
Towards Assurance for Open
Soft Real-Time Systems*

Chris Gill
Associate Professor of Computer Science and Engineering

Washington University, St. Louis, MO, USA
cdgill@cse.wustl.edu

3rd Layered Assurance Workshop (LAW ’09)
August 4 - 5, 2009, San Antonio, TX, USA

*Research supported in part by NSF awards CNS-0716764 (Cybertrust) and CCF-0448562 (CAREER)

*Thanks to the many collaborators who have been involved with different aspects of this work,
including: Terry Tidwell, Robert Glaubius, Venkita Subramonian, Huang-Ming Huang, Cesar Sanchez,

William D. Smart, Doug Niehaus, Henny Sipma, and Zohar Manna

 2 - Gill et al. – 8/15/09

Motivation: Open Soft Real-Time Systems
 Interact with variable environments

» Varying degrees of autonomy
» Performance is deadline sensitive
» Often involve cyber-physical semantics

 Many activities must run at once
» Device interrupt handing, computation
» Comm w/ other systems/operators

 Need assurance of properties
» E.g., how to enforce utilization shares

when scheduling shared resources for
competing, variable execution times?

Remote Operator Station

(for all but full autonomy) Wireless
Communication

Example Systems:
(1) Self-Maintaining Clusters,
(2) Lewis (WUSTL M&M Lab)

 3 - Gill et al. – 8/15/09

An Example of What We Want to Assure

 A mobile robot with multiple onboard sensors
interacting with a dynamic unknown environment

 Onboard sensors have different but measurable
characteristics
» Camera - long uncertain capture time (scene dependent)
» Laser range finder - shorter more predictable interval

 Scheduling the orientation, activation, and
processing of such sensors impacts timely and
correct operation of the systems as a whole
» Robot can pause (soft real-time consequences of delay)

n But this is sub-optimal and constitutes an assurance failure
» Many forms of resource contention must be considered

n E.g., CPU utilization by processing threads
n E.g., shared pan-tilt unit on which sensors are mounted

 4 - Gill et al. – 8/15/09

Overview for this Talk

Background on requirements, platforms, and formal models

I. Toward assurance in cyber-physical systems (including
mixed-criticality systems as an important sub-category)

II. The challenge to evolve platforms - OS and middleware
III. Interactions with the environment and other actors

Towards assurance for open soft real-time systems

IV. Scheduling policy design in open soft real-time systems
V. State space representations and reductions
VI. Towards (timed) verification in those systems

 5 - Gill et al. – 8/15/09

I. Toward Assurance in Cyber-Physical Systems

 Inter-dependence is fundamental, and spans system
properties: functionality, distribution, concurrency, etc.

 Physical world introduces quantitative (continuous) time
and uncertainty/variability in execution/response times:
i.e., inter-dependence of cyber and physical properties

 Mixed criticality systems are an important sub-category

laxity

static

static

timers

laxity

static

static

timers

ASFD and WSOA software and flight
demonstrations (AFRL, DARPA, Boeing,

BBN, Honeywell, WUSTL, OIS)
Variable and modal image capture

response times due to scene, occlusion

 6 - Gill et al. – 8/15/09

II. The Challenge to Evolve Platforms
 HW, OS and/or middleware must enforce system properties
 Architecture may aid or thwart modeling and control of

system properties (e.g., event sequencing and timing)
 Even mechanisms for following a protocol can be challenging
 Beyond functional plug-n-play to separation and composition

KURT-Linux/Kokyu Group Scheduling
(DARPA, U. Kansas, WUSTL)

ACE-level concurrency control for distributed
deadlock avoidance (NSF, WUSTL, Stanford)

 7 - Gill et al. – 8/15/09

III. Interactions
 Modeling the enforced timing, event ordering, and resource

utilization constraints requires comparably rich mechanisms
 System behavior is strongly influenced by interactions

among system components, environment, and other actors
 Constraining interaction may be useful, but in many systems

some interactions are fundamental (can’t design them away)

Current=f(s)

Choose 2Choose 1

Current activity blocks

Idle catcher runs

Over-constraining avoided

ACE-level system components modeled by timed
automata in IF and UPPAAL (Subramonian)

Model checking must manage trade-offs
between under- and over-constraining
the system state space (Subramonian)

Current=nil

Current=1

 8 - Gill et al. – 8/15/09

IV. Scheduling Policy Design Approach

 Our focus is on “messy” details of actual systems
 Especially, on inter-dependent execution (e.g., due to

resource contention introduced in design)
 Even simple cases are non-trivially challenging to assure

 Goal of the work on which much of the rest of this
talk rests is to develop rational scheduling policies
 Assume uncertain and interdependent execution
 Still enforce desired properties (e.g., resource shares)

 We leverage techniques from machine learning
 Represent uncertainty as Markov Decision Process
 Perform policy iteration to find locally optimal policy

 9 - Gill et al. – 8/15/09

Consider a (Very Simple) System Model

 Separate activities require a shared resource
» Require mutually exclusive access to run
» E.g., non-preemptive threading, or device sharing, etc.

