
Automated Formal Methods (AFM09)
Fourth Workshop, Grenoble, France, June, 2009

Hassen Säıdi, Natarajan Shankar (Eds.)

Preface

The Fourth Workshop on Automated Formal Methods (AFM) was held on
June 27, 2009 as part of the 21st International Conference on Computer Aided
Verification (CAV) 2009 in Grenoble, France. The workshop is a forum for the
discussion of the development, use, and integration of automated tools for formal
methods. The topics of discussion are centered around, but not exclusive to, the
SRI suite of tools (PVS, SAL and HybridSAL, and Yices), and experiences and
experiments involving the application, integration, and extension of these and
similar tools.

The AFM workshop lays special emphasis on the use of highly automated
tools for formal methods and the tight or loose integration of different methods
into tool chains that strive to provide end-to-end automation for all aspects of
software development. Users of all levels of expertise are invited to report on
their experiences.

The workshop program included six contributed papers and four invited tu-
torials selected by the international program committee.

The invited tutorials included

Hassen Säıdi (SRI International): Challenges in analyzing binary programs

Abstract: Program analysis is an enough challenging task when source code
is available. It is even more challenging when neither the source code nor de-
bug information is present. The analysis task is further hindered when the
available binary code has been obfuscated to prevent the analysis from being
carried out. In this presentation, we review the main challenges when analyz-
ing binary programs and explore techniques for recovery of information that
allows program understanding and reverse-engineering. We illustrate these
techniques on the Conficker worm that has plagued the Internet in the past
few months.

Susanne Graf, Verimag: Contracts for the component-based design of embed-

ded and distributed systems

Abstract: Distributed, real-time and embedded systems usually multiple
layers from the high-level functional layers down to the interaction with
hardware. The design of such systems leads to complex hierachical architec-
tures with components subject to multiple constraints. The BIP composition
operators allow specifying complex multi-party interactions between compo-
nents in a hierarchical fashion, and by separating component behaviour and
interaction between components. It is expressive enough to describe the in-
teraction of a set of peers so as to abstract lower layers as composition
operator represented by a set of connectors and their interactions. We define
a notion of contract associated with components which strictly separates an
expectation which it may have on the environment, called assumption, and
a promise which is behaviour of the component under consideration that the
environment may take for granted as long as it respects the component’s
expectation. Contrary to most notions of contracts, it does not express the
assumptions directly on the component’s interface but as a constraint on its

i

peers to which it is connected by a rich set of connectors as in BIP. We do
not intend contracts to be used for compositional verification but rather for
compositional design and independent implementation of components. As-
sumptions allow simplifying component implementations by relying on prop-
erties ensured by the environment. An interesting of our kind of contracts
is to allow expressing also assumptions which need not to be expressible on
the component’s interface. This means that the component interfaces need
not to be “artificially” enriched with analysis related attributes. Moreover,
knowledge about peers and about lower layers is clearly separated, and spec-
ifications of lower layers, represented by a set of connectors, may be refined
independently of components. So far, we have shown that this general con-
tract framework is indeed a generalisation of all existing notions of interface
specifications or contracts that we have studied and proposed some general
methodology. Here, we propose also a set of useful concepts which can be
used to actually express contracts for components which must comply to
safey and progress constraints.

Bernhard Steffen (TU Dortmund): Continuous Model-Driven Engineering

- Formal Methods at the Application Level

Abstract: Agility is a must, in particular for business-critical applications.
Complex systems and processes must be continuously updated in order to
meet the ever changing market conditions. Continuous Model Driven Engi-
neering addresses this need by by continuously involving the customer/appli-
cation expert throughout the whole systems? life cycle including maintenance
and evolution. Conceptually, it is based on the One Thing Approach (OTA),
which combines the simplicity of the waterfall development paradigm with
a maximum of agility. The key to OTA is to view the whole development
process simply as a complex hierarchical and interactive decision process,
where each stakeholder, including the application expert, is allowed to con-
tinuously place his/her decisions in term of constraints. Thus semantically,
at any time, the state of the development or evolution process can simply be
regarded as the current set of constraints, and each development or evolu-
tion step can be regarded simply as a transformation of this very constraint
set. This approach, conceptually, allows one 1) to monitor globally and at
any time the consistency of the development or evolution process simply
via constraint checking, and 2) to impose a kind of decision hierarchy by
mapping areas of ompetencies to roles of individuals, in order to identify
required actions in case of constraint violation. The essence and power of
this approach, which is technically supported by the jABC development and
execution framework, will be illustrated along real life application scenarios.

