
Hierarchies, Lowerarchies, Anarchies,
Plutarchies: Historical Perspectives
of Trustworthy Architectures
- -
Peter G. Neumann,
Principal Scientist
SRI International ComputerSciLab
Menlo Park, CA 94025-3493
Neumann@CSL.sri.com 1-650-859-237
http://www.csl.sri.com/neumann
AFRL/CPSG Layered Assurance
San Antonio TX, 5 August 2009

1

Trustworthiness
- -
Trustworthiness is a measure of the
extent to which a system, network,
person, or other entity is worthy of
being trusted to satisfy desired
requirements (e.g., for security,
reliability, human safety, system
survivability despite realistic
adversities, interoperability, ...),
under certain assumptions.

2

Untrustworthiness
- -
Untrustworthiness often results,
due to incomplete requirements
(specified vs desired), unsound
architectures, bad implementation,
dependence on untrustworthy 3rd
parties, insider misuse, human
frailty, invalid assumptions, sloppy
evaluations, faulty risk analysis, etc.

3

Trust vs Trustworthiness
- -
Trust is a slippery slope.
You may trust some entity because:
• You believe it is trustworthy.
• You don’t even know it exists.
• You are näıve or gullible.
• You ignore dialog boxes.
• You don’t check certificates.
• You know no alternatives.

4

Trustworthy Layered Architectures
- -
• Multics 1965, PSOS, SIFT 1973
• Rushby isolation kernel 1982,

Rushby-DeLong 2007-2009
• MLS: KSOS, KVM, SeaView ...
• MILS: Rushby-Randell DSS 1983,

NSA 1988, SRI 1992
• Virtualization: KVM,

Rushby-DeLong 2007-2009
• Composability, e.g.,
www.csl.sri.com/neumann/chats4.pdf

5

Layered Trustworthiness Compromises
- -
Compromise results from misuse,
HW faults, system failures, acts of
God, ..., with three basic types
• Compromise from above/outside:

penetrations, denials of service,
untrustworthy 3rd parties,
clouds, human frailty

• Compromise from within: insiders
• Compromise from below:

subversion (overt or otherwise)

6

More Architectural Issues
- -
• Trustworthy critical components
• Sound bases for composition
• Trusted bootload, trusted paths
• Cryptographic authentication
• Finer-grained authorization
• Traceback abilities
• Trustworthy code distribution
• Don’t forget denials of service
• Alternative hardware bases

7

Multics Hardware, 1965
- -
• Virtual memory segments/pages,

process isolation, address
spaces, argument validation

• Access control interpretation
• Descriptor cache for performance
• Rings generalize supervisor/user

to linearly-ordered domains,
limit compromise from above.

8

Original Multics Software, 1965-1970
- -
• Modular encapsulation, reentrant
PL/I code; per-user processes;
dynamically linked symbolic file &
names with access controls, I/O;
unified design philosophy – e.g.,
dependence on symbolic addressing,
dynamic segment linkage, paging,
stream I/O, command standards,
conventions, canonicalization, ...

9

MLS Multics: AIM, 1972
(Access Isolation Mechanism)
- -
Ring 1 MLS AIM provided 8 levels
& 18 categories with very little
performance degradation as Standard
Multics feature (but seldom used).
(8 MLS levels unrelated to 8 rings.)
Secure audit logged failed accesses.

10

PSOS Design (SRI-NSA, 1973-80)
- -
• Pervasive capability addressing,

tagged, typed, nonforgeable
in HW/SW, nonbypassable

• Hierarachical encapsulated
modular abstraction, object-
oriented typing, extensible,
formally specified in SRI’s
Hierarchical Development
Methodology (HDM)

11

PSOS Capabilities
- -
• Only two operations create

capabilities: create new one,
or create restricted copy.

• All objects are capability
addressed, nonbypassably.

• Incremental trustworthiness.
Capabilities accessible
unless hidden by some layer.

