Both doors cannot be open at the same time.
P, |cInDoor # cInDoor’ = cChPres = InPres A cChPres’ = InPres Pressureis equal during door movement.
P3; |cInDoor = open = cChPres = InPres If door open, pressure same as in indoor area.
P; |cOutDoor # cOutDoor’ = cChPres = QutPres A cChPres’ = QutPres|Pressureisequal during door movement.
Ps |cOutDoor = open = cChPres = QutPres If door open, pressure same as in outdoor area.
Ps |cChPres # cChPres’ = cInDoor = closed A cOutDoor = closed Pressure only changes when both doors closed.




Table 4. Event table defining cInDoor in T

Variable Event Event Event Event
@T(mCmd = OpenInDoor)|@C(mtime) WHEN @QT(mCmd = CloseInDoor)|QC(mtime) WHEN
WHEN cInDoor = closed [DUR(cInDoor = opening)|WHEN cInDoor = open DUR(cInDoor = closing)
AND cChPres = InPres |= OpeningDur AND cChPres = InPres = ClosingDur
cInDoor’ =|opening open closing closed

While the properties proved for ID may still hold for T, in some cases those properties are now weaker than
what we actually desire to prove as aresult of the refinement. In particular, properties that are conditioned on a door
being open can be strengthened to be conditioned on the door being either partially or fully open (i.e., having value
openi ng, open, orcl osi ng). For example, when a door is open fully or partially, the pressure in the chamber
must be the same as the pressure on the other side of the door. Any property that explicitly mentions values for
the variables whose values were refined, in this case cl nDoor and cOut Door , can be modified to take the value
refinement into account. Thus, properties Py, P3, and Ps are modified, replacing all referencestocl nDoor = open
by cl nDoor # cl osed (shown as properties ¢t P, t P5, and t Ps in Table 5).

Because T is arefinement of ID, T can inherit properties of ID. If P is a state invariant of ID, then Po aisa
state invariant of T. Likewise, if P is atransition invariant of 1D, then P o (o x «) is atransition invariant of T.
Unfortunately, in some cases the inherited property is not identical to the property proved for ID. For example, the
inherited property corresponding to P is

(cInDoor = open V cInDoor = opening) A —(cInDoor’ = open V cInDoor’ = opening) V
(cInDoor’ = open V cInDoor’ = opening) A —(cInDoor = openV cInDoor = opening) =
cChPres = cInPres A cChPres’ = cInPres

Because we want to prove the stronger properties shownin Table 5 (including P, Py, and P which are syntacti-
cally identical to the untimed properties of the same namesin Table 3), rather than the weaker properties obtained via
inheritance, the desired properties were verified using Salsa. Proving propertiest Ps, ¢t P, and P required no auxiliary
invariants. In contrast, P, required ¢P; as an auxiliary, Py required ¢P5 as an auxiliary, and ¢ P; required both ¢ Ps
and tPs as auxiliaries.

3.3 Adding Fault Tolerance

In the final iteration, the system is modified to handle the case in which opening a door is faulty—i.e., either door
opens outside of user control. In such cases, both doors may be open for some nonzero period of time. Detecting this
fault leads to the sounding of an alarm; a\\ar ni ng alarm indicates that the other door isclosed, and aDanger alarm
indicates that the other door is open. The recovery for thisfault is to force the offending door to close within a set time
limit. The system only tolerates one faulty door at atime.

Using the method for constructing a fault-tolerant extension described in [13, 14], we add several new variablesto
the specification to represent fault detection and fault handling. Two new monitored variables, nOpenl| nDoor and
nOpenQut Door , are used to signal the system when one of the doors opens outside of user control. A new controlled
variable cAl ar misintroduced to model the status of the alarm; its value can be None, Vr ni ng, or Danger . A
new integer constant Hazar dDur isintroduced to represent the time required to close adoor that has opened outside

Table 5. Safety Properties for the timed airlock T

Name Formal Statement

tP; |NOT(cInDoor # closed A cOutDoor # closed)