Jean Christophe Filliâtre, LRI: Why - an intermediate language for deduc-

tive program verification

Abstract: This tutorial is an introduction to the Why tool, an intermediate
language for deductive program verification. The purpose of the Why tool is
two-fold: first, it computes weakest preconditions for a small alias-free pro-
gramming language, which is designed to be the target of other verification
tools for languages such as C or Java; second, it translates verification con-

ii

ditions into the native languages of several existing theorem provers, either
automatic such as Simplify, Alt-Ergo, Yices, Z3, etc. or interactive such as
Coq, PVS, Isabelle, etc. Why is currently used in several verification frame-
works such as Caduceus, Krakatoa, or Frama-C.

There were six contributed papers.

– Alwyn Goodloe, Corina Păsăreanu, David Bushnell and Paul Miner.
A Test Generation Framework for Distributed Fault-Tolerant Algorithms

– Anduo Wang and Boon Thau Loo. Formalizing Meta-Routing in PVS

– Ilya Lopatkin, Daniel Plagge, Alexei Iliasov, Michael Leuschel
and Alexander Romanovsky. SAL, Kodkod, and BDDs for Validation of

B Models

– Luca Chiarabini. Automatic Synthesis of an Efficient Algorithm for the

Similarity of Strings Problem

– Silvio Ghilardi and Silvio Ranise. Model-Checking Modulo Theories at

Work: The integration of Yices in MCMT

– Jean-Francois Couchot, Alain Giorgetti and Nicolas Stouls. Graph-

based Reduction of Program Verification Conditions

Hassen Säıdi
Natarajan Shankar
Menlo Park, California

iii

Programme Chairs

Hassen Säıdi
Natarajan Shankar

Programme Committee

Myla Archer
Saddek Bensalem
Aaron Bradley
Supratik Chakraborthy
Rance DeLong
Jean-Christophe Filliâtre
Bernd Finkbeiner
Michael Gordon
John Harrison
Peter Manolios
David Monniaux
Leonardo de Moura
David Naumann
Kazuhiro Ogata
Corina Păsăreanu
Lee Pike
Sanjit Seshia
Ofer Strichman

External Reviewers

Timothy G. Griffin — University of Cambridge

iv

Table of Contents

Formalizing Metarouting in PVS . 1
Anduo Wang, Boon Thau Loo

A Test Generation Framework for Distributed Fault-Tolerant Algorithms 8
Alwyn Goodloe, Corina Păsăreanu, David Bushnell, Paul Miner

SAL, Kodkod, and BDDs for Validation of B Models 16
Daniel Plagge, Ilya Lopatkin, Alexei Iliasov, Michael Leuschel, Alexan-

der Romanovsky

Automatic Synthesis of an Efficient Algorithm for the Similarity of
Strings Problem . 23

Luca Chiarabini

Model-Checking Modulo Theories at Work: the integration of Yices in
MCMT . 31

Silvio Ghilardi, Silvio Ranise

Graph-based Reduction of Program Verification Conditions 40
Jean-Francois Couchot, Alain Giorgetti, Nicolas Stouls

v

Formalizing Metarouting in PVS

Anduo Wang
Department of Computer and

Information Science
University of Pennsylvania

Philadelphia, USA
anduo@seas.upenn.edu

Boon Thau Loo
Department of Computer
and Information Science

University of Pennsylvania
Philadelphia, USA

boonloo@seas.upenn.edu

ABSTRACT

In this paper, we extend PVS specification logic with ab-

stract metarouting theory to aid the development of com-

plex routing protocol models based on metarouting, which

is an algebraic framework for specifying routing protocols

in a restricted fashion such that the protocol is guaranteed

to converge. Our formalization of metarouting theory uti-

lizes the theory-interpretation extensions of PVS. Our use

of a general purpose theorem prover provides a structured

framework for a network designer to incrementally develop

and refine their algebraic routing protocol model by start-

ing from various base routing algebras, and composing them

into complex algebra models with composition operators. In

addition, one can leverage PVS’s type checking capability

and built-in proof engine to ensure routing model consis-

tency.

