
Towards Assurance for Open
Soft Real-Time Systems*

Chris Gill
Associate Professor of Computer Science and Engineering

Washington University, St. Louis, MO, USA
cdgill@cse.wustl.edu

3rd Layered Assurance Workshop (LAW ’09)
August 4 - 5, 2009, San Antonio, TX, USA

*Research supported in part by NSF awards CNS-0716764 (Cybertrust) and CCF-0448562 (CAREER)

*Thanks to the many collaborators who have been involved with different aspects of this work,
including: Terry Tidwell, Robert Glaubius, Venkita Subramonian, Huang-Ming Huang, Cesar Sanchez,

William D. Smart, Doug Niehaus, Henny Sipma, and Zohar Manna

 2 - Gill et al. – 8/15/09

Motivation: Open Soft Real-Time Systems
 Interact with variable environments

» Varying degrees of autonomy
» Performance is deadline sensitive
» Often involve cyber-physical semantics

 Many activities must run at once
» Device interrupt handing, computation
» Comm w/ other systems/operators

 Need assurance of properties
» E.g., how to enforce utilization shares

when scheduling shared resources for
competing, variable execution times?

Remote Operator Station

(for all but full autonomy) Wireless
Communication

Example Systems:
(1) Self-Maintaining Clusters,
(2) Lewis (WUSTL M&M Lab)

 3 - Gill et al. – 8/15/09

An Example of What We Want to Assure

 A mobile robot with multiple onboard sensors
interacting with a dynamic unknown environment

 Onboard sensors have different but measurable
characteristics
» Camera - long uncertain capture time (scene dependent)
» Laser range finder - shorter more predictable interval

 Scheduling the orientation, activation, and
processing of such sensors impacts timely and
correct operation of the systems as a whole
» Robot can pause (soft real-time consequences of delay)

n But this is sub-optimal and constitutes an assurance failure
» Many forms of resource contention must be considered

n E.g., CPU utilization by processing threads
n E.g., shared pan-tilt unit on which sensors are mounted

 4 - Gill et al. – 8/15/09

Overview for this Talk

Background on requirements, platforms, and formal models

I. Toward assurance in cyber-physical systems (including
mixed-criticality systems as an important sub-category)

II. The challenge to evolve platforms - OS and middleware
III. Interactions with the environment and other actors

Towards assurance for open soft real-time systems

IV. Scheduling policy design in open soft real-time systems
V. State space representations and reductions
VI. Towards (timed) verification in those systems

 5 - Gill et al. – 8/15/09

I. Toward Assurance in Cyber-Physical Systems

 Inter-dependence is fundamental, and spans system
properties: functionality, distribution, concurrency, etc.

 Physical world introduces quantitative (continuous) time
and uncertainty/variability in execution/response times:
i.e., inter-dependence of cyber and physical properties

 Mixed criticality systems are an important sub-category

laxity

static

static

timers

laxity

static

static

timers

ASFD and WSOA software and flight
demonstrations (AFRL, DARPA, Boeing,

BBN, Honeywell, WUSTL, OIS)
Variable and modal image capture

response times due to scene, occlusion

 6 - Gill et al. – 8/15/09

II. The Challenge to Evolve Platforms
 HW, OS and/or middleware must enforce system properties
 Architecture may aid or thwart modeling and control of

system properties (e.g., event sequencing and timing)
 Even mechanisms for following a protocol can be challenging
 Beyond functional plug-n-play to separation and composition

KURT-Linux/Kokyu Group Scheduling
(DARPA, U. Kansas, WUSTL)

ACE-level concurrency control for distributed
deadlock avoidance (NSF, WUSTL, Stanford)

 7 - Gill et al. – 8/15/09

III. Interactions
 Modeling the enforced timing, event ordering, and resource

utilization constraints requires comparably rich mechanisms
 System behavior is strongly influenced by interactions

among system components, environment, and other actors
 Constraining interaction may be useful, but in many systems

some interactions are fundamental (can’t design them away)

Current=f(s)

Choose 2Choose 1

Current activity blocks

Idle catcher runs

Over-constraining avoided

ACE-level system components modeled by timed
automata in IF and UPPAAL (Subramonian)

Model checking must manage trade-offs
between under- and over-constraining
the system state space (Subramonian)

Current=nil

Current=1

 8 - Gill et al. – 8/15/09

IV. Scheduling Policy Design Approach

 Our focus is on “messy” details of actual systems
 Especially, on inter-dependent execution (e.g., due to

resource contention introduced in design)
 Even simple cases are non-trivially challenging to assure

 Goal of the work on which much of the rest of this
talk rests is to develop rational scheduling policies
 Assume uncertain and interdependent execution
 Still enforce desired properties (e.g., resource shares)

 We leverage techniques from machine learning
 Represent uncertainty as Markov Decision Process
 Perform policy iteration to find locally optimal policy

 9 - Gill et al. – 8/15/09

Consider a (Very Simple) System Model

 Separate activities require a shared resource
» Require mutually exclusive access to run
» E.g., non-preemptive threading, or device sharing, etc.

