
Summary of Tools Breakout Sessions

1. Use of tools implementing formal methods should be started very early, even
before the requirements are formalized. The tools should then be used
consistently throughout the software life cycle.

Rationale: Using formal methods to model the requirements can expose
inconsistencies and missing requirements. Results from applying formal
methods can be used in communicating with customers. A real life example of
this was described A caution in speaking with customers is that the discussion
should be in terms that the customer understands.

Using formal methods after the software has been developed is not nearly as
effective as starting with formal methods at the architecture level. In fact, the
architecture needs to be compatible with formal methods. We need tools that
provide a principled look at how to build systems. To bridge between design and
code, the formal methods tools should be used to generate test cases. Tools also
need to be used to demonstrate that configuration data is correct.

2. We need to make formal methods tools more accessible. Tools should span
model types and levels of formality. Tools at different levels of formality, as
well as tools used at different stages of the life cycle (i.e. tool chains) should be
integrated and interoperate wherever possible.

Rationale: Results from static analysis tools can assist in the formal methods
proofs. To make tools more accessible, it was suggested that formal tools plug
into an environment such as Eclipse. An example of a tool that people are more
familiar with is Simulink. An additional concern for hybrid physical/computer
systems is addressing domain-specific concerns, including physics and biological
constraints.

3. To help users with the methodology of using formal methods, a forward and
backward chaining knowledge based framework was suggested for expressing the
methodology.