1. INTRODUCTION

The Internet today runs on a complex routing protocol

called the Border Gateway Protocol or BGP for short. BGP

enables Internet-service providers (ISP) world-wide to ex-

change reachability information to destinations over the In-

ternet, and simultaneously, each ISP acts as an autonomous

system that imposes its own import and export policies on

route advertisements exchanged among neighboring ISPs.

Over the past few years, there has been a growing con-

cern on the complexity and fragility of BGP routing. Even

when the basic routing protocol converge, conflicting policy

decisions among different ISPs have lead to route oscillation

and slow convergence. Several empirical studies such as [7]

have shown that there are prolonged periods in which the

Internet cannot reliably route data packets to specific desti-

nations due to routing errors induced by BGP. In response,

the networking community has proposed several Internet ar-

chitectures and policy mechanisms (e.g. [1]) aimed at ad-

dressing these challenges.

Given the proliferation of proposed techniques, there is a

growing interest in formal software tools and programming

frameworks that can facilitate the design, implementation,

and verification of routing protocols. These proposals can

be broadly classified as: (1) algebraic and logic frameworks

(e.g. [3]) that enable protocol correctness checking in the

design phase; (2) runtime debugging platforms that provide

mechanisms for runtime verification and distributed replay,

and (3) programming frameworks that enable network pro-

tocols to be specified, implemented, and in the case of the

Mace toolkit, verified via model checking [6].

In this paper, we extend PVS specification logic with ab-

stract metarouting theory [3] to aid the development of com-

plex routing protocol models based on metarouting, which

is an algebraic framework for specifying routing protocols

in a restricted fashion such that the protocol is guaranteed to

converge. Using the theory-interpretation [8] extensions of

the PVS theorem prover, we formalize in PVS a variety of

metarouting algebra instances and demonstrate that an inter-

active theorem prover is suitable for modeling the compli-

cated BGP system using the metarouting theory developed

in PVS.

The main benefits of formalizing metarouting within a

mechanized theorem prover are as follows. First, the net-

work designer can now focus on high-level protocol design

and the conceptual decomposition of the BGP system, and

shift the low level details of ensuring consistency of the de-

rived protocol model with respect to metarouting theory to

the PVS type checker. Second, the PVS proof engine han-

dles most of the proof effort (via the top-level strategy grind

and other built-in type checking capabilities), and therefore

frees the network operator from the trivial and tedious proof

necessary to ensure the convergence of their BGP algebra

model. In the long run, we believe that our framework will

also result in the support of relaxed algebra models, which

allow a wider range of well-behaved convergent component

protocols to be supported compared to the restrictions im-

posed by metarouting.

2. BACKGROUND

2.1 Internet Routing

The Internet can be viewed as a network of Autonomous

Systems (AS) each administrated by an Internet Server Provider

(ISP). The routing protocol is executed on all ASes in order

to compute reachability information. Given a destination ad-

dress, each packet sent by a source is forwarded by each in-

termediate node to the next neighboring node along the best

1

path computed by the routing protocol.

In particular, within an AS, the ISP runs its own class

of routing protocols called the Internal Gateway Protocol

(IGP), whereas between ASes , the class of protocols used

are called the External Gateway Protocol (EGP). EGP en-

ables routing across AS administration borders by includ-

ing mechanism for policy-based routing. The role of policy

routing is to allow ISPs to influence route decisions for eco-

nomical or political concerns, and the basic mechanism used

is to decide which routes to accept from neighbors (import

policies), and which routes to advertise to other neighbors

(export policies).