 Each activity binds the resource when it runs
» Binds resource for a duration then releases it
» Modeled using discrete variables that count time quanta

 Variable execution times with known distributions
» We assume that each activity’s run-time distribution is

known and bounded, and independent of the others
 Non-preemptive scheduler (repeats perpetually)

» Scheduler chooses which activity to run (based on policy)
» Scheduler dispatches activity which runs until it yields
» Scheduler waits until the activity releases the resource

 10 - Gill et al. – 8/15/09

Scheduling Policy Design Considerations

time

pr
ob

ab
ili

ty

time

pr
ob

ab
ili

ty

 We summarize system state as
a vector of integers
» Encode resource usage times

 Each usage time comes from a
known, bounded distribution

 Scheduling an activity changes
the system state
» Utilization changes after activity

runs, based on actual usage time
» State transition probabilities are

based on usage time distributions
 This forms a basis for policy

design and optimization

 11 - Gill et al. – 8/15/09

From Usage Times to a Scheduling MDP
 We model scheduling decisions as a Markov Decision

Process (MDP) – e.g., based on thread run times
 The MDP is given by 4-tuple: (X,A,R,T)

 X: the set of process states
 Correspond to thread utilization states

 A: the set of actions
 I.e., scheduling a particular thread

 R: reward function for taking an action in a state
 Expected utility of taking that action
 Distance of the next state(s) from a desired utilization (vector)

 T: transition function
 Encodes the probability of moving from one state to another

state for each action

 Solve MDP to obtain a locally optimal policy

 12 - Gill et al. – 8/15/09

Policy Iteration Approach

 Define a cost function r(x) penalizing deviation from
target utilization

 Start with some initial policy π0
 Repeat for t=0,1,2,…

» Compute the value Vt(x) -- the accumulated cost of
following πt -- for each state x.

» Obtain a new policy, πt+1, by choosing the greedy action
at each state.

 Guaranteed to converge to the optimal policy
 Requires storing Vt and πt in lookup tables.

 13 - Gill et al. – 8/15/09

Basic Utilization State Space Structure
 Simple (here unary) expansion

of increases in resource use
 To bound the state space, we

used a system termination
notion in our initial approach
 Produces absorbing states

where utilization stays same
 E.g., 0,3 and 1,2 etc.

 Drawbacks
 Artifacts, limited horizon

 A limited but illustrative model
 Later we exploit state space

structure to remove termination

 14 - Gill et al. – 8/15/09

Constructing a Verification State Space

 We can also generate a verification state space
 A verification state (box) combines utilization state

(circle) subsets reachable on a scheduling action
 Transitions condensed from the utilization state space

 Note that verification states also often overlap
 E.g., utilization state 2,1 is in two verification states

 15 - Gill et al. – 8/15/09

Basic Verification State Space Size and Cost
 State space exponential

in # of threads and time
to termination (history)

 Scheduling reduces cost
but only delays explosion

 Motivates further work
to reduce the state space

 16 - Gill et al. – 8/15/09

V. State Space Representations and Reductions

 Automated verification introduces fundamental
problems of decidability and tractability
 We restrict our attention to generally decidable

representations suitable for model checking
(e.g., timed automata and no stronger)

 However, tractability still remains a major issue
 We look for inherent and induced regularity of

state spaces (e.g., quasi-cyclic structure)
 This in turn allows state space reduction by

folding together equivalent states

 17 - Gill et al. – 8/15/09

Limitations of Policy Iteration for Scheduling

 Utilization state space is
not fundamentally finite
» Termination boundary is an

artificial restriction
 Can’t apply MDP solution

techniques directly to
actual state space
» Need to reduce the size of

the state space in order to
solve for some policy.

» Our approach: reduce the
state space to a collection
of equivalence classes.

 18 - Gill et al. – 8/15/09

Insight: State Value Equivalence

 Cost function

 Any two states co-linear
along the target
utilization ray have the
same cost

 Any two states have the
same relative
distribution over future
states

 Any two states with the
same cost have the same
optimal value!

!

r(x) = " x " x
1
u
1

 19 - Gill et al. – 8/15/09

Technique: State Wrapping

 We are thus able to collapse
the equivalent states down
into a set of exemplar states

 We then bound the number of
states by introducing
“absorbing” states

» Greedy and optimal policies
appear to agree at sufficient
distance from target
utilization

 Can then use policy iteration
to obtain a policy

 20 - Gill et al. – 8/15/09

Successor Function for Wrapped State Space

 Successor function computation steps:
» Split on policy
» Simulate action
» Wrap

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 21 - Gill et al. – 8/15/09

The Successor Function (Illustrated)

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 22 - Gill et al. – 8/15/09

Current States

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 23 - Gill et al. – 8/15/09

Split on Policy (Red vs Blue)