P, |cInDoor # cInDoor’ = cChPres = InPres A cChPres’ = InPres

tP3 |cInDoor # closed =- cChPres = InPres

P, |cOutDoor # cOutDoor’ = cChPres = OutPres A cChPres’ = OutPres
tPs | cOutDoor # closed = cChPres = OutPres

Ps cChPres # cChPres’ = cInDoor = closed A cOutDoor = closed




Table 6. Table defining the mode transitionsin FT

Old Mode Event New Mode
Normal @C(mOpenOutDoor) WHEN (cOutDoor = closed)|FaultyOutDoor

Normal @C(mOpenInDoor) WHEN (cInDoor = closed) |FaultyInDoor

FaultyOutDoor|QT(cOutDoor = closed) Normal

FaultyInDoor |@QT(cInDoor = closed) Normal

Table 7. Event table defining cChPres in FT

Mode mcStatus Event Event

Normal @QT(mCmd = ToInPres) WHEN [cChPres = OutPres | QT(mCmd = ToOutPres) WHEN [cChPres = InPres
AND cInDoor = closed AND cOutDoor = closed|| AND cInDoor = closed AND cOutDoor = closed|

cChPres’ = InPres QutPres

of user control. Finally, and most importantly, a new mode class nt St at us is added to indicate the status of the
fault-tolerant airlock system. The statusisNor mal when both doors are operating properly (all behavior that was part
of T hasthisvalue of ntSt at us in FT), Faul t yQut Door when the outside door is opening because of a glitch,
and Faul t yl nDoor when theinside door is opening because of a glitch. The mode transition table for nt St at us
is shown in Table 6. The second step in constructing a fault-tolerant extension is to extend the ranges of existing
variables. In the example presented in [13, 14], the mode variable was extended with a new value f aul t to indicate
when the system was in fault-handling mode. In the airlock system, there was no need for a mode class variable in
the original and timed specifications because the system only had one mode of operation. Thus, when we added fault-
tolerance to the airlock, we added a mode class variable, rather than extending the range of an existing mode class. In
the airlock example, there is no need to extend the range of any variables.

The final step in constructing a fault-tolerant extension is to add transitions. In our SCR specification, the set of
transitions is extended by adding rows to the tables which define the values of the controlled variables. Tables 7, 8,
and Table 9 show the modified tables defining cChPr es, cl nDoor , and cAl ar m The tables for cl nDoor and
cChPr es has been extended by first making the new values of the variables depend on the value of the mode class
variable nt St at us. All transitions in the tables for cl nDoor and cChPr es in T are present in the tables for FT
and are represented in the rows where the mode of nt St at us=Nor mal . Additional transitions are added when the
value of nc St at us iseither Faul t yOut Door or Faul t yl nDoor by adding rowsto the table for cl nDoor .

FT isafault-tolerant extension of T in which

N = {s € Spr : mcStatus(s) = Normal};

F = {s € Spr : mcStatus(s) = FaultyInDoor V mcStatus(s) = FaultyOutDoor}; O =N x N;and
Vs € N:7(s) =§ € Sr, where cInDoor(§) = cInDoor(s) A cOutDoor(8) = cOutDoor(s) A
cChPres(8) = cChPres(s) A mCmd(8) =mCmd(s) A mtime(8) = mtime(s).

Because FT isafault-tolerant extension of T, FT inherits weakened forms of T's properties. Properties w Py—w Ps,
shown in Table 10, are inherited via property inheritance rules. A new property inheritance rule allowing the use of an
auxiliary invariant in the proof was necessary in proving properties w P, and wPy. In this case, the necessary auxiliary
invariant is

AUX = [mcStatus = Normal A cOutDoor = closed A cInDoor = closed] V
[mcStatus = Normal A cOutDoor # closed A cInDoor = closed A cChPres = OutPres]| V
[mcStatus = Normal A cOutDoor = closed A cInDoor # closed A cChPres = InPres| V
[mcStatus = FaultyOutDoor A cOutDoor = opening A cInDoor # closed A cChPres = InPres] V
[mcStatus = FaultyOutDoor A cOutDoor = opening A cInDoor = closed] V
[mcStatus = FaultyInDoor A cOutDoor # closed A cInDoor = opening A cChPres = OutPres| V
[mcStatus = FaultyInDoor A cOutDoor = closed A cInDoor = opening],