2.2 Metarouting

The Internet uses the Border Gateway Protocol (BGP) as

its de facto routing protocol. This protocol is a combina-

tion of the IGP/EGP protocol described above. Metarout-

ing [3] is first proposed to extend the use of routing alge-

bra to BGP design and specification. Metarouting enables

the construction of a complicated BGP system model from

a set of pre-defined base routing algebras and composition

operators. Prior to metarouting, Griffin et al.first proposed

combinatorial models for BGP [2, 4] to aid the static anal-

ysis of convergence of routing protocols. Later a Routing

Algebra Framework was proposed by Sobrinho [9, 10] to

provide the rigorous semantics for the design and specifi-

cation of routing protocols. Sobrinho uses various algebra

instances to represent possible routing protocols and policy

guidelines. Sobrinho further identifies and proves mono-

tonicity as a sufficient condition for protocol convergence.

Meta-routing builds upon these two earlier pieces of work.

In the rest of the section, we provide a short overview of

metarouting.

First, metarouting adopts the use of routing algebra as the

mathematical model for routing. An abstract routing alge-

bra is a tuple A: A = 〈Σ,�,L,⊕,O, φ〉. Here Σ is the set

of signatures used to describe paths in the network totally

ordered by preference relation �. Intuitively, the preference

relation is used by a routing protocol to optimize path cost; L
is a set of labels describing links between immediate neigh-

bors. Note that labels may denote complicated policies as-

sociated with the corresponding link; ⊕ is a mapping from

L×Σ to Σ, which is the label application operation that gen-

erates new paths by combining existing paths and adjacent

links; And O is a subset of Σ called origination that repre-

sents the initial routes stored at network nodes; Finally φ is

a special element in Σ denoting the prohibited path. The se-

mantics of routing algebra is given by the following axioms:

Maximality ∀α∈Σ−{φ} α � φ

Absorption ∀l∈L l ⊕ φ = φ

Monotonicity ∀l∈L∀α∈Σ α � l ⊕ α

Isotonicity ∀l∈L∀α,β∈Σ α � β =⇒ l ⊕ α � l ⊕ β

Maximality and Absorption are straightforward proper-

ties of the prohibited path φ, stating that any other paths are

always preferred over φ, and that extending the un-usable

path φ with any usable link would still result in prohibited

path. On the other hand, Monotonicity and Isotonicity are

two non-trivial properties that ensure network convergence1

of a routing protocol modeled by the routing algebra.

Furthermore, based on the abstract routing algebra, metarout-

ing identifies a set of atomic (base) algebras such as ADD(n,m)

and LP(n), and composition operators such as Lexical Prod-

uct ⊗ and Scaled Product ⊙ as the building blocks for more

complicated routing algebras. This paper presents the incre-

mental development of metarouting abstract algebras and the

use of such abstract theory to build concrete BGP systems.

Unlike previous combinatorial models [2, 4], metarout-

ing identifies and proves that the properties of monotonicity

and isotonicity are sufficient conditions for network conver-

gence. Convergence verification of BGP systems are then

reduced to proofs of monotonicity and isotonicity of the re-

lated routing algebra, whereas in the analysis of BGP sys-

tems using previous combinatorial models, the proof requires

genuine insights into the models themselves.

Despite its advantages, metarouting is fairly restricted in

two ways. First, it cannot represent all protocols that con-

verge. Second, it places the burden on network designers

to write algebras and composition operators correctly. Our

work aims to address these two limitations by using PVS

to provide a framework for expressing routing algebras and

their operators correctly, and then flexibly reason about the

convergence properties of these protocols even when the suf-

ficient conditions are violated. One should view our paper

as providing the initial building blocks and methodology for

interesting explorations elaborated in Section 5.

3. BASIC APPROACH

This section describes the basic technique of embedding

metarouting in PVS. In particular, this paper presents the de-

velopment of metarouting in PVS using its extensions on

theory interpretation [8].

The basic approach is to encode metarouting algebraic ob-

jects in PVS’s type system. It involves formalization of ab-

stract routing algebra theory A, the set of atomic algebra

instances of A, and composition operator ⊗.

First of all, the abstract routing algebra structure A =
〈Σ,�,L,⊕,O, φ〉 is formalized as an uninterpreted abstract

(source) theory in PVS, as described in [11, 5, 8]. The ba-

sic idea is to use types to denote the sets of objects Σ,L,O.

