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ABSTRACT
Virtually all real-valued computations are carried out using �oating-
point data types and operations. With increasing emphasis on over-
all computational e�ciency, compilers are increasingly a�empting
to optimize �oating-point expressions. Practical reasoning about
the correctness of these optimizations requires error analysis proce-
dures that are rigorous (ideally, they can generate proof certi�cates),
can handle a wide variety of operators (e.g., transcendentals), and
handle all normal programmatic constructs (e.g., conditionals and
loops). Unfortunately, none of today’s approaches can achieve this
entire combination. �is position paper summarizes recent progress
achieved in the community on this topic. It then showcases the com-
ponent techniques present within our own rigorous �oating-point
precision tuning framework called FPTuner—essentially o�ering
a collection of “grab and go” tools that others can bene�t from.
Finally, we present FPTuner’s limitations and describe how we can
exploit contemporaneous research to improve it.
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1 INTRODUCTION
We live in an era where an increasing number of safety-critical
computations are carried out using �oating-point arithmetic. It is
also the era of the “pinched-o� Moore’s law” with all its concomi-
tant forces egging us to seek computational e�ciency, including
modifying compilers to play with �oating-point precision. Unfor-
tunately, we have not proportionately grown our �oating-point
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error analysis capabilities: students are sparingly educated [2], and
the formal methods community around this enterprise is small and
disconnected. While Kahan has characterized �oating-point errors
as “very rare, too rare to worry about all the time,” in the same
breath he also cautions us “yet not rare enough to ignore” [19].

Microprocessor vendors already o�er us a cornucopia of op-
tions to skimp on �oating-point precision, such as 16-bit �oating-
point arithmetic supported by ARM NEON [1] and Nvidia Pascal
GPU [26]. FPGAs are gaining popularity due to their �exibility, and
they will o�er additional opportunities in this regard, as already
foreseen [8]. �ese are many opportunities to reduce energy con-
sumption: we recently measured the reduction routine presented
in Table 5 of our recent paper [7] as giving us a saving of 2,230
Joules when instantiated in 32 bits (single-precision) as opposed
to 64 bits (double-precision) over 1011 invocations—nearly 2% of a
laptop ba�ery’s capacity.

�e capability of �oating-point error analysis itself is of im-
mense value within rigorous reasoning systems such as proof as-
sistants. Initial pioneering work in this area was in Fluctuat [15]
and Gappa [12]. Rigorous precision tuning tools add an extra layer
of tooling that iterates over di�erent precision allocations till an
error target is met. Such tuning support is o�ered by some recent
e�orts [9, 10] where they allocate di�erent homogeneous (e.g., all
32, 64, or 128 bits—not a mixture) precision choices. It has been
shown (e.g., [2, 6]) that mixed-precision allocation is o�en much
be�er than homogeneous allocations. �ese authors do not pro-
vide a tool: all mixed precision allocations were explored manually.
Automated mixed-precision tuning methods were introduced in
recent e�orts [20, 30, 31]. �ese researchers achieved substantial
savings in terms of the number of double-precision words allocated
while meeting stipulated error bounds on a given collection of test
cases.

Unfortunately, all the aforesaid mixed-precision tuning e�orts
(manual and automated) provided their guarantees only on a few
hundred test cases that a user supplies. It is easy to observe a
violation of the stipulated error bounds on other inputs—even those
inputs that may lie within the interval straddled by the given test
inputs [7]. �is makes the aforesaid solutions unusable in situations
demanding rigorous guarantees.

We recently demonstrated how mixed-precision tuning that
comes with rigorous guarantees can be achieved [7]. Our work
also includes detailed energy measurements conducted on an actual
hardware platform. We observe energy savings for many mixed-
precision allocations. We also are very careful to present the e�ect
that the choice of the compiler used can have on the quality of the
results, and how to “control” the �ags of these compilers to achieve



AFM’17, May 2017, Mo�e� Field, California, USA M. Baranowski et al.

good results. All our results are reproducible by the community by
downloading our FPTuner tool (that passed the artifact evaluation
test of POPL17) from Github at h�ps://github.com/soarlab/FPTuner.
Martel recently proposed another approach for rigorous �oating-
point format inference in mixed-precision [25]. His method com-
bines forward and backward error analysis achieved through ab-
stract interpretation, together with the use of SMT solvers to bound
the bit-widths of the operators and operands.