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 24 - Gill et al. – 8/15/09

Simulate Action

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 25 - Gill et al. – 8/15/09

Apply Wrapping

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 26 - Gill et al. – 8/15/09

VI. Towards (Timed) Verification

 Computing successor states is similar to initial approach …
 … but involves wrapped state space model

 We can also compute difference bound matrices …
 … and define run and wrap operations over them
 A basis for timed verification of scheduling properties

 There remain a number of scalability/accuracy trade-offs
and other open issues (most recent results under review)
 E.g., we can represent either unknown modes or unknown

distributions (but not yet both at once)
 State spaces are still very large but polynomial time

approximations appear possible and useful (current work
in progress)

 27 - Gill et al. – 8/15/09

Support for Model Checking

 Some definitions/assumptions
» Each verification state is a set of utilization states
» Actions are the same as in the MDP
» Initial verification state contains only the utilization

state representing zero CPU usage for each thread
» We have a successor function over state-action pairs

 Given a model and a property, check whether the
property holds in the model

 Build a transition system of reachable states
» Repeatedly uses successor operator succ(s,a), to compute

the successor state(s) to all previously visited states s,
with all possible actions a, until a fixed point is reached

 28 - Gill et al. – 8/15/09

Potential Improvements to our Representation

 The size of a verification state is proportional to the
size of the wrapped utilization state space
» Still exponential in the number of threads

 The size of the verification state is also sensitive to
the time scale used
» The more densely sampled, the larger the representation

 We would prefer a verification state representation
that is less affected by these factors

 29 - Gill et al. – 8/15/09

Difference Bound Matrix (DBM) Representation

 Used by timed model
checkers

 Compactly represent
continuous regions in
utilization space

 Each element
represents an equation
» e.g.

 Quadratic in the
number of threads

 Independent of the
time scale

),0(),3(),(

),(),0(),(

),0(),0(),0(0

0

2

1

21

!<!"

!"!!"

!!!

x

x

xx

3
21
<! xx

 30 - Gill et al. – 8/15/09

The Successor Function (Revisited)

 Successor Function Again Computed in Steps
» Split on Policy
» Simulate Action
» Wrap

 This time we use three DBM operations
» Intersection -- canonical DBM operation
» Run and wrap -- novel extensions

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 31 - Gill et al. – 8/15/09

Split on Policy

 First, represent the
decision boundary as
a DBM

 Then intersect the
DBM representing
the verification
state with the DBM
for the appropriate
decision region

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 32 - Gill et al. – 8/15/09

Simulate Action

 Apply Run operator
» Takes a DBM as input
» Creates a DBM

representing the
region that would be
produced by running
the appropriate
thread

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 33 - Gill et al. – 8/15/09

Apply Wrapping (1/3)

 Wrap operator takes
a DBM and a non-
negative integer

 Invoke repeatedly
for successively
larger integers until
it produces an empty
DBM (fixed point)

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 34 - Gill et al. – 8/15/09

Apply Wrapping (2/3)

 Confine the DBMs
produced by the
Wrap operator

 Need a DBM per
thread to represent
the wrapped space

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 35 - Gill et al. – 8/15/09

Apply Wrapping (3/3)

 Intersect the
products of Wrap
with the constraining
DBMs
» Gives the set

succ(s,a)

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 36 - Gill et al. – 8/15/09

Now We Can Model Check the Scheduling Policy

 The successor function induces a transition system
that models our scheduling policy

 DBM representation is efficient and checkable
 Apply standard model checking tools and

techniques to verify properties with this model

 37 - Gill et al. – 8/15/09

Summary

 Our goal has been to design assured scheduling
policies for open soft real-time systems

 We use a Markov Decision Process representation
to derive scheduling policies
» We developed a state wrapping scheme to allow policy

iteration
 We exploit state space structure and introduce

novel DBM operators to constrain verification
complexity
» Allows tractable property verification via Model Checking

 38 - Gill et al. – 8/15/09

A Few More Important Pieces of Related Work

 Reference monitor approaches
 Interposition architectures

 E.g., Ostia: user/kernel-level (Garfinkel et al.)
 Separation kernels

 E.g., ARINC-653, MILS (Vanfleet et al.)

 Scheduling policy design
 Hierarchical scheduling

 E.g., HLS and its extensions (Regehr et al.)
 E.g., Group scheduling (Niehaus et al.)

 Quasi-cyclic state space reduction
 E.g., Bogor (Robby et al.)

 39 - Gill et al. – 8/15/09

Concluding Remarks
 MDP approach supports rational scheduling design

 Even when thread run times vary stochastically
 Encodes rather than presupposes utilizations
 Allows policy verification over utilization states

 Ongoing and Future Work
 Dealing with unknown modes/distributions
 Polynomial time approximations
 Empirical evaluation in real-world settings

 Relevant project web pages
 http://www.cse.wustl.edu/~cdgill/Cybertrust

 Supported by NSF grant CNS-0716764
 http://www.cse.wustl.edu/~cdgill/CAREER

 Supported by NSF grant CCF-0448562