Table 8. Event table defining cInDoor in FT

Mode Event Event Event Event
mcStatus
Normal (QT(mCmd = OpenInDoor)|QC(mtime) WHEN @QT(mCmd = CloseInDoor)|QC(mtime) WHEN
WHEN cInDoor = closed |DUR(cInDoor = opening)|WHEN cInDoor = open DUR(cInDoor = closing)
AND cChPres = InPres) |= OpeningDur AND cChPres = InPres = ClosingDur
OR @QC(mOpenInDoor)
WHEN cInDoor = closed
FaultyOutDoor [FALSE @QC(mtime) WHEN FALSE @C(mtime) WHEN
DUR(cInDoor = opening) DUR(cInDoor = closing)
= OpeningDur = ClosingDur
FaultyInDoor [FALSE FALSE FALSE Q@C(mtime) WHEN

(DUR(cInDoor = opening)
= HazardDur OR
DUR(cInDoor = closing)
= ClosingDur)

cInDoor’ = |opening open closing closed

Table 9. Condition table defining cAlarm in FT

Mode mcStatus
Normal TRUE FALSE FALSE
FaultyOutDoor |FALSE| cInDoor # closed | cInDoor = closed
FaultyInDoor |FALSE|cOutDoor # closed|cOutDoor = closed
cAlarm = None Danger Warning

proved by the compositional proof rule for state invariants in [14]. The properties w Py, wPs, and wP; hold by the
following rule, “If P = @ holds by propositional reasoning and if P is a state invariant, then @) is a state invariant,”
and because AUX = wP3; A wPs = wP;. Property Ps was proved using the compositional proof rule for transition
invariants in [14]. Table 10 also shows new fault-tolerance properties, F'I—F"13, generated automatically by our
invariant generator [12], and an interesting timing property, "1, proved using Salsa.

4 LessonslLearned

Incremental development and verification. Before developing the airlock as a series of three specifications, ID, T,
and FT, we tried deriving FT from I D in asingle step that included both the timing and fault-tolerance behavior. De-
veloping FT directly from 1D was extremely difficult because the combination of timing and fault-tolerance behavior
required the addition of a significant amount of detailed behavior. It was much easier to get the final behavior correct
by concentrating on the timing and fault-tolerance behavior individually in separate steps. Thisis one major argument
for incremental development, and it held true in our case study. This experiment confirmed that the basic premise of
our approach, adding only one additional aspect of the system’s behavior in each step, was beneficial.

In addition, when we attempted to add both timing and fault-tolerance in a single step, proving the relationship
between the models was difficult. Using the incremental approach, proving that T was a refinement of ID was the
difficult part; establishing that FT was a partial refinement of T was easy (in fact, it follows by construction; see
Section 2). Including both timing and fault-tolerance in one step obscured the individual pieces and made proving the
relationship difficult.

Finally, we also found that it was important that each step extend the model from the previous step in amanner that
was suitable for the new behavior being added. This requires the construction and verification method to be flexible,
allowing some steps to be full refinements of the previous step and othersto be just partial refinements. In the airlock
example, a full refinement that refined the transitions of the original specification was the appropriate way to add



Table 10. Safety Properties for the fault-tolerant airlock FT

Name Formal Statement

wP; |mcStatus = Normal = NOT(cInDoor # closed A cOutDoor # closed)
wP> |mcStatus = Normal A mcStatus’ = Normal A cInDoor! = cInDoor’

