
The MINERVA So�ware Development Process
Anthony Narkawicz

NASA Langley Research Center

Mail Stop 130

Hampton, Virginia 23681-2199

anthony.narkawicz@nasa.gov

César A. Muñoz

NASA Langley Research Center

Mail Stop 130

Hampton, Virginia 23681-2199

cesar.a.munoz@nasa.gov

Aaron M. Dutle

NASA Langley Research Center

Mail Stop 130

Hampton, Virginia 23681-2199

aaron.m.dutle@nasa.gov

ABSTRACT
�is paper presents a so�ware development process for safety-

critical so�ware components of cyber-physical systems. �e pro-

cess is called MINERVA, which stands for Mirrored Implementation

Numerically Evaluated against Rigorously Veri�ed Algorithms. �e

process relies on formal methods for rigorously validating code

against its requirements. �e so�ware development process uses:

(1) a formal speci�cation language for describing the algorithms and

their functional requirements, (2) an interactive theorem prover for

formally verifying the correctness of the algorithms, (3) test cases

that stress the code, and (4) numerical evaluation on these test cases

of both the algorithm speci�cations and their implementations in

code. �e MINERVA process is illustrated in this paper with an

application to geo-containment algorithms for unmanned aircra�

systems. �ese algorithms ensure that the position of an aircra�

never leaves a predetermined polygon region and provide recovery

maneuvers when the region is inadvertently exited.

CCS CONCEPTS
•So�ware and its engineering→Formal so�ware veri�cation;
Empirical so�ware validation;

KEYWORDS
formal methods, formal veri�cation, so�ware validation

ACM Reference format:
Anthony Narkawicz, César A. Muñoz, and Aaron M. Dutle. 2017. �e

MINERVA So�ware Development Process. In Proceedings of Automated
Formal Methods 2017, Mo�e� Field, CA, USA, May 2017 (AFM’17), 8 pages.

DOI: 10.475/123 4

1 INTRODUCTION
�e formal veri�cation of safety-critical so�ware for cyber-physical

systems presents multiple challenges. Since these systems interact

with the environment, their functional and operational require-

ments may involve complicated properties that are beyond the

reach of automated analysis techniques. Formal veri�cation of

cyber-physical systems is also challenging because machine num-

bers such as �oating-point numbers are used to implement nu-

merical computations. Finally, although embedded systems avoid

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

AFM’17, Mo�e� Field, CA, USA
© 2017 ACM. 123-4567-24-567/08/06. . .$0

DOI: 10.475/123 4

imperative features such as dynamic memory and unbounded loops,

their control �ow o�en relies on numerous conditional statements

that can generate an enormous number of potential execution paths.

�is paper presents a practical, but rigorous, approach to the

development of safety-critical so�ware components of systems that

interact with the environment. �e process is called MINERVA,

which stands for Mirrored Implementation Numerically Evaluated

against Rigorously Veri�ed Algorithms, and has formal methods as

its centerpiece. In MINERVA, functional and operational require-

ments are �rst speci�ed using a formal speci�cation language. Core

algorithms that implement those requirements are also speci�ed

and formally proved correct with respect to their speci�cations.

�ese algorithms are then numerically evaluated on a generated set

of test cases. Finally, the output values are compared to outputs com-

puted by an implementation of these algorithms in a programming

language with the purpose of showing similar behavior between the

algorithm speci�cations and their corresponding implementations

in code.

MINERVA has been used in the development of numerous so�-

ware prototype implementations of NASA’s air tra�c manage-

ment concepts, e.g., DAIDALUS
1

[12], ICAROUS
2

[6], and Poly-

CARP
3

[13]. �is paper illustrates the MINERVA process through

PolyCARP, a suite of algorithms for computations on polygons

that is used in geo-containment applications. In particular, Poly-

CARP is used inside the ICAROUS so�ware package to provide

geo-containment and obstacle-avoidance capabilities to small un-

manned aircra�. �e geo-containment functionality of the Poly-

CARP package uses polygon containment algorithms to determine

whether the position of an aircra� is within a given geographical

region, which is modeled using a 2D polygon with a minimum and

a maximum altitude. For safety critical aircra� systems such as

geo-containment systems, formal veri�cation and validation is key

to having assurance of the safe behavior of the so�ware, making

such systems good targets for the application of MINERVA. To illus-

trate the practical bene�ts of the MINERVA process, four so�ware

bugs are shown that were found and �xed using MINERVA on the

algorithms in PolyCARP.

MINERVA does not assume a particular speci�cation language,

proof assistant, or programming language. �e speci�cation lan-

guage should be expressive enough to support the speci�cations of

the continuous behavior of the environment, the control logic of

the algorithms, and the correctness properties of these algorithms.

�e proof assistant should be able to support the formal veri�ca-

tion of these algorithms and should provide a ground evaluator

of numerical properties. �e examples of the MINERVA process

1
h�p://shemesh.larc.nasa.gov/fm/DAIDALUS.

2
h�p://shemesh.larc.nasa.gov/fm/ICAROUS.

3
h�p://shemesh.larc.nasa.gov/fm/PolyCARP.

http://shemesh.larc.nasa.gov/fm/DAIDALUS
http://shemesh.larc.nasa.gov/fm/ICAROUS
http://shemesh.larc.nasa.gov/fm/PolyCARP

AFM’17, May 2017, Mo�e� Field, CA, USA Anthony Narkawicz, César A. Muñoz, and Aaron M. Dutle

Figure 1: MINERVA Development Process

presented in this paper use SRI’s Prototype Veri�cation System

(PVS) [16] as a speci�cation language and proof assistant, and the

programming languages Java, C++, and Python. �e PVS speci�ca-

tions are viewed as the formal de�nitions of both the algorithms

and safety properties.