 Each activity binds the resource when it runs
» Binds resource for a duration then releases it
» Modeled using discrete variables that count time quanta

 Variable execution times with known distributions
» We assume that each activity’s run-time distribution is

known and bounded, and independent of the others
 Non-preemptive scheduler (repeats perpetually)

» Scheduler chooses which activity to run (based on policy)
» Scheduler dispatches activity which runs until it yields
» Scheduler waits until the activity releases the resource

 10 - Gill et al. – 8/15/09

Scheduling Policy Design Considerations

time

pr
ob

ab
ili

ty

time

pr
ob

ab
ili

ty

 We summarize system state as
a vector of integers
» Encode resource usage times

 Each usage time comes from a
known, bounded distribution

 Scheduling an activity changes
the system state
» Utilization changes after activity

runs, based on actual usage time
» State transition probabilities are

based on usage time distributions
 This forms a basis for policy

design and optimization

 11 - Gill et al. – 8/15/09

From Usage Times to a Scheduling MDP
 We model scheduling decisions as a Markov Decision

Process (MDP) – e.g., based on thread run times
 The MDP is given by 4-tuple: (X,A,R,T)

 X: the set of process states
 Correspond to thread utilization states

 A: the set of actions
 I.e., scheduling a particular thread

 R: reward function for taking an action in a state
 Expected utility of taking that action
 Distance of the next state(s) from a desired utilization (vector)

 T: transition function
 Encodes the probability of moving from one state to another

state for each action

 Solve MDP to obtain a locally optimal policy

 12 - Gill et al. – 8/15/09

Policy Iteration Approach

 Define a cost function r(x) penalizing deviation from
target utilization

 Start with some initial policy π0
 Repeat for t=0,1,2,…

» Compute the value Vt(x) -- the accumulated cost of
following πt -- for each state x.

» Obtain a new policy, πt+1, by choosing the greedy action
at each state.

 Guaranteed to converge to the optimal policy
 Requires storing Vt and πt in lookup tables.

 13 - Gill et al. – 8/15/09

Basic Utilization State Space Structure
 Simple (here unary) expansion

of increases in resource use
 To bound the state space, we

used a system termination
notion in our initial approach
 Produces absorbing states

where utilization stays same
 E.g., 0,3 and 1,2 etc.

 Drawbacks
 Artifacts, limited horizon

 A limited but illustrative model
 Later we exploit state space

structure to remove termination

 14 - Gill et al. – 8/15/09

Constructing a Verification State Space

 We can also generate a verification state space
 A verification state (box) combines utilization state

(circle) subsets reachable on a scheduling action
 Transitions condensed from the utilization state space

 Note that verification states also often overlap
 E.g., utilization state 2,1 is in two verification states

 15 - Gill et al. – 8/15/09

Basic Verification State Space Size and Cost
 State space exponential

in # of threads and time
to termination (history)

 Scheduling reduces cost
but only delays explosion

 Motivates further work
to reduce the state space

 16 - Gill et al. – 8/15/09

V. State Space Representations and Reductions

 Automated verification introduces fundamental
problems of decidability and tractability
 We restrict our attention to generally decidable

representations suitable for model checking
(e.g., timed automata and no stronger)

 However, tractability still remains a major issue
 We look for inherent and induced regularity of

state spaces (e.g., quasi-cyclic structure)
 This in turn allows state space reduction by

folding together equivalent states

 17 - Gill et al. – 8/15/09

Limitations of Policy Iteration for Scheduling

 Utilization state space is
not fundamentally finite
» Termination boundary is an

artificial restriction
 Can’t apply MDP solution

techniques directly to
actual state space
» Need to reduce the size of

the state space in order to
solve for some policy.

» Our approach: reduce the
state space to a collection
of equivalence classes.

 18 - Gill et al. – 8/15/09

Insight: State Value Equivalence

 Cost function

 Any two states co-linear
along the target
utilization ray have the
same cost

 Any two states have the
same relative
distribution over future
states

 Any two states with the
same cost have the same
optimal value!

!

r(x) = " x " x
1
u
1

 19 - Gill et al. – 8/15/09

Technique: State Wrapping

 We are thus able to collapse
the equivalent states down
into a set of exemplar states

 We then bound the number of
states by introducing
“absorbing” states

» Greedy and optimal policies
appear to agree at sufficient
distance from target
utilization

 Can then use policy iteration
to obtain a policy

 20 - Gill et al. – 8/15/09

Successor Function for Wrapped State Space

 Successor function computation steps:
» Split on policy
» Simulate action
» Wrap

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 21 - Gill et al. – 8/15/09

The Successor Function (Illustrated)

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 22 - Gill et al. – 8/15/09

Current States

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 23 - Gill et al. – 8/15/09

Split on Policy (Red vs Blue)

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 24 - Gill et al. – 8/15/09

Simulate Action

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 25 - Gill et al. – 8/15/09

Apply Wrapping

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 26 - Gill et al. – 8/15/09

VI. Towards (Timed) Verification

 Computing successor states is similar to initial approach …
 … but involves wrapped state space model