We now present a taxonomy of strengths and weaknesses of
rigorous tools (including of FPTuner) and point out areas of coop-
eration that will help the �eld advance.

Error Analysis: �e underlying error analysis methods must not
generate overly conservative error estimates. When applied for
precision tuning, such estimates can lead to excessive (and unnec-
essary) precision allocation. When applied for veri�cation, it can
result in unnecessary veri�cation failures. �e FPTaylor [34] ap-
proach underlying FPTuner has been shown to provide the tightest
of rigorous estimates on a common class of examples, compared to
existing rigorous tools.

Conditionals: Handling conditionals has been a vexing problem
for researchers in this area [9, 34]. �e key issue is that for virtually
all practical programs, the round-o� error introduced by the condi-
tional expression can only be estimated within a certain tolerance,
thus leading to a case analysis that involves incompatible control
�ows (then/else are both deemed possible) [10, 27]. Recently pro-
posed rigorous round-o� analysis methods incorporate techniques
to handle such “unstable conditionals”; for instance, support for con-
ditionals exists within Fluctuat [15], PRECiSA [27], Real2Float [23],
and Rosa [10]. FPTaylor has been shown to generate far tighter
error estimates than these tools—albeit on straight-line programs.
Unfortunately, FPTaylor (and FPTuner that is based on FPTaylor)
cannot deal with conditionals yet, and this forms a major area of
improvement that we seek. In reality, there has not been a study of
what ‘soundly handle’ means (e.g., returning (−∞,∞) for an error
estimate is sound but useless). �is is another area where tools that
claim sound analysis of conditionals must perform a comparative
study.

Proof Certi�cates: Generation of proof certi�cates is supported
by Gappa [11], PRECiSA [27], Real2Float [23], and FPTaylor. Ra-
mananandro et al. [29] recently proposed an approach to verify
C programs that involve �oating-point computations in Coq. �e
other rigorous tools listed above do not produce proof certi�cates,
as far as we know.

Variety of Operations: FPTaylor (and hence FPTuner) can handle
a wide variety of operators that include non-linear and transcen-
dental operators. Real2Float is the only other rigorous tool we are
aware of that can handle these families of operators. FPTaylor’s ap-
proach in this regard is to use a global optimization procedure while
Real2Float employs a relaxation procedure based on semi-de�nite
programming. �ese approaches help FPTaylor and Real2Float
side-step a di�culty faced by other techniques that rely on SMT-
based methods; this is because there are no well-developed SMT
approaches to handle transcendentals.1

1FPTaylor is also unable to handle discontinuous operators such as abs and mod;
however, it does employ a smooth as well as conservative approximation to these

Mixed-precision Tuning: We have mentioned that Rosa [9, 10]
performs only homogeneous precision allocation. By including
an extra optimization loop based on quadratic programming and
supported by tools such as Gurobi [17], FPTuner is able to carry
out rigorous mixed-precision tuning. We show that in cases where
Rosa recommends an all-128 allocation, we can in fact achieve a
mixed 64/128 allocation [7]. �is has the distinct advantage that
64-bit precision is directly supported in hardware, thus dramatically
reducing the overall runtime. Related work [29] has pursued the
formal analysis of C programs for energy-e�cient radar processing
where the authors employ mixed-precision arithmetic.

1.1 Moving the Needle on Mixed-precision
Tuning

Our primary goal in this position paper is to facilitate advances in
the area of rigorous mixed-precision tuning by o�ering the �rst
comparative study that clearly lists the strengths and limitations of
various tools in this area. Our secondary goal is to contribute ideas
toward rigorous analysis methods for �oating-point round-o� error
analysis by clearly describing FPTuner and its component tech-
nologies that can be used piece-meal in other tools. It is clear that
thrusts in these areas should not remain isolated—a clear danger,
given the small sizes of communities interested in these areas. Our
comparative study of various tools in the introduction suggests that
each tool in this area stands to bene�t from the others by directly
borrowing a piece of technology and/or suitably adapting it.

We now present FPTuner and its component technologies in
su�cient detail so as to encourage other groups to try using this
tool as well as borrow from its components:

• �ey may be encouraged to employ FPTaylor (the “engine”
behind FPTuner) as a stand-alone error analysis facility. We
would like to point out that FPTaylor has been released as
a stand-alone tool on Github at h�ps://github.com/soarlab/
FPTaylor.