�e rest of this paper is organized as follows. Section 2 describes

the MINERVA development process. Section 3 presents the applica-

tion of MINERVA to PolyCARP. Sections 4 and 5 discusses related

work and conclude this paper.

2 MINERVA
�e MINERVA so�ware development process, short for Mirrored

Implementation Numerically Evaluated against Rigorously Veri�ed

Algorithms, is de�ned by three main steps, which correspond the

three main parts of this acronym (although not in order):

Rigorously Veri�ed Algorithms. Formal speci�cation of algo-

rithms, formal speci�cation of their requirements, and for-

mal proofs of their correctness in a proof assistant.

Mirrored Implementations. Manual or automatic implementa-

tions of the veri�ed algorithms in code.

Numerically Evaluated. Using a set of test inputs, calculate the

output values of both the formal algorithm speci�cations

and their so�ware versions and compare them to ensure

faithful translation of the algorithm speci�cations to code.

�e process in this step is called model animation [9].

It can be seen from this description that the MINERVA process

provides high assurance that the algorithms are both mathemati-

cally correct and faithfully translated into code. Figure 1 illustrates

the entire MINERVA process in diagrammatic form. �e following

sections describe each of the steps in MINERVA in greater detail.

2.1 Rigorously Veri�ed Algorithms
�e Rigorously Veri�ed Algorithms (RVA) step in the MINERVA

process can be broken into three substeps:

(1) Formal speci�cation of algorithms.

(2) Formal speci�cation of algorithm requirements, e.g., cor-

rectness or safety properties.

(3) Formal proofs that algorithms satisfy requirements and

safety properties.

�e examples in this paper accomplish each of these three steps

using the PVS theorem prover. �e RVA step in the MINERVA

process is illustrated for geo-containment algorithms in Section 3.1.

2.2 Mirrored Implementation
�e Mirrored Implementation (MI) step in the MINERVA process

refers to the algorithm speci�cations from the RVA step being

translated to code in a programming language. �ere are two main

ways that this can be accomplished:

• Translation of the algorithms by hand between the speci�-

cation language and the programming language

• Automatic-generation of code in the programming lan-

guage from the algorithm speci�cations, possibly using a

tools such as the one described in [10].

�e exact method of translation between speci�cations and code

is not prescribed by the MINERVA proces. Either hand translation

of automatic generation could potentially be unsound. However, it

should be noted that the use of an automatic generation tool may

further improve the reliability of code wri�en using the MINERVA

process, especially if the translation logic is formally veri�ed itself.

An important aspect of the MI step is that the interfaces to the

algorithm speci�cations and their implementations are identical,

hence the word mirrored. �is allows comparison of outputs of the

individual functions on a suite of test cases in the next step.

2.3 Numerically Evaluated
�e Numerically Evaluated (NE) step in the MINERVA process

involves two substeps:

(1) Test case generation. In this substep, a suite of test cases is

generated from the formal models for stressing the algo-

rithms and their implementations.

(2) Agreement testing. Using animations of the algorithm

speci�cations, compute outputs for both the algorithms

and their so�ware implementations on the generated suite

of test cases. Finally, compare the outputs by using a con-

formance relation between corresponding values.

�ese steps have been presented before as the concept of model
animation [9]. While model animation does not provide an absolute

guarantee that so�ware implementations are correct, it increases

the con�dence that the formal models are faithfully implemented

in code.

Despite this structural similarity between the algorithms and

the code, the execution of the functional models and the so�ware

implementations may di�er due to the presence of functions that

cannot be e�ectively computed, such as trigonmetric functions. In

this case, semantic a�achments [7] can be supplied for such atomic

functions to make these functions executable in the speci�cation

language. �e NASA PVS Library
4

includes several formalizations

of rigorous numerical approximation methods and a computable

high-level formalization of �oating-point number that can be used

as semantic a�achements for real arithmetic operators.

4
h�ps://shemesh.larc.nasa.gov/fm/�p/larc/PVS-library/.

https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/

The MINERVA So�ware Development Process AFM’17, May 2017, Mo�e� Field, CA, USA

Figure 2: Ray Casting

�e generation of test cases in this step is critical to its success. In

practice, any method of generating these tests can be used, includ-

ing both user-provided test cases and automatically generated test

cases. For the geo-containment algorithms presented in Section 3,

these test cases are generated by the developer in a way designed

to stress the control logic in the algorithms.

3 APPLICATION OF MINERVA TO POLYCARP
�is section illustrates the MINERVA process through its appli-

cation to the PolyCARP package, which provides algorithms for

computations on polygons, with geo-containment of unmanned

systems being one intended application. As noted in the Introduc-

tion, the speci�cation and prover languages of PVS are used for

specifying and verifying these polygon algorithms. �e �nal code,

produced in the MI (Mirrored Implementation) step of MINERVA,

is implemented in Java, C++, and Python.

�e geo-containment functionality of the PolyCARP package

uses standard polygon containment algorithms. �e algorithms test

that a position is inside a given polygon region and provide nearby

resolution locations to recover to in the event that an unsafe region

is breached. For instance, a resolution function is given with a point

and a polygon as inputs that, when the point is inside the polygon,

returns another point that is close to the �rst point but is outside

the polygon. To illustrate the practical bene�ts of the process, four

so�ware bugs are shown in Section 3.3 that were found and �xed

using MINERVA on the algorithms in PolyCARP.

3.1 Rigorously Veri�ed Algorithms
�is section illustrates the RVA step in the MINERVA process

through the geo-containment algorithms in the PolyCARP package.

�ese algorithms perform computations on polygons.