Accordingly, the special element φ denoting prohibited path

is expressed as an uninterpreted constant of type Σ. And

the preference relation � and the label application operation

are denoted by functions. The PVS theory for abstract route

algebra A is given as follows:

1A network routing protocol converges when all routing tables can
be computed to a distributed fixpoint given a stable network, and
when any links are updated, these routing tables can be incremen-
tally recomputed similarly to a fixpoint.

2

routeAlgebra: THEORY

BEGIN

sig: TYPE+

prefRel: [sig, sig -> bool]

label: TYPE+

labelApply: [label, sig -> sig]

prohibitPath: sig

initialS: [sig -> bool]

org: TYPE = s: sig | initialS (s)

END routeAlgebra

Here uninterpreted types sig and label denote sets Σ
and L, and org denoting initial route setO is made subtype

of Σ via auxiliary predicate initialS which decides if a

path falls into the initial routes. Finally φ is made constant

prohibitPath of type sig.

Semantics of abstract routing algebra A are given by the

following axiomatic specification:

monotonicity: AXIOM

FORALL (l: label, s: sig): mono(l, s)

isotonicity: AXIOM

FORALL (l: label, s1, sig, s2: sig):

prefRel(s1,s2) =>

prefRel(labelApply (l,s1),labelApply(l,s2))

maximality: AXIOM

FORALL (s: sig): prefRel (s, prohibitPath)

absorption: AXIOM

FORALL (l: label):

labelApply (l, prohibitPath) = prohibitPath

Where eqRel (eqRel will be used later) and mono are

defined by the following auxiliary predicates:

eqRel (s1, s2: sig): bool =

prefRel (s1, s2) and prefRel (s2, s1)

mono(l: label, s: sig): bool =

prefRel (s, labelApply (l, s))

Note that this abstract routing theory A then stands for all

possible routing algebra instances. We also observed that

PVS parametric theories offer an alternative to define ab-

stract algebra, sketched as follows:

routeAlgebra[sig: TYPE+,

prefRel: [sig, sig -> bool],

label:TYPE+,

labelApply: [label, sig -> sig]]

BEGIN

prohibitPath: sig

initialL: [label -> bool]

org: TYPE+ = l: label | initialL (l)

...

END routeAlgebra

In the rest of this paper, to exploit PVS’s theory interpre-

tation mechanism, we will use of the first uninterpreted the-

ory representation. To encode the basic building blocks of

metarouting: atomic routing algebras and composition oper-

ators, we utilize two features provided by the PVS theory in-

terpretation [8] extensions: mapping and declaration. With

the mapping mechanism, a general (source) theory is instan-

tiated to an interpretation (target) theory. On the other hand,

the theory declaration mechanism takes PVS theories as pa-

rameters, and therefore, unlike mapping, can build a theory

from multiple source structures.

Figure 1 shows our basic two-step approach to formalize

metarouting building blocks. First, we utilize abstract rout-

ing algebra theory A developed above as a source theory,

applying PVS’s mapping mechanism to this source theory to

yield the set of interpretation theories Ii for atomic routing

algebras Ii. Second, by applying PVS’s theory declaration

mechanism, we encode composition operator Oi as PVS the-

ories taking routing algebra as parameters, which can be fur-

ther instantiated to yield the resulting compositional routing

algebra Oi.

The main benefit of this approach is that the semantics

(axioms) of source routing theory A are enforced automat-

ically in all target theories Ii and Oi. This ensures that

all atomic routing algebra instances are valid routing alge-

bras and that all composition operators are closed under ab-

stract routing algebra (i.e. any compositional routing alge-

bras that can be derived using operators Oi are guaranteed to

be routing algebras as defined by the abstract routing algebra

theory). The detailed formalization of metarouting building

blocks using PVS theory interpretation is presented in the

next section.

4. COMPOSITIONAL ROUTING ALGEBRA

This section presents the formalization of metarouting build-

ing blocks by stepping through atomic routing algebras

addA(n,m) and cpA(n); as well as composition operator lex-

ical product ⊗.

4.1 Atomic Routing Algebra Instance

Shortest Path Routing.
The first simple routing algebra addA(n,m) describes short-

est path routing. The labels/signatures can be thought of as

the distance costs associated with the corresponding links/paths.