• �ey may be encouraged to use FPTaylor’s global opti-
mizer backend, namely Gelpia, for solving optimizations.
Gelpia also enjoys a stand-alone release on Github at h�ps:
//github.com/soarlab/gelpia.
• Last but not least, they may learn how FPTuner’s tuning

loop based on quadratic programming works. �is may al-
low other groups to build similar precision tuning methods
in their own framework.

Roadmap: In §2, we present the overall �ow of FPTuner. In §3,
we present a case study: the tuning of an unrolled Jacobi iteration
scheme. In §4, we include additional related work on rigorous
precision tuning. In §5, we provide our concluding remarks. We
also present our plans to advance FPTuner by borrowing the best
ideas from contemporaneous rigorous analysis tools.

2 INTRODUCTION TO FPTUNER
We provide an overview of FPTuner using a simple illustrative
example, while also stepping through Figure 1—the work�ow of this
tool. Consider a simple expression given over reals: E = x −(x +y).

functions, and therefore is able to handle these operations in practice—albeit with
exaggerated error at the discontinuity.

https://github.com/soarlab/FPTuner
https://github.com/soarlab/FPTaylor
https://github.com/soarlab/FPTaylor
https://github.com/soarlab/gelpia
https://github.com/soarlab/gelpia
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Let A64 be an allocation vector that assigns double-precision (64
bits) to the three variable occurrences as well as the two operators
in this expression. �at is, A64[i] = ϵ64 for 0 ≤ i < 5 where ϵ64 is
the machine epsilon [14] for double precision. Using the approach
of Symbolic Taylor Forms (which essentially goes by the round-
o� error serving as the “noise” around the ideal), we obtain the
modeling expression ẼA64 is (x · (1+ e1) − (x · (1+ e3)+y · (1+ e4)) ·
(1 + e2)) · (1 + e0).. �is method of obtaining �oating-point error
modeling expression is standard (has been rigorously established
in many frameworks, including within HOL-lite recently [18]). In
ẼA64 , each operator of E at position i is associated with a distinct
noise variable ei , where |ei | ≤ A64[i]. Note that keeping e1 and
e3 that are associated with the two instances of x distinct gives a
pessimistic error estimate, as the round-o� errors are allowed to be
uncorrelated.2 Also notice that by se�ing all the noise variables to 0,
we obtain the value of E . Based on Symbolic Taylor Expansions [34],
we can now obtain a formula describing the upper bound of the
�rst order error due to these “noise” terms:���ẼA64 − E

��� ≤∑
i ∈5

Uei · A64[i]. (1)

Figure 1 illustrates these steps. Here, the given expression E
�ows in at the top, and the modeling expression is obtained. �e
error bound expression T is obtained by applying FPTaylor’s error
analysis. �e D() coe�cients are the �rst partial derivatives with
respect to the noise variables, and represents the �rst-order error in-
troduced by the corresponding operator. �e Gelpia optimizer �nds
the maximum of these �rst derivative expressions, thus obtaining
their upper bounds which we designate using U .

�e steps described thus far apply to the homogeneous precision
case. For mixed precision allocation, we not only introduce the
noise terms, but must also introduce an optional type-casting round-
o� step. �is round-o� step is necessary when descending from
high precision �oward lower precision.3 But since we do not know
whether we are descending (or ascending) in precision till the full
allocation is done, our formulation actually introduces a quadratic
program that captures all these constraints.

�e Gurobi optimizer of Figure 1 is the unique additional layer
added by FPTuner. It handles the following details:

• It models the precision allocated at every operator site
through variable ci .

• It checks whether one operator at precision c1 is feeding
a second operator’s operand position where the second
operator is at a lower precision c2; if so, it introduces a
type-casting rounding step.

• It groups (based on user selection) precision allocations
of multiple operators (“ganging step”). �is is to permit
the generation of vector instructions by picking a group of
variables and requiring that their precision values be the
same.

In summary, the work�ow in Figure 1 indicates how the FP-
Taylor tool was extended to yield the FPTuner tool. One way to
interpret this �gure is how we used FPTaylor, Gelpia, and Gurobi

2It also permits these x s to be assigned di�erent precision values.
3For going from low precision to high precision, no round-o� is necessary, as (for
example) any value representable in 32-bit FP is exactly representable in 64-bit FP.