3.1.1 Formal Specification of Algorithms for Polygons. �e con-

tainment functions for 2D polygon regions assume that any input

polygon is arranged in counterclockwise order. �ese functions are

based, in part, on ray casting. Given a polygon region and an input

position in a 2D plane, a ray is cast from the point outward to

in�nity (in this case the direction of the positive y-axis). In most

cases, if the ray crosses an even number of edges of the polygon, it

is outside; otherwise, it is inside. �is is shown in Figure 2.

�e function ray crosses, de�ned in the PVS-like pseudo-code

below, determines whether this ray crosses the i-th edge of the poly-

gon P, where s refers to the position to be tested for containment

in P.

ray crosses(P, s, i) ≡
let

N=size(P),
next = mod(i+1,N),
tester = (p (next)x − p (i)x)ˆ2 · (p (i)y − sy) + (sx−
p (i)x) · (p (next)y − p (i)y) · (p (next)x − p (i)x)

in
if p (i)x>sx and p (next)x>sx then false
elsif p (i)x<sx and p (next)x<sx then false
elsif p (i)x = p (next)x and (p (i)y ≥ sy or

p (next)y ≥ sy) then ERROR
elsif p (i)x = p (next)x then false
elsif tester ≥0 then true
else false
fi

In the containment method for 2D polygons, a bu�er distance

named BUFF is also used to perturb the original polygon P be-

cause ray casting along the direction of the y axis can sometimes

cause the ray to pass very close to some vertices, which can po-

tentially allow �oating point errors to produce an incorrect in-

side/outside result. �e perturbation of the vertices of P by BUFF
stops this from happening, and the ray casting function then works

as expected on the perturbed polygon P∗. In PVS, there are func-

tions definitely in(P, s, BUFF) and definitely out(P, s, BUFF)
that take as inputs the polygon P, the position s, and the bu�er

distance BUFF and return a boolean value. �ese functions are based

partly on ray casting (and also winding numbers) and are the basic

containment functions used in PolyCARP. �eir formal de�nitions

can be found in the PVS development. In addition to these standard

containment methods, the function definitely in (respectively,

definitely out) checks that the �rst edge crossed by the ray that

is cast crosses it from right to le� (respectively, le� to right). �us,

for either of these functions to return true , the polygon must be

in counter-clockwise order. �e function definitely out is there-

fore used to check that the polygon is in counter-clockwise order

by inpu�ing a point that is known to be outside the polygon and

checking that this function return true .

One way that the counter-clockwise property is checked is by the

computation of two extremal vertices of the polygon and checks that

the edges of the polygon make a le� turn at these vertices. �ese

extremal points are computed using the recursive (on the vertex

index i) function counterclockwise corner index, de�ned in the

PVS-like pseudo-code below.

counterclockwise corner index(P, ϵ, i) ≡
if i=0 then i
else

let j = counterclockwise corner index(P, ϵ, i − 1) in
if p (j)x=p (i)x and p (j)y ≥ p (i)y then i
elsif p (j)x=p (i)x then j
elsif ϵ · p (j)x > ϵ · p (i)x then i
else j

AFM’17, May 2017, Mo�e� Field, CA, USA Anthony Narkawicz, César A. Muñoz, and Aaron M. Dutle

fi
fi

If the recursive input i is set to size(P) − 1, then this function

covers every possible vertex index, and se�ing ϵ = 1 returns one

extremal vertex index, and ϵ = −1 returns another. �e function

cc edges checks that the polygon P makes a right turn at both

index counterclockwise corner index(P,−1, size(P) − 1) and

index counterclockwise corner index(P, 1, size(P) − 1).
Many of the functions in the PVS development also depend on

the polygon having the property that no two, non-adjacent edges

come within the (small) distance BUFF of each other. To compute

this, a function quad min box is called that determines whether a

bivariate quadratic ax2 + by2 + cxy + dx + ey + f , with a ≥ 0 and

b ≥ 0, ever falls below a value D when x ∈ [0, 1] and y ∈ [0, 1]. �e

function segments 2D close, de�ned in the PVS-like pseudo-code

below, uses the function quad min box to determine whether a line

segment between the points s1 and e1 comes within distance BUFF
of the line segment between the points s2 and e2.

segments 2D close(s1, e1, s2, e2, BUFF) ≡
let

segXApart=|(s1x − s2x) | > 2 · BUFF and
|(s1x − e2x) | > 2 · BUFF and
|(e1x − e2x) | > 2 · BUFF and
|(e1x − s2x) | > 2 · BUFF and
siдn(s1x − s2x) = siдn(s1x − e2x) and
siдn(e1x − e2x) = siдn(e1x − s2x) and
siдn(s1x − s2x) = siдn(e1x − e2x),

segYApart=|(s1y − s2y) | > 2 · BUFF and
|(s1y − e2y) | > 2 · BUFF and
|(e1y − e2y) | > 2 · BUFF and
|(e1y − s2y) | > 2 · BUFF and
siдn(s1y − s2y) = siдn(s1y − e2y) and
siдn(e1y − e2y) = siдn(e1y − s2y) and
siдn(s1y − s2y) = siдn(e1y − e2y)

in
if segXApart or segYApart then false
elsif near edge(s2, e2, s1, BUFF) then true
elsif near edge(s2, e2, e1, BUFF) then true
elsif near edge(s1, e1, s2, BUFF) then true
elsif near edge(s1, e1, e2, BUFF) then true
elsif s1 = e1 or s2 = e2 then false
else

let
s = s1 − s2,
v = e1 − s1,
w = e2 − s2,
a = ‖v ‖ˆ2,

b = ‖w ‖ˆ2,
c = −2 · (v · w),
d = 2 · (s · v),
ee = −2 · (s · w),
f = ‖s‖ˆ2

in
quad min box(a,b, c,d, ee, f , sq(BUFF))

fi

In order for containment and resolution algorithms to work well

in practice, their input polygons are checked for several properties.

• �e vertices are in counterclockwise order.