Note that in practice, costs of valid links/paths have an up-

per bound, and links/paths with higher cost are considered

prohibited. We use PVS theory addA to capture algebra

addA(n,m) as follows:

addA: THEORY

BEGIN

n, m: posnat

N_M: AXIOM n < m

LABEL: TYPE = upto(n)

SIG: TYPE = upto(m + 1)

...

END addA

Here n, m are the uninterpreted constants denoting link/path

cost bounds. The preference relation � over signatures SIG

are then simply interpreted as the normal ≤ relation over

natural numbers, indicating that a low-cost path is preferred

over high-cost path. The label application operation ⊕ can

be interpreted as a function that computes the cost of the new

path obtained from a sub-path and the adjacent link, where

3

Figure 1: Overview of PVS Theories

the cost of the new path is simply the normal addition of that

of the sub-path and link. In PVS, we write as follows:

PREF(s1, s2: SIG): bool = (s1 <= s2)

APPLY(l: LABEL, s: SIG): SIG =

IF (l+s < m+1) THEN (l+s) ELSE (m+1) ENDIF

Note that in the definition of label application function APPLY,

m+1 is used as the value of prohibited path. This is directly

defined using PVS mapping of abstract algebra routeAlgebra

in the following IMPORTING clause:

IMPORTING

routeAlgebra{{sig := SIG,

label := LABEL,

prohibitPath := m + 1,

labelApply(l:LABEL, s:SIG)

:= APPLY(l,s),

prefRel(s1, s2: SIG)

:= PREF (s1, s2)}}

Recall that a routing algebra consists of a set of signatures

sig, labels label, preference relations prefRel over sig-

natures, and label application functions labelApply. Here,

theory addA imports the uninterpreted abstract algebra the-

ory routeAlgebra, and makes the following instantia-

tions:

sig ← upto(m + 1)

label ← upto(n)

prohibitPath ← m + 1

labelApply ← APPLY

prefRel ← PREF

The corresponding instances of routeAlgebra axioms

defining the semantics of routing algebra are proof obliga-

tions called type correctness conditions (TCCs). For exam-

ple, monotonicity axiom is instantiated and denoted by the

following automatically generated TCC:

IMP_A_monotonicity_TCC1: OBLIGATION

FORALL (l: LABEL, s: SIG): mono(l, s)

All of the TCCs are automatically discharged by either the

default TCC proof strategy or high-level strategy grind.

So far, we have established the encoding of shortest path

algebra in PVS by providing mappings for uninterpreted types

in the source theory routeAlgebra into the target the-

ory (interpreting) addA. We observe that even in this simple

example, PVS significantly reduces manual effort ensuring

consistency, generating proof obligations and enabling the

user to focus on high-level mapping for shortest path rout-

ing.

Customer-Provider and Peer-Peer Relationship.
We provide another example of base/atomic algebra cpA(n)

that captures the policy guideline regarding the economic re-

lationship between ASes. Customer-Provider and Peer-Peer

relationships between ASes are prevalent in today’s Internet.

A common policy guideline to help BGP convergence is to

always prefer customer-routes to peers or providers routes.

More specifically, in the algebra cpA = 〈Σ,�,L,⊕,O, φ〉,
the signature set can take three values C/R/P , represent-

ing customer/peer/provider routes respectively (i.e. routes

advertised by a node’s customer, peer, or provider). Ac-

cordingly, labels can take values c/r/p, representing cus-

tomer/peer/provider link (i.e. links to customer/peer/provider).

The preference relation over signatures is given by: C �
R, R � P, C � P . Intuitively this relation means, a

customer route is always preferred over a peer and provider

route, and a peer route is preferred over a provider route.

The intuition is that each ISP enforces the policy to reduce

the use of provider routes, while maximizing availability and

use of its customer routes.

The complete definition of the label application operation

⊕ is given by the following table:

4

⊕ C R P
c C C C
r R R R
p P P P

For example the first line c⊕ (C/R/P) = C can be read as

a customer/peer/provider path extended by a customer link

results in a customer path, hence has the highest priority of

all available paths.