= cChPres = InPres A cChPres’ = InPres

wP3 |mcStatus = Normal A cInDoor # closed = cChPres = InPres

wP; |mcStatus = Normal A mcStatus’ = Normal A cOutDoor! = cOutDoor’
= cChPres = OutPres A cChPres’ = OutPres

wPs | mcStatus = Normal A cOutDoor # closed = cChPres = OutPres

Ps cChPres # cChPres’ = cInDoor = closed A cOutDoor = closed

FT) |cAlarm = Danger < cInDoor # closed A mcStatus = FaultOutDoor V
cOutDoor # closed A mcStatus = FaultyInDoor

FTy |cAlarm = None < mcStatus = Normal

F'T3 |cAlarm = Warning < cInDoor = closed A mcStatus = FaultyOutDoor V
cOutDoor = closed A mcStatus = FaultyInDoor

FT4 |DUR(cOutDoor # closed A cInDoor # closed) < HazardDur

timing behavior. In contrast, adding fault tolerant behavior was better handled by using a compositional construction
that produced a fault-tolerant extension that was only a partial refinement of the timed model. This need for flexibility
will likely hold for modeling other systems. Adding behavior such as exception handling or a new security component
that performs monitoring will likely be best handled using composition and partial refinement, while adding more
detailed security behavior to an abstract model that only captures security at a high level would be better handled
using full refinement.

Importance of modes. Mode variables play an important role in the construction of a fault-tolerant extension. In the
example specification in [13, 14], a mode variable that existed in the origina specification was extended with a new
mode to indicate when the extended system was handling a fault. In the airlock example, no mode class was defined
in either the basic specification or in the timed specification. When the timed version is extended with fault-tolerant
behavior to create FT, one of the new variablesis the mode class nt St at us. This new mode class distinguishes all
of the previoudly existing behavior (now described by mode Nor nmal ) from the states in which fault handling occurs
(modesFaul t yl nDoor and Faul t yQut Door ). Fault detection isindicated by transitions from aNor mal stateto
one of the fault handling states, and recovery by transitionsfrom the fault handling statesto aNor nal state. The mode
variable clearly partitions the set of states based on itsvalue into N and F, thus simplifying the process of establishing
that FT isafault-tolerant extension of T.

Useof auxiliary invariantsin proving properties. Using the proof rulesto establish properties of the airlock system
revealed that in some cases the proof rules developed in [14] were not strong enough to produce the desired proof. In
these cases, the proofs required additional information in the form of an auxiliary invariant to establish that the desired
properties were satisfied. This led to the development of additional proof rules that allow the use of an auxiliary
invariant in the proof. One important question is how to find the needed invariants. Discovering the auxiliary invariant
needed to prove properties w P, and w P, of the fault-tolerant model (see Section 3.3) required user ingenuity. More
systematic techniques are needed for discovering the needed auxiliary invariants.

Proving refinement may bedifficult. In proving the refinement mapping from T to I D, an additional environmental
constraint on mCmd was needed: The value of mCmd must always return to the inactive value None between each setting
to an active value. Including such artificial constraints in the initial formal specifications is undesirable because this
makes the specifications less understandable. However, such artifacts are sometimes necessary to establish required
relationships (such as refinement) between two specifications. Further, the refinement mapping o seemed overly com-
plex given the relative simplicity of the Airlock example. In the future, we shall explore alternate ways of establishing
refinement in the Airlock example.



5 Conclusionsand Future Work

This paper has presented a case study of incremental development of an airlock using composition and (partial) re-
finement to add timing and fault-tolerance to the original specification of the system’s safety-critical behavior. In the
process, additional theory, including a new compositional proof rule that allows invariants to be used in the proofs of
properties of an extended system from properties of the basic system, was developed.

Inthe future, we plan to continue devel oping theory and methodsto support different types of behavioral extensions
beyond fault-tolerant extensions (for example, security extensions and error handling extensions). We also plan to
develop tools to support use of the methods. Such tools include: 1) a construction tool that would guide the user
in extending a model so that the resulting extended model is guaranteed to be a behavioral extension; 2) verification
support for applying the property inheritance and compositional proof rules; and 3) toolsfor transferring the confidence
developed for the modéd to the actual code (e.g., automatic code generation from the models or model-based testing).
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