 We can also compute difference bound matrices …
 … and define run and wrap operations over them
 A basis for timed verification of scheduling properties

 There remain a number of scalability/accuracy trade-offs
and other open issues (most recent results under review)
 E.g., we can represent either unknown modes or unknown

distributions (but not yet both at once)
 State spaces are still very large but polynomial time

approximations appear possible and useful (current work
in progress)

 27 - Gill et al. – 8/15/09

Support for Model Checking

 Some definitions/assumptions
» Each verification state is a set of utilization states
» Actions are the same as in the MDP
» Initial verification state contains only the utilization

state representing zero CPU usage for each thread
» We have a successor function over state-action pairs

 Given a model and a property, check whether the
property holds in the model

 Build a transition system of reachable states
» Repeatedly uses successor operator succ(s,a), to compute

the successor state(s) to all previously visited states s,
with all possible actions a, until a fixed point is reached

 28 - Gill et al. – 8/15/09

Potential Improvements to our Representation

 The size of a verification state is proportional to the
size of the wrapped utilization state space
» Still exponential in the number of threads

 The size of the verification state is also sensitive to
the time scale used
» The more densely sampled, the larger the representation

 We would prefer a verification state representation
that is less affected by these factors

 29 - Gill et al. – 8/15/09

Difference Bound Matrix (DBM) Representation

 Used by timed model
checkers

 Compactly represent
continuous regions in
utilization space

 Each element
represents an equation
» e.g.

 Quadratic in the
number of threads

 Independent of the
time scale

),0(),3(),(

),(),0(),(

),0(),0(),0(0

0

2

1

21

!<!"

!"!!"

!!!

x

x

xx

3
21
<! xx

 30 - Gill et al. – 8/15/09

The Successor Function (Revisited)

 Successor Function Again Computed in Steps
» Split on Policy
» Simulate Action
» Wrap

 This time we use three DBM operations
» Intersection -- canonical DBM operation
» Run and wrap -- novel extensions

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 31 - Gill et al. – 8/15/09

Split on Policy

 First, represent the
decision boundary as
a DBM

 Then intersect the
DBM representing
the verification
state with the DBM
for the appropriate
decision region

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 32 - Gill et al. – 8/15/09

Simulate Action

 Apply Run operator
» Takes a DBM as input
» Creates a DBM

representing the
region that would be
produced by running
the appropriate
thread

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 33 - Gill et al. – 8/15/09

Apply Wrapping (1/3)

 Wrap operator takes
a DBM and a non-
negative integer

 Invoke repeatedly
for successively
larger integers until
it produces an empty
DBM (fixed point)

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 34 - Gill et al. – 8/15/09

Apply Wrapping (2/3)

 Confine the DBMs
produced by the
Wrap operator

 Need a DBM per
thread to represent
the wrapped space

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 35 - Gill et al. – 8/15/09

Apply Wrapping (3/3)

 Intersect the
products of Wrap
with the constraining
DBMs
» Gives the set

succ(s,a)

]}},[,))((,)(|)({{),(
aaa

taxwsxwtxwassucc !"#$ %=%+=

 36 - Gill et al. – 8/15/09

Now We Can Model Check the Scheduling Policy

 The successor function induces a transition system
that models our scheduling policy

 DBM representation is efficient and checkable
 Apply standard model checking tools and

techniques to verify properties with this model

 37 - Gill et al. – 8/15/09

Summary

 Our goal has been to design assured scheduling
policies for open soft real-time systems

 We use a Markov Decision Process representation
to derive scheduling policies
» We developed a state wrapping scheme to allow policy

iteration
 We exploit state space structure and introduce

novel DBM operators to constrain verification
complexity
» Allows tractable property verification via Model Checking

 38 - Gill et al. – 8/15/09

A Few More Important Pieces of Related Work

 Reference monitor approaches
 Interposition architectures

 E.g., Ostia: user/kernel-level (Garfinkel et al.)
 Separation kernels

 E.g., ARINC-653, MILS (Vanfleet et al.)

 Scheduling policy design
 Hierarchical scheduling

 E.g., HLS and its extensions (Regehr et al.)
 E.g., Group scheduling (Niehaus et al.)

 Quasi-cyclic state space reduction
 E.g., Bogor (Robby et al.)

 39 - Gill et al. – 8/15/09

Concluding Remarks
 MDP approach supports rational scheduling design

 Even when thread run times vary stochastically
 Encodes rather than presupposes utilizations
 Allows policy verification over utilization states

 Ongoing and Future Work
 Dealing with unknown modes/distributions
 Polynomial time approximations
 Empirical evaluation in real-world settings

 Relevant project web pages
 http://www.cse.wustl.edu/~cdgill/Cybertrust

 Supported by NSF grant CNS-0716764
 http://www.cse.wustl.edu/~cdgill/CAREER

 Supported by NSF grant CCF-0448562