• No two non-adjacent edges come within the small distance

BUFF of each other.

• No two adjacent edges meet at a sharp angle.

�e function nice poly 2D, which is de�ned in the PVS-like pseudo-

code below, checks these properties. It uses a function called

test point below, which returns a point with x coordinate be-

tween the minimum and maximum x coordinates of P and y coor-

dinate below the minimum y coordinate of P.

nice poly 2D(P, BUFF) ≡
let N = size(P) in
cc edges(P) and
definitely out(P, test point below(P, BUFF), BUFF) and
for all i=0,...,N-1: for all j=i,...,N-1:

let
mj = mod(j+1,N),
mi = mod(1+i,N)

in
if i=j true
elsif p(i)=p(j) then false
elsif j=mi and near edge(N ,p,p (mj), BUFF, i) or

near edge(N ,p,p (i), BUFF, j)) then false
elsif j=mi and corner lt3 deg(p (j) − p (i),p (mj) − p (j))

then false
elsif j=mi then true
elsif i=mj and (near edge(N ,p,p (mi), BUFF, j) or

near edge(N ,p,p (j), BUFF, i))
then false

elsif i=mj and corner lt3 deg(p (i) − p (j),p (mi) − p (i))
then false

elsif i=mj then true
elsif segments 2D close(p (i),p (mi),p (j),p (mj), BUFF)

then false
else true
fi

Once an unsafe region, either the inside or the outside of a par-

ticular polygon, is breached, resolution algorithms are provided that

suggest a new position to maneuver to in order to exit the region.

In addition to the parameter BUFF used in the algorithms above,

the resolution algorithms have a distance parameter ResolBUFF.

�e algorithms suggest resolution points that are least ResolBUFF
away from the polygon boundary. In many cases, the algorithms

simply �nd the closest point on the boundary and suggest a point

ResolBUFF away from this point, perpendicular to this edge. In the

event that this suggested point is not de�nitely inside (respectively,

outside), such as in some cases when it is near a vertex p (i), an-

other position is chosen a certain distance fromp (i) along the vector

proj vect(p (i − 1),p (i),p (i + 1)), where the function proj vect
is de�ned in the PVS-like pseudo-code below.

proj vect(u,v,w) ≡

if (v − u) · (w −v) ≥ 0 then F(v − u)⊥ +G(w −v)⊥

elsif (w −v) · (v − u)⊥ ≤ 0 then (v − u)⊥ + (v −w)⊥

The MINERVA So�ware Development Process AFM’17, May 2017, Mo�e� Field, CA, USA

Figure 3: Direction vector computed by proj vect

else ˆ(u −v) + ˆ(w −v)
fi

As shown in Figure 3, the function proj vect computes a direction

vector to the right of the intersection of the line segments u − v
and v −w . In this de�nition, a⊥ is de�ned by (ay ,−ax) and â is

de�ned by (1/‖a‖) · a for any vector a. �e function that �nds the

index of the closest edge to the input position s is de�ned using a

recursive function (on the edge index i) according to the PVS-like

pseudo-code below.

closest edge(P, s, i) ≡
if i = 0 then i
else

let ce = closest edge(P, s, i − 1),
nexti = mod (i + 1, size (P)),
closp = closest point(p (i),p (nexti), s),
dist = ‖s − closp‖,
nextce = mod (ce + 1, size (P)),
prevclosp = closest point(p (ce),p (nextce), s),
prevdist = ‖s − prevclosp‖ in

if dist < prevdist then i
else ce
fi

�e function closest edge should be called with i = size(P) −
1 to �nd the index of the closest edge of the entire polygon P.

While the de�nition of closest edge seems somewhat trivial, it is

included here because it will be mentioned later as an example of

a function whose implementation in so�ware had a bug that was

found through the MINERVA process.

�e PVS development de�nes two resolution functions:

inside recovery point(P, s, BUFF, ResolBUFF),
outside recovery point(P, s, BUFF, ResolBUFF).

�ese functions suggest points either inside or outside (respectively)

to maneuver to in the event that an unsafe region is breached. �eir

de�nitions can be found in the PVS development and depend on

both proj vect and closest edge.

3.1.2 Verification of Polygon Algorithms. �e containment, well-

formedness, and resolution algorithms all have certain properties

proved about them in PVS. Several of these properties are stated be-

low. �e proofs of the following theorems use basic algebra, includ-

ing some uncommon applications of the quadratic formula. �us,

they are mathematically accessible to most engineers. However,

the algorithms have many conditional statements that complicate

the control �ow. Verifying the proofs in PVS is crucial to ensure

that cases are correctly handled by the algorithms. In short, the

algorithms and proofs are mathematically involved but not logically

deep.

Theorem 3.1. ray crosses(P, s, i) = true if and only if ∃r , t ∈
R : r ≥ 0, t ≥ 0, t ≤ 1, and (1−t) ·p (i)+t ·p (mod (i+1, size(P))) =
s + (0, r).

Theorem 3.2. Let cci = counterclockwise corner index(P, ϵ, i)
where i < size(P). For every j ≤ i , ϵ · p (j)x ≥ ϵ · p (cci)x and either
p (j)x , p (cci)x or p (j)y ≥ p (cci)y .

Theorem 3.3. segments 2D close(s1, e1, s2, e2, BUFF) = true if
and only if∃(w,v ∈ R2) : ‖w−v ‖2 < BUFF2 and on segment?(s1, e1,v)
and on segment?(s2, e2,w).

Theorem 3.4. ‖proj vect(u,v,w)‖ > 1.

Theorem 3.5. Suppose nice poly 2D(P, BUFF) holds. Set N =
size(P) and ce = closest edge(P, s,N − 1). Choose any i <
N . Let qi = closest point(p (i),p (mod (i + 1,N)), s) and qce =
closest point(p (ce),p (mod (ce + 1,N)), s). �en ‖s − qi ‖ ≥ ‖s −
qce ‖.