Program
real-valued expression EE

Modeling Expression Ẽ̃E  

Error Bound Expression TT
T = D(Ẽ , c0) · Ac[op0] + . . . D(Ẽ , cN ) · Ac[opN ]T = D(Ẽ , c0) · Ac[op0] + . . . D(Ẽ , cN ) · Ac[opN ]

T with D( ) repl. by upper bnd. U objective function, 
ganging and 

type cast constraints

… Gurobi Gurobi Gurobi

… FPTaylorFPTaylorFPTaylor

Gelpia Global 
Optimizer … Gelpia Global 

Optimizer
Gelpia Global 

Optimizer

Figure 1: FPTuner work�ow

as subroutines in assembling FPTuner.4 �e key in a nutshell is to
treat the machine epsilons as variables ranging over the desired
range of actual machine epsilon constants for various precision
values. We introduce a conditional casting term if a value �ows
from the regime of one machine epsilon (that of an operator) to the
regime of another machine epsilon (operand) at lower precision.
Gurobi then seeks an allocation to all machine epsilon variables that
minimizes total error to be under a user-given target while meeting
users’ additional criteria that may include: (1) gang a selected set
of operators, and (2) limit the total number of type-casting steps.

�e diagram also shows FPTaylor involved as a �nal checking
step. Instead of computing both a �rst-order Taylor error and
estimating the second-order error (as FPTaylor does), FPTuner takes
the following shortcut: (1) it obtains only the �rst-order error, (2) it
a�empts the allocation, (3) it �nally invokes FPTaylor at the end to
re-check that the allocation abides by an FPTaylor run that includes
the second order error estimate. In all our experiments, this short-
cut has worked without the �nal FPTaylor check failing. (If it
were to fail, we would simply tighten the error estimate with the
second-order error estimate and rerun.)
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import t� ir api as IR

n = 3
unrolls = 2

low = 1.0
high = 10.0

A = list()
for j in range(n):
row = list()
for i in range(n):
row.append(IR.RealVE(”a{}{}”.format(i,j), 0, low, high))

A.append(row)

b = list()
for i in range(n):
b.append(IR.RealVE(”b{}”.format(i), 1, low, high))

x = list()
for i in range(n):
x.append(IR.FConst(1.0))

g = 2

#j k = 0
#j while convergence not reached: # while loop
for k in range(unrolls): # replacement for while loop
for i in range(n): # i loop
sigma = IR.FConst(0.0)
for j in range(n): # j loop
if j != i:
sigma = IR.BE(”+”, g, sigma,

IR.BE(”∗”, g, A[i][j], x[j]))
g += 1

# end j loop
x[i] = IR.BE(”/”, g, IR.BE(”−”, g, b[i], sigma), A[i][j])
g += 1

# end i loop
#j check convergence
#j k = k+1
# end while loop

print(x[0])
rs = x[0]
IR.TuneExpr(rs)

Figure 2: Python code to generate the FPTuner Jacobi query

3 CASE STUDY: TUNE UNFOLDED JACOBI
3.1 Example Description
Figure 2 is an example we will use to illustrate FPTuner and its
actions. �is is one of the largest examples run through FPTuner
to date. (In our paper [7], we only provide the �nal tuned result;
here we provide additional details.)

With this example we are symbolically unrolling a Jacobi solver
and querying for error on one of the �nal terms. Since all the
4Details can be studied by downloading all these four tools; Gurobi download instruc-
tions are included in our releases.

rnd32((rnd32((rnd32(b0)
−
rnd32((rnd32((rnd32(0.0)

+
rnd32((rnd32(a10)
∗
rnd32((rnd32((rnd32(b1)
−

…
/ rnd32(a22)))))))))

/ rnd32(a20)))

Figure 3: Excerpt of FPTaylor query generated by FPTuner

((interval(1.0, 1.0) / a20)
∗
((a20
∗
((interval(1.0, 1.0) / a22)
∗
(−
((a02
∗
((b0
−
((interval(0.0, 0.0) + (a10 ∗ interval(1.0, 1.0)))
+
(a20 ∗ interval(1.0, 1.0))))

∗
(interval(1.0, 1.0) / a20)))))))))

Figure 4: Example optimization query to Gelpia

operations in this example are symmetric, we obtain the per element
roundo� error as follows. First we create the input A (a 2d array of
real values), the b vector of real values, and the initial guess vector
x comprised of the constant 1.0. �e standard Jacobi algorithm is
then performed, with FPTuner operations essentially building up
the symbolic expressions of the computation.