• Capabilities could be tagged as
propagation limited, MLS/MLI

12

Layer PSOS Abstraction or Functions

17+ applications and user code (-)
16 user request interpreter *
15 user environments and name spaces *
14 user input-output *
13 procedure records *
12 user processes*, visible input-output*
11 creation and deletion of user objects*
10 directories (*)[c11]
9 extended types (*)[c11]
8 segmentation (*)[c11]
7 paging [8]
6 system processes, input-output [12]
5 primitive input/output [6]
4 arithmetic, other basic operations *
3 clocks [6]
2 interrupts [6]
1 registers (*), addressable memory [7]
0 capabilities * [MLS?]

* user-visible interface
(*) partially visible interface
(-) user-restrictable as desired
[c11] creation/deletion hidden by layer 11
[i] module hidden by layer i=6,7,8, or 12

13

PSOS Principled Assurance
- -
• Pervasive assurance throughout

cycles of development and use

• Assured composability, layered
hierarchical noncompromisibility
(see Robinson-Levitt 1977).
Cf. the CLInc stack.

• Assured multilevel security,
with several possible
alternative implementations.

14

PSOS Implementability
- -
• Many lower-layer ops * would be

directly executable from above,
although some were hidden [].

• Multilevel security (MLS)
could be embedded in layer
0 or as a secure object type.

• Hardware easily retrofittable.
• PSOS-like typing is used in

Honeywell/SCC secure systems
LoCK, SAT, SideWinder

15

SIFT (SRI/NASA)
- -
• SIFT: Software Implemented
Fault Tolerance, 1973-2000?:

Application layer
Voting layer (2 of 3)
Broadcast layer
Synchronization layer
7 Bendix avionics processors

Prototype ran nonstop at NASA Lan-
gley for many years.

16

SeaView (SRI/ONR-AFRL)
- -
• SeaView, 1980s

Application layer
MLS-untrusted Oracle
MLS kernel

(Composition: ‘balanced assurance’)

17

Formal Methodology: HDM/PVS
- -
• Use of HDM facilitated formal

specification of modules,
interlayer state mappings,
and abstract implementations,
enabling bottom-to-top analysis.

• A complex design became
conceptually simple through
its hierarchy and composable
abstraction and encapsulation.

• Cf. PVS ‘interpretations’

18

KSOS (Ford Aerospace)
- -
34-function MLS kernel, formally
specified in HDM; Feiertag MLS
flow analyzer used Boyer-Moore to
find security flaws in specifications,
most of which were fixed (except for
a few detected covert storage
channels). Also, code-to-spec
consistency proof feasibility.

19

KVM Layers (SDC)
- -
MLS retrofit of kernel into IBM 370;
NonKernel Control Program (one per
security level); untrusted unmodi-
fied virtual operating system instances
of MVS/MVT and VM/370 at de-
sired MLS levels; users. Formal top-
and 2nd-level specs formally veri-
fied with mappings in InaJo/FDM.
Covert channel analysis.

20

KVM References
- -
M. Schaefer, BD Gold, RR Linde,
JF Scheid, Program confinement in
KVM/370, Proc. 1977 ACM Annual
Conference, Seattle, 404-410). (Flaw
discovered in Amdahl HW!)

BD Gold, RR Linde, PF Cudney,
KVM/370 in Retrospect, IEEE SSP,
Oakland, 1984, 13–23.

21

Holistic System Approaches
- -
• We need principled trustworthy

systems with sound requirements,
structured architectures, and
proactive design for usability,
evolvability, pervasive assurance;
selective use of formal methods.

22

What Is Needed More Generally?
- -
• Holistic analysis must address

sustainable democracy, social
equality, and environments;
also proactive attention to aging
infrastructures such as bridges,
roads, levees, railroads, flood
control, healthcare; perhaps most
important: holistic education.

23

Table A-1. TABLE OF INTERDEPENDENCIES
[Source: Roadmap for Cybersecurity Research, 2009]

H,M,L (H=High, M=Medium, L=Low) are suggestive of the extent to which
* X can contribute to the success of Y.
* Y can benefit from progress in X.
* Y may in some way depend on the trustworthiness of X.