Theorem 3.6. definitely in(P, irp, BUFF) holds, where irp =
inside recovery point(P, s, BUFF, ResolBUFF).

3.2 Mirrored Implementation
�e MI (Mirrored Implementation) step in the MINERVA process

for the geo-containment algorithms in the PolyCARP package was

mostly straighforward. �e formal PVS speci�cations of the al-

gorithms were translated to so�ware as C++, Java, and Python

code, which can be found in the PolyCARP repository. Recursive

functions in PVS, e.g., counterclockwise corner index, were

implemented in code using loops. �is translation to code was

done by hand, as in other applications of the MINERVA process to

date [6, 12]. However, there is nothing that precludes automatic

generation of code from PVS speci�cations in the future. If such a

code generator was used, both the veri�cation of the generator and

the Numerically Evaluated step (also called model animation [9])

would contribute to correctness argument for the �nal code.

3.3 Numerical Evaluation
�is subsection illustrates the NE (Numerical Evaluation) step in

the MINERVA process through the geo-containment algorithms

in the PolyCARP package. �e Numerical Evaluation step of the

MINERVA approach, also known as model animation [9] entails

comparing symbolic output values of formal speci�cations to actual

output values of implemented code to ensure faithful implementa-

tions. �is subsection presents the results of the numerical evalua-

tion process on the polygon algorithms in PolyCARP. Four bugs

are presented that were found and �xed using the model animation

process. �ese were bugs in both the C++ and Java versions of

the resolution algorithms that suggest a new point inside/outside

AFM’17, May 2017, Mo�e� Field, CA, USA Anthony Narkawicz, César A. Muñoz, and Aaron M. Dutle

a polygon region to maneuver to once an undesirable or unsafe

region has been breached.

3.3.1 Test Case Generation. �e �rst step of model animation

is to generate a large number of input values for the algorithms.

�ese will be used to compare the result of evaluation of these

values in the formal models to those computed by the so�ware

implementation. �e goal is to �nd input values that are likely to

stress the algorithms and �nd potential di�erences between the

implementations. For the PolyCARP algorithms, the test cases

consist of the following:

• A large number of random polygons (with units in meters).

• A large number of test points for each polygon.

�e current suite of model animation test cases for these polygon

algorithms consists of 500 polygons and 200 points per polygon.

�e polygons are generated from 18 core polygons by randomly

perturbing, rotating, and permuting them. �e test points are de-

signed to stress the resolution and ray casting methods in particular.

�e generated test points include those that are:

• randomly (uniform) generated,

• at or near one of the vertices (multiple standard deviations

used),

• exactly BUFF distance away from a vertex,

• on or near one of the edges (multiple standard deviations

used),

• exactly BUFF distance away from an edge, and that

• have exactly the same or near the same x or y coordinate

as a vertex.

3.3.2 Agreement Testing. �e test cases generated above are

generated in Python and each instance is evaluated in the so�ware

implementations in C++, Java, and Python. Inputs and outputs are

then wri�en in a text �le in PVS syntax, so that PVS can be used

for evaluation and comparison. A special �le reader was created

that evaluated each corresponding PVS function and stored any

di�erences in another output �le.

As noted above, four bugs were found (and then �xed) during the

numerical evaluation stage. �ese are described in the following

four subsections.

3.3.3 Problem 1: Loop in closest edge. During numerical eval-

uation of the function outside recovery point, the output record

of errors contained the following lines.

Failed Resolve OUT for (# x:=9305.5, y:=-5000.1 #).
IO reports (# x:=10001.4, y:=-5001.4 #).
Original PVS out rec is (# x:=9305.5, y:=-5002.0 #)

In this example, it can be seen that symbolically evaluating the PVS

function outside recovery point on the vector (9305.5,−5000.1)
returns a point near the input point. �is is because the input point

is very close to the last edge of the polygon. However, as can be

seen from the output above that the Java implementation of this

function returned (10001.4,−5001.4), which is quite far (in meters)

from the input point.

Recall from Section 3.1.1 that in many cases, the resolutions

algorithms simply �nd the closest boundary point to the input

position and suggest a point ResolBUFF away from this point,

perpendicular to this edge. �is requires �rst �nding the closest

edge using closest edge. Upon examination, the error above was

found to be caused by an incorrect implementation of the function

closest edge. �e recursive PVS de�nition was proved correct,

meaning that the error was in the Java implementation. �e re-

cursion over all edges from the PVS version was implemented as

a for-loop in Java. Unfortunately, the highest index considered in

the for loop was p.size()-2, which is one less than needed for

correctness. �is caused an incorrect result whenever closest edge

to the input position was the last edge in the polygon. �us, the

line

for (int i = 0; i < p.size()-1; i++)

was changed to

for (int i = 0; i < p.size(); i++)

which �xed the problem.

3.3.4 Problem 2: Loop in counterclockwise corner index.
During numerical evaluation of the function nice poly 2D, which

was tested on every randomly generated polygon, multiple poly-

gons produced di�erent answers between the C++ and PVS im-

plementations. For these polygons, the PVS implementation of

nice poly 2D implied that they were well formed, while the C++

implementation implied that they were not. Examination revealed

that the function counterclockwise corner index was returning

an incorrect result in C++. Recall that this function returns the

index of an extremal vertex of the polygon, and it is then checked

that the polygon makes a le� turn at this vertex. �e function

�nds such an extremal vertex by recursively (or iteratively in C++)

checking every possible index. �e problem with the C++ imple-

mentation was that not every possible index was being checked,

so the returned index was not necessarily that of an extremal in-

dex. �is is because the highest index considered in the for loop of

the function counterclockwise corner index was p.size()-2
in the C++ implementation. �us, the line

for (int i = 0; i < p.size()-1; i++)

was changed to

for (int i = 0; i < p.size(); i++)

which �xed the problem. �e Java implementation did not have

this problem. It is unclear to the developers what caused this trans-

lation error and why it is so similar to the error in the function

closest edge mentioned above.