3.2 Symbolic Taylor Forms
�e input Jacobi query to FPTuner generates many sub-queries to
FPTaylor such as distilled in Figure 3. �ese in turn go through
�oating-point error modeling via Taylor forms generated by FPTay-
lor. �e generated Taylor forms range from 6 to 1, 244 operators
and 2 to 10 input dimensions for this Jacobi query. �ey are then
handed to Gelpia for global optimization. A simple example of such
a query given to Gelpia is given in Figure 4.

As detailed in our previous work [34], FPTaylor can use two
di�erent models for rounding error. �e simple model carries er-
ror terms with each operation modeled according to its precision.
�is approach generates a di�erentiable optimization query that
can be handled by most mainstream global optimizers. �e draw-
back to this approach, however, is that the model overestimates
the round-o� error. We also de�ne an improved rounding model
that correlates error terms, thus modeling errors more tightly. A
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drawback of this approach is that the resulting optimization prob-
lems may involve discontinuous functions, and thus not amenable
to most global optimizers. We extended Gelpia to be able to han-
dle these discontinuous queries. However, FPTaylor does not (yet)
generate proof certi�cates for this improved rounding model.

3.3 Assessment of the Gelpia Optimizer
Gelpia utilizes the inclusion property of interval arithmetic. �e
output of any operation will be an over-approximation so that all
possible answers for the input ranges are represented in the output
range. �e tightness of this approximation depends on the exact val-
ues and operations. For example, consider the interval x = [−5, 5];
the value of expression x ∗ x will equal [−25, 25] under correlation
of the x (i.e.,, treating the expression as x2), we can obtain the much
tighter bound of [0, 25]. We leverage such arithmetic substitutions
to accelerate convergence within Gelpia.

In addition to algebraic simpli�cation, Gelpia uses a mixture of
heuristics to accelerate the branch and bound algorithm. �ese
include: sampling points in a split domain to guess which branch is
more likely to contain the maximum; estimating the derivative at
these points to prioritize steeper domains over �a�er domains; and
local optima �nders to assist in the search. Local optimum �nding
methods are used to quickly �nd (guaranteed lower-bounds on)
local maxima to raise the branch bound. �e branch and bound
algorithm periodically informs the local methods of an approximate
enclosure of the search space. Approximation of the derivative is
found through reverse symbolic-di�erentiation computed in the
Gelpia front end.

Since the reverse di�erentiation can create common subexpres-
sions in the overall computation, we also use common subexpres-
sion elimination and a static single assignment (SSA) type internal
representation to eliminate redundant computation.

�e basic branch and bound algorithm is presented in Figure 5.
�e iterations continually split the input domain searching for
the location of the global extrema. Split regions are prioritized
by heuristics which determine how ”promising” a region is. �e
second if condition detects if a queue item is too small to be con-
sidered, the upper estimate for the queue item is below the branch
bound or the width of the item’s image under f is too small to
be considered; when the condition is true, no new queue items
are created. �e body records the upperbound for this discarded
interval if appropriate. �e input domain can be subdivided a �-
nite number of times (in �oating point arithmetic), guaranteeing
termination of the algorithm, regardless of the value of xtol . Bidi-
rectional communication is shown in retrieving localopt which is
the current maximum found by the local optimizers, pushing up
the branch bound. Promising regions are given to the local opti-
mizers by se�ing the xbest variable to xn potentially redirecting
local optimization of this region.

We guarantee that the maximum given by Gelpia is above the
true global maximum of the function, respectively the minimum is
below the true global minimum. �e heuristics and simpli�cations
help Gelpia to either �nd a closer estimate in a given time limit, or
�nd the same estimate in a shorter period of time.

function IBBA(f , x , xtol , ftol )
fbestlow ← −∞ // best low so far
fbesthiдh ← −∞ // best high so far
Q ← Pr ior ityQueue() // heuristic priority
Q .push(x )
while Q , emptyset do
xn ← Q .pop() // next intvl to be expanded
f xn ← f (xn ) // intvl output of f on xn
fbestlow ←max (fbestlow , lower (f xn ))
if localopt > fbestlow then
fbestlow ← localopt // get estimate from local opts

end if
if (upper (f xn ) < fbestlow or

width(xn ) < xtol or
width(f xn ) < ftol ) then
fbesthiдh ←max (fbesthiдh , upper (f xn ))
continue

end if
if upper (f xn ) > fbesthiдh then
xbest ← xn // send promising intvl to local opts

end if
xl , xr ← split (xn )
Q .push(xl )
Q .push(xr )

end while
return fbesthiдh

end function

Figure 5: Interval Branch-and-Bound Algorithm (IBBA) un-
derlying Gelpia. Here, f is the function to optimize and x
is the input domain (a cartesian product of N intervals, one
per dimension). Parameters xtol and ftol are scalars used to
suppress the split step when either the input or the output
interval width are small.