S M E I M G S S P P U
C E V N A I U I R R S
A T A S L D R T O I A
L R L I W M V U V V B ROW TOTALS

X: Topic \ Y: 1 2 3 4 5 6 7 8 9 10 11 H M L
-----------------\ ------------------------------- ---------
1 Scalable Trustwor . H H H H H H H H H H 10 0 0
2 Enterpr Metrics M . H H H H H H H H H 9 1 0
3 Eval Methodology H M . H H H H H H M H 8 2 0
4 Coping w Insiders H M M . H M M H M M H 4 6 0
5 Coping w Malware H M M M . M H H M M H 4 6 0
6 Global ID Mgt H M M H H . M H H H H 7 3 0
7 Sys Survivability H M M H M M . M M L H 3 6 1
8 Situ-Attribution M M M H H M H . M M H 4 6 0
9 Provenance M M M M H M M H . H H 4 6 0
10 Privacy-Aware Sec M M L H L H M H M . H 4 4 2
11 Usable Security M M M M M M M M M M . 0 10 0
------------- -------------------------------- ---------
COLUMN TOTALS H | 5 1 2 7 7 4 5 8 4 4 9 57

M | 5 9 7 3 2 6 5 2 6 5 1 50
L | 0 0 1 0 1 0 0 0 0 1 0 3

24

Plutarchies
- -
Plutarch’s Greek writings stimulated
among Romans considerable sense
of the importance of understanding
historical people and events. He
observed that little seemed to have
changed in human nature. Similarly,
little has changed in commercial
high-assurance systems, despite
some major research advances.
We need a better sense of history.

25

Saltzer-Schroeder-Kaashoek (1975+)
- -
• Economy of mechanism
• Fail-safe defaults
• Complete mediation
• Open design
• Minimization of secrets *
• Separation of privilege
• Least privilege
• Least common mechanism
• Psychological acceptability
• Work factor
• Monitoring/auditing

26

Saltzer-Schroeder-Kaashoek
- -
• J.H. Saltzer & M.D. Schroeder
The Protection of Information in
Computer Systems, Proc. IEEE 63,
9, September 1975, 1278–1308.
http://www.multicians.org
• J.H. Saltzer & F. Kaashoek,
Principles of Computer System
Design, Morgan Kauffman, 2009,
Chapters 1-6; 7-11 are online.
http://ocw.mit.edu/Saltzer-Kaashoek

27

Some Computer-Related Conclusions
- -
• We need proactive attention for

computer-based infrastructures:
trustworthy architectures,
transparency, accountability...

• 20-20 foresight is much better
than 20-20 hindsight. Priorities
must be realistic and far-sighted.

28

Lessons Still To Be Learned
- -
• Reliance on misapplied technology

usually increases risks.
• With appropriate HW and system

architecture, layered designs
need not be inefficient.

• Eternal vigilance is required. (John
Dewey: Each generation has to learn
the lessons of the past all over again.)

29

Technological Desires
- -
• Better system architectures
• Better system engineering
• Better public-private cooperation
• Better technology in education
• Practical privacy-aware crypto
• Nonproprietary systems: open

source/arch/doc/composability
• (Leads to permanent job security?)

30

Possible Forcing Functions?
- -
• Market forces are inadequate.
• Incentives for open systems,

open interfaces, open source?
• Stronger regulation & liability?
• Tax incentives?
• Better awareness of the risks

of untrustworthiness; disasters?
• Maybe some or all of the above?
• But there are no easy answers.

31

Overarching Lessons
- -
• Don’t overendow technology.
• Every would-be technological

solution has some risks,
and escalates the attacks.

• Attackers have many advantages
over defenders. However, too
often systems collapse on their
own without provocation.