3.3.5 Problem 3: Return Statement in inside recovery point
and outside recovery point. During numerical evaluation of the

functions inside recovery point and outside recovery point,

the PVS and C++ versions produced di�erent results for the six-

point polygon with vertices (28520.0,−23520.0), (28520.0,−5000.0),
(28520.0, 13520.0), (−8520.0,−23520.0), (−8520.0,−5000.0), and

(−8520.0, 13520.0), and for the input point (−7005.4, 4020.8). It is

important to note that this polygon does not pass the well-formed

polygon test given by the function nice poly 2D. Even though the

functions inside recovery point and outside recovery point
should only be used in practice on polygons that pass this test,

model animation of these functions for polygons that do not pass

is still useful to ensure that the implemented code is faithful to the

PVS speci�cation. Indeed, using polygons that are not well-formed,

as in this case, helped this problem to be found. In this example,

The MINERVA So�ware Development Process AFM’17, May 2017, Mo�e� Field, CA, USA

the output text from the model animation testing produced the

following lines.

Failed Resolve IN for (# x:=-7005.4, y:=4020.8 #).
Polygon 15. pt num 6.
PVS says (# x:=-7005.4, y:=4020.8 #)
and lang says (# x:=-8522, y:=-5000 #)
Failed Resolve OUT for (# x:=-7005.4, y:=4020.8 #).
Polygon 15. pt num 6.
PVS says (# x:=-7005.4, y:=4020.8 #)
and lang says (# x:=-8518, y:=-5000 #)

�us, the inside and outside recovery functions in PVS both suggest

the input point as the recovery point, indicating that no other re-

covery point is su�cient (because the polygon is not well-formed)

and therefore the position should not be moved. �e function

inside recovery point (informally) works as follows (the func-

tion outside recovery point is similar).

(1) Find the closest point on the boundary to the input point s
and suggest a point ans ResolBUFF away from this bound-

ary point, perpendicular to this edge. If this point ans is

de�nitely inside the polygon, return ans .
(2) Otherwise the point ans is set to another position a certain

distance from p (i) (closest endpoint on the closest edge to

s) along the vector proj vect(p (i−1),p (i),p (i+1)), where

proj vect is de�ned in Section 3.1.1. If ans is de�nitely

inside, return ans . (See the PVS for details.)

(3) If both of those fail, return the input point s.
�e di�erences between the C++ and the PVS for this particular

polygon were due to the fact that the input point s was never

returned in this third step. Instead, either ans (from step 1) or ans
(from step 2) was returned in every case. Upon close inspection, the

�nal return statement, which should have returned s a�er the �rst

steps failed, returned ans , with its value given by the computation

in step 2. �us, the incorrect line

return ans;

was changed to

return s;

which �xed the problem.

3.3.6 Problem 4: Geometric Condition in proj vect. During

numerical evaluation of the function inside recovery point, the

output record of errors from the Java development contained the

following lines.

Failed Resolve IN for (# x:=11373.5, y:=246.8 #).
Polygon 36. pt num 60.
PVS says (# x:=11640.6, y:=557.9 #)
and lang says (# x:=11373.5, y:=246.8 #) "

In this example, symbolically evaluating the resolution function

inside recovery point in PVS on the input vector (11373.5, 246.8)
gave (11640.6, 557.9) while the Java simply returned the input point.

Recall from Section 3.1.1 that the function proj vect computes a

direction vector to the right of the intersection of the line segments

u − v and v − w , as illustrated in Figure 3. In some cases when

the input position it is near a vertex p (i), inside recovery point
returns a point a certain distance from p (i) along the vector

proj vect(p (i − 1),p (i),p (i + 1)).

Upon inspection, the function proj vect was implemented incor-

rectly in Java and C++. �e second if condition “if (w−v) · (v−u)⊥ ≤
0 then (v − u)⊥ + (v −w)⊥” was implemented in Java and C++ as

“if (v − u) · (v − u)⊥ ≤ 0 then (v − u)⊥ + (v −w)⊥”.

�e condition (w − v) · (v − u)⊥ ≤ 0 tests whether the vector

w −v is to the right of v − u. When it is incorrectly implemented

as the inequality (v − u) · (v − u)⊥ ≤ 0, it will always return true,

because (v − u) · (v − u)⊥ ≡ 0. �us, in these developments, the

line

if (v.Sub(u).det(v.Sub(u)) <= 0)

was changed to

if (w.Sub(v).det(v.Sub(u)) <= 0)

which �xed the problem.

3.3.7 The Final Product. A�er �xing the four bugs mentioned

in the previous subsections, the C++, Java, and Python implemen-

tations of the geo-containment algorithms passed the model ani-

mation test in the NE (Numerically Evaluated) step of MINERVA.

As noted above in Section 3.3.1, the generated test cases output as

text which was used by PVS for evaluation and comparison. �e

following is the �nal ouput �le from these PVS tests:

Real time: 18h:43m:55.498s. Run time: 17659.770 sec
Lines: 806510. Records: 500. Fails: 0

4 RELATEDWORK
�e MINERVA process is similar to model-based development tech-

niques in that mathematical models are �rst developed and sim-

ulated, before an implementation is produced. Model-based com-

mercial tools like MathWork’s Simulink
5

are widely-used in the

analysis and development of embedded systems. In these tools, the

behavior of a system is typically speci�ed in high-level graphical

languages such as state charts. �ese graphical models can be trans-

lated into formalisms such as hybrid automata [3], which can be

formally analyzed using various techniques (see for example [2]).