Compared with many other tools, we provide rigorous global
optimization of functions containing discontinuous and transcen-
dental functions. Rigorous global optimization is also used by PRE-
CiSA [27]. �e well-known dReal [13] tool supports many of the
same features of Gelpia, but occasionally produces non-rigorous
answers, meaning it can produce a purported global minimum,
which can easily be shown through sampling to not be the global
minimum. However, for many queries dReal is faster than Gelpia,
so its input could be useful in �nding extrema quickly. Additionally,
dReal supports constraints on the query permi�ing a more �exible
query language, which Gelpia currently lacks.

Figure 6 presents the results of tuning the Jacobi example for
three precision choices. �e selected precision levels at various
levels of the expression tree are as indicated.

4 RELATEDWORK
Space prevents us from surveying many other tools in this area; for
completeness, here are some additional related e�orts.

An SMT-LIB theory of �oating-point numbers was �rst proposed
by Rümmer and Wahl [32] and recently re�ned by Brain et al. [4].
�ere have been several a�empts to devise an e�cient decision pro-
cedure for such a theory [3, 5, 22], but currently most SMT solvers
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Figure 6: Tuning results for the Jacobi benchmark us-
ing three candidate precisions. �e computation is rep-
resented as an expression tree, where ovals denote vari-
ables and constants, and squares denote operators. Dark
(resp., light+dotted, white) ovals/rectangles denote single-
precision (resp., double-, quad-) variables/operators. Note
that we do not show the casting operators explicitly.

still do not support it. Recent e�orts in rigorous �oating-point error
estimation are based on combinations of abstract interpretation and
conservative range calculations. Melquiond et al. o�er Gappa [12],
a tool based on interval arithmetic. �e tool FLUCTUAT [15] com-
bines the error estimates obtained from input-domain subdivisions
to improve the overall accuracy of error analysis. Graillat et al. [16]
propose a tuning approach similar to Precimonious [30, 31] but use
discrete stochastic arithmetic (DSA) for con�rming the precision
requirement. Tang et al. [35] propose a method that automati-
cally searches for possible expression rewrites from a database of
templates. Panchekha et al. [28] propose a method to rewrite expres-
sions similar to Tang’s approach. However, Panchekha’s method
can synthesize simple conditionals that can adaptively select dif-
ferent rewrites according to runtime inputs. Also, the objective
of Panchekha’s method is to reduce overall round-o� errors on
program outputs. Martel proposed an operational semantics gov-
erning the rewriting of program statements [24] for improving

�oating-point precision. �is technique also takes into consider-
ation standard compile-time techniques such as loop unrolling.
Schkufza et al. [33] o�er a Markov Chain Monte Carlo (MCMC)
based method that searches for improved-e�ciency compositions
of instructions. Recently, Lee et al. [21] proposed a veri�cation
method that combines instruction rewriting and rigorous precision
measurement.

5 CONCLUDING REMARKS
�is position paper brings together many recent e�orts that cater to
rigorous �oating-point error estimation and precision tuning. We
have described the components of FPTuner at su�cient depth to
encourage other researchers to adopt its techniques. As for FPTuner
itself, here is what we foresee as its immediate path forward:

• We plan to incorporate conditionals into FPTuner by em-
ploying the approach suggested in previous work [27].

• One of the tool bo�lenecks is the time taken by Gelpia.
We plan to research be�er heuristics and more aggressive
parallelization methods to speed up this tool.

• Another interesting avenue would be to incorporate ex-
pression rewriting [28] as an additional step during preci-
sion tuning. �e exact manner in which these techniques
can aid each other (e.g., whether expression rewriting
can reduce the need for precision tuning, or eliminate
cases where precision tuning ends up allocating higher
bit-widths) would be an important result to obtain.
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