32

PSOS 1980 Report
- -
• P.G. Neumann, R.S. Boyer,

R.J. Feiertag, K.N. Levitt,
L. Robinson, A Provably Secure
Operating System: The System,
Its Applications, and Proofs,
SRI International, Computer
Science Laboratory, 2nd edition,
Report CSL-116, May 1980.

http://www.csl.sri.com/neumann/
psos/psos80.pdf and .ps

33

1979 PSOS Paper
- -
• R.J. Feiertag, P.G. Neumann,

The Foundations of a Provably
Secure Operating System (PSOS),
Proceedings of the National
Computer Conference, AFIPS
Press, 1979, 329–334.

http://www.csl.sri.com/neumann/
psos.pdf

34

2003 PSOS Revisited
- -
• P.G. Neumann, R.J. Feiertag,

PSOS Revisited, Proceedings of the
19th Annual Computer Security
Applications Conference (ACSAC
2003), Classic Papers section, IEEE
Computer Society, Las Vegas NV,
December 2003, 208–216.

http://www.csl.sri.com/neumann/
psos03.pdf

35

PGN References
- -
• Reflections on System

Trustworthiness, Advances in
Computing v.70, 2007:

• Holistic Systems, ACM
SIGSOFT Softw.Eng.Notes, Nov. 2006
http://www.csl.sri.com/
neumann/holistic.pdf

• Principled Assuredly Trustworthy
Composable Architectures, 2004:
http://www.CSL.sri.com/neumann/
chats4.html, .pdf, .ps

36

A Few More PGN References
- -
• The Role of Motherhood in the

Pop Art of System Programming,
ACM 2nd SOSP, 1969:
multicians.org/pgn-motherhood.htm

• Proctor-Neumann 1992,
www.csl.sri.com/neumann/ncs92.html
• Computer-Related Risks,

Addison-Wesley, 1995
• www.CSL.sri.com/neumann
• ACM Risks Forum, www.risks.org

37

layer PSOS Abstraction or Function
17+ applications and user code (-)
16 user request interpreter *
15 user environments and name spaces *
14 user input-output *
13 procedure records *
12 user processes*, visible input-output*
11 creation and deletion of user objects*
10 directories (*)[c11]
9 extended types (*)[c11]
8 segmentation (*)[c11]
7 paging [8]
6 system processes, input-output [12]
5 primitive input/output [6]
4 arithmetic, other basic operations *
3 clocks [6]
2 interrupts [6]
1 registers (*), addressable memory [7]
0 capabilities *

Note:
* user-visible interface

(*) partially visible interface
(-) user-restrictable as desired

[c11] creation/deletion hidden by layer 11
[i] module hidden by layer i=6,7,8, or 12

38

Group PSOS Abstraction layers
G user/application activities 17–...
F user abstractions 14–16
E community abstractions 10–13
D abstract object manager 9
C virtual resources 6–8
B physical resources 1–5
A capabilities 0

39

layer PSOS Abstraction or Function
8 segmentation (*)[c11]
7 paging [8]
6 system processes, input-output [12]
5 primitive input/output [6]
4 arithmetic, other basic operations *
3 clocks [6]
2 interrupts [6]
1 registers (*), addressable memory [7]
0 capabilities *

Ideally all in hardware.

40

layer PSOS Abstraction or Function
17+ applications and user code (-)
16 user request interpreter *
15 user environments and name spaces *
14 user input-output *
13 procedure records *
12 user processes*, visible input-output*
11 creation and deletion of user objects*
10 directories (*)[c11]
9 extended types (*)[c11]
8 segmentation (*)[c11]
4 arithmetic, other basic operations *
1 registers (*)
0 capabilities *

41

layer Properties for Analysis
17+ Application-relevant properties
16 Soundness of user types
15 Search-path flaw avoidance
12 Process isolation, no residues,
11 No lost objects
9 Generic type soundness
8 Segmentation integrity
6 Interrupts properly masked
4 Correctness of basic operations
0 Nonforgeable, nonbypassable,

nonalterable capabilities
MLS (if present in layer 0)

42