Furthermore, tools like Simulink automatically generate code from

these models. �e generated code, which is not intended to be

human readable, is usually not formally veri�ed against high-level

functional requirements. To address the issue of unveri�ed code

generation in model-based techniques, Ryabtsev and Strichman

propose a technique to verify the semantic equivalence between

Simulink models and the generated C code [18]. Wang et al pro-

pose an automated credible auto-coding framework for control

systems [20]. Similarly to MINERVA, this framework uses PVS to

verify high level functional properties and the so�ware veri�cation

tool Frama-C [8] to prove the correctness the generated code. �e

MINERVA process is less ambitions than these approaches. First, it

does not aim to full correctness of the produced code, which may be

challenging in the case of numerically intensive so�ware. Second,

it focuses on the development of functional components of safety-

critical embedded systems. �ese components can be integrated as

black-box modules of model-based developments. �us, MINERVA

is complementary to model-based approaches, where it o�ers a

light weight alternative to so�ware veri�cation.

In the context of formal methods, tools like PVSio-web [15],

which is built on top of PVS, and PetShop [17], which animates

5
h�p://www.mathworks.com/products/simulink.

http://www.mathworks.com/products/simulink

AFM’17, May 2017, Mo�e� Field, CA, USA Anthony Narkawicz, César A. Muñoz, and Aaron M. Dutle

Petri nets, provide powerful features for prototyping and validating

formal speci�cations. In [1], VDM models are animated and used

as oracles on generated test cases to uncover requirement errors.

�ese works, however, do not aim at validating formal models

against their so�ware implementations like the approach proposed

in this paper.

�e Numerical Evaluation (NE) step of MINERVA is similar to

the technique supported by tools like �ickCheck [5] for Haskell

and AutoTest [11] for Ei�el. �ese tools check so�ware annotations

on a set of randomly generated test cases. Similar tools exist for

theorem provers [14] and other formal methods [21]. For example,

Isabelle/HOL’s �ickcheck �nds counterexample to speci�ed con-

jectures by random testing. However, these tools do not address

the semantic gap between code and formal speci�cations due, for

example, to numerical computations.

Concolic test [19] and other test generation techniques [4] com-

bine concrete and symbolic execution of code to generate test cases

that satisfy some coverage criteria. Generation of test cases is a step

of the proposed approach. Hence, the so�ware validation approach

proposed in this paper can directly use these techniques.

5 CONCLUSION
�is paper describes a so�ware development lifecycle process called

MINERVA, which stands for Mirrored Implementation Numerically

Evaluated against Rigorously Veri�ed Algorithms. �e process

relies on formal methods and the �nal product is code in a pro-

gramming language that the developer chooses. Using this process,

algorithms are speci�ed and requirements are veri�ed using an

interactive theorem prover. Model animation is also used on these

algorithms to extract values from them on a set of input test cases,

and the output values are then compared with output values of the

implementations of the algorithms in so�ware. �us, MINERVA is a

practical way to ensure that algorithm speci�cations are mathemat-

ically correct and that their so�ware implementations are faithful

representations of the speci�cations. �e MINERVA process is illus-

trated in this paper through its application to polygon algorithms

being developed for the PolyCARP so�ware package. PolyCARP

is used inside NASA Langley’s ICAROUS so�ware package to pro-

vide geo-containment and obstacle-avoidance capabilities to small

unmanned aircra� for research purposes. To illustrate the practical

bene�ts of the process, four so�ware bugs are shown that were

found and �xed using MINERVA on the algorithms in PolyCARP.

REFERENCES
[1] Bernhard K Aichernig, Andreas Gerstinger, and Robert Aster. 2000. Formal

speci�cation techniques as a catalyst in validation. In High Assurance Systems
Engineering, 2000, Fi�h IEEE International Symposim on. HASE 2000. IEEE, 203–

206.

[2] Rajeev Alur. 2011. Formal Veri�cation of Hybrid Systems. In Proceedings of the
Ninth ACM International Conference on Embedded So�ware (EMSOFT ’11). ACM,

New York, NY, USA, 273–278. DOI:h�p://dx.doi.org/10.1145/2038642.2038685

[3] Rajeev Alur, Aditya Kanade, S. Ramesh, and K. C. Shashidhar. 2008. Symbolic

Analysis for Improving Simulation Coverage of Simulink/State�ow Models. In

Proceedings of the 8th ACM International Conference on Embedded So�ware (EM-
SOFT ’08). ACM, New York, NY, USA, 89–98. DOI:h�p://dx.doi.org/10.1145/

1450058.1450071

[4] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu, Koushik

Sen, Nikolai Tillmann, and Willem Visser. 2011. Symbolic Execution for So�ware

Testing in Practice: Preliminary Assessment. In Proceedings of the 33rd Interna-
tional Conference on So�ware Engineering (ICSE ’11). ACM, New York, NY, USA,

1066–1071. DOI:h�p://dx.doi.org/10.1145/1985793.1985995

[5] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In Proceedings of the Fi�h ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). ACM, New York,

NY, USA, 268–279. DOI:h�p://dx.doi.org/10.1145/351240.351266

[6] Marı́a Consiglio, César Muñoz, George Hagen, Anthony Narkawicz, and Swee

Balachandran. 2016. ICAROUS: Integrated Con�gurable Algorithms for Reliable

Operations of Unmanned Systems. In Proceedings of the 35th Digital Avionics
Systems Conference (DASC 2016). Sacramento, California, US.

[7] Judy Crow, Sam Owre, John Rushby, N. Shankar, and Dave Stringer-Calvert.

2001. Evaluating, Testing, and Animating PVS Speci�cations. Technical Report.

Computer Science Laboratory, SRI International, Menlo Park, CA.

[8] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-

noles, and Boris Yakobowski. 2012. Frama-C: A So�ware Analysis Perspective.

In Proceedings of the 10th International Conference on So�ware Engineering and
Formal Methods (SEFM’12). Springer-Verlag, Berlin, Heidelberg, 233–247. DOI:
h�p://dx.doi.org/10.1007/978-3-642-33826-7 16

[9] Aaron Dutle, César Muñoz, Anthony Narkawicz, and Ricky Butler. 2015. So�ware

Validation via Model Animation. In Proceedings of the 9th International Conference
on Tests & Proofs (TAP 2015) (Lecture Notes in Computer Science), Jasmin Blanche�e

and Nikolai Kosmatov (Eds.), Vol. 9154. Springer, L’Aquila, Italy, 92–108. DOI:
h�p://dx.doi.org/10.1007/978-3-319-21215-9 6

[10] Leonard Lensink, César Muñoz, and Alwyn Goodloe. 2009. From Veri�ed Models
to Veri�able Code. Technical Memorandum NASA/TM-2009-215943. NASA,

Langley Research Center, Hampton VA 23681-2199, USA.

[11] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Yi Wei, and E. Stapf. 2009. Programs �at

Test �emselves. Computer 42, 9 (Sept 2009), 46–55. DOI:h�p://dx.doi.org/10.

1109/MC.2009.296

[12] César Muñoz, Anthony Narkawicz, George Hagen, Jason Upchurch, Aaron Dutle,

and Marı́a Consiglio. 2015. DAIDALUS: Detect and Avoid Alerting Logic for

Unmanned Systems. In Proceedings of the 34th Digital Avionics Systems Conference
(DASC 2015). Prague, Czech Republic.

[13] Anthony Narkawicz and George Hagen. 2016. Algorithms for Collision Detection

Between a Point and a Moving Polygon, With Applications to Aircra� Weather

Avoidance. In Proceedings of the AIAA Aviation Conference 2016. Washington,

DC.

[14] Stefan Berghofer Tobias Nipkow. 2004. Random Testing in Isabelle/HOL. In

So�ware Engineering and Formal Methods (SEFM 2004), J. Cuellar and Z. Liu (Eds.).

IEEE Computer Society, 230–239.

[15] Patrick Oladimeji, Paolo Masci, Paul Curzon, and Harold �imbleby. 2014. PVSio-

web: a tool for rapid prototyping device user interfaces in PVS. Electronic
Communications of the EASST 69 (2014). DOI:h�p://dx.doi.org/10.14279/tuj.

eceasst.69.963

[16] S. Owre, J. Rushby, and N. Shankar. 1992. PVS: A Prototype Veri�cation Sys-

tem. In Proc. 11th Int. Conf. on Automated Deduction (Lecture Notes in Arti�cial
Intelligence), Deepak Kapur (Ed.), Vol. 607. Springer-Verlag, 748–752.

[17] Philippe Palanque, Jean-Franois Ladry, David Navarre, and Eric Barboni. 2009.

High-Fidelity Prototyping of Interactive Systems Can Be Formal Too. In Human-
Computer Interaction. New Trends, JulieA. Jacko (Ed.). Lecture Notes in Computer

Science, Vol. 5610. Springer Berlin Heidelberg, 667–676. DOI:h�p://dx.doi.org/

10.1007/978-3-642-02574-7 75

[18] Michael Ryabtsev and Ofer Strichman. 2009. Translation Validation: From
Simulink to C. Springer Berlin Heidelberg, Berlin, Heidelberg, 696–701. DOI:
h�p://dx.doi.org/10.1007/978-3-642-02658-4 57

[19] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit

Testing Engine for C. In Proceedings of the 10th European So�ware Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of So�ware Engineering (ESEC/FSE-13). ACM, New York, NY, USA,

263–272. DOI:h�p://dx.doi.org/10.1145/1081706.1081750

[20] Timothy Wang, Romain Jobredeaux, Heber Herencia, Pierre-Loı̈c Garoche, Ar-

naud Dieumegard, Éric Féron, and Marc Pantel. 2016. From design to imple-

mentation: an automated, credible autocoding chain for control systems. In

Advances in Control System Technology for Aerospace Applications. Springer Berlin

Heidelberg, 137–180.

[21] Wada Yusuke and Kusakabe Shigeru. 2012. Performance Evaluation of A Testing

Framework Using QuickCheck and Hadoop. IPSJ Journal 53, 2 (feb 2012), 7p.

h�p://ci.nii.ac.jp/naid/110008767160/en/

http://dx.doi.org/10.1145/2038642.2038685
http://dx.doi.org/10.1145/1450058.1450071
http://dx.doi.org/10.1145/1450058.1450071
http://dx.doi.org/10.1145/1985793.1985995
http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-319-21215-9_6
http://dx.doi.org/10.1109/MC.2009.296
http://dx.doi.org/10.1109/MC.2009.296
http://dx.doi.org/10.14279/tuj.eceasst.69.963
http://dx.doi.org/10.14279/tuj.eceasst.69.963
http://dx.doi.org/10.1007/978-3-642-02574-7_75
http://dx.doi.org/10.1007/978-3-642-02574-7_75
http://dx.doi.org/10.1007/978-3-642-02658-4_57
http://dx.doi.org/10.1145/1081706.1081750
http://ci.nii.ac.jp/naid/110008767160/en/

	Abstract
	1 Introduction
	2 MINERVA
	2.1 Rigorously Verified Algorithms
	2.2 Mirrored Implementation
	2.3 Numerically Evaluated

	3 Application of MINERVA to PolyCARP
	3.1 Rigorously Verified Algorithms
	3.2 Mirrored Implementation
	3.3 Numerical Evaluation

	4 Related Work
	5 Conclusion
	References