For simplicity, rename labels and signatures as follows:

c ← 1, r ← 2, p ← 3 and C ← 1, R ← 2, P ← 3. This

renaming enables the preference relation to be expressed as

normal ≤ over natural number. Similar to the algebra for

shortest path, cpA can be encoded using PVS mapping as

follows:

cpA: THEORY

BEGIN

SIG: TYPE = x: posnat | x<=3

LABEL: TYPE = x: posnat | x<=3

APPLY (l: LABEL, s: SIG): SIG = l

IMPORTING

routeAlgebra{{sig := SIG,

label := LABEL,

labelApply(l:LABEL, s:SIG)

:= APPLY (l,s),

prohibitPath := c+1}}
END cpA

As in the case of shortest paths, all the TCCs enforcing

routing algebra axioms (for example, monotonicity) are au-

tomatically discharged. This is consistent with the intuition

that customer-provider policy does help BGP convergence.

4.2 Lexical Product and Route Selection

This section presents development of lexical product ⊗,

a composition operator that enables construction of routing

algebra from atomic algebra described in section 4.1. It is

particularly useful in modeling route selection in BGP sys-

tem where multiple attributes are involved.

Consider product algebras A ⊗ B constructed from two

route algebra A, B, where the parameter theories A and B

model two attributes a and b respectively. First define the

signature and label of A ⊗ B as product of that from A and

B in PVS as:

lexProduct[A, B: THEORY routeAlgebra]: THEORY

BEGIN

SIG: TYPE = [A.sig, B.sig]

LABEL: TYPE = [A.label, B.label]

...

END lexProduct

Here the first component of signature/label comes from A

and the second component comes from B. And a natural in-

terpretation of label application function over path and label

is given by the following product in PVS:

APPLY(l:LABEL,s:SIG):SIG =

(A.labelApply(l‘1,s‘1),B.labelApply(l‘2,s‘2))

Here the two components invoke the corresponding label ap-

plication functions defined in theory A and B respectively.

Next consider the preference relation over A ⊗ B that in

PVS as follows:

PREF(s1,s2:SIG):bool =

A.prefRel(s1‘1, s2‘1) OR

(A.eqRel(s1‘1,s2‘1) AND B.prefRel(s1‘2,s2‘2))

The above definition is particularly interesting because it

models the route selection process in BGP system. This

preference relation reads as: a path with two attributes a

and b represented by signature s1 is considered better than

a path denoted by s2 given one of the two following condi-

tions: (1) first component s1‘1 of s1 is better than the first

component s2‘1 of s2, as defined in algebra A; or (2) if the

first component of s1 and s2 are equally good, but s1 is

better than s2 with respect to the second component, as de-

scribed in algebra B. This lexicographic comparison captures

the route selection process, which is a major part for any

BGP system with multiple attributes. Intuitively, in selecting

a route towards a given destination, the router compares all

its possible paths towards that destination by going through

a comparison list, checking one attribute at a time, selecting

the best path based on attributes ordering. The router goes

down the list and compares the next attribute only if the at-

tributes seen in previous steps are equally good.

As before, we can now instantiate route algebra theories

and corresponding sets of axioms as follows:
IMPORTING

routeAlgebra{{sig := SIG,

label := LABEL,

labelApply(l:LABEL,s:SIG)

:= APPLY(l,s),

prefRel(s1, s2: SIG)

:= PREF(s1, s2)}}

Again, PVS automatically generate and prove all the type

checking conditions.

4.3 A Concrete First Example

This section presents an concrete example routing pro-

tocol algebra built from metarouting atomic algebras and

composition operators developed in previous sections. We

demonstrate the ease of applying abstract metarouting the-

ory to concrete example algebra in PVS. In particular, we

highlight the intuitive networking interpretation in practice.

Consider a simple BGP system where the route paths are

measured in terms of customer-provider relationship and dis-

tance cost. For all possible routes reaching a given desti-

nation, a route path going through customers and peers is

preferred to path going through providers; and a route go

through peers is preferred to those through providers. Once

this customer-provider policy is enforced, the ISP is con-

cerned with distance cost with respect to each path. For the

same types of paths, the ISP will choose the shortest path

with lowest cost.

In the top level, this BGP system can be decomposed into

two sub-components: customer-provider component and the

shortest path component developed in section 4.1. Because

the customer-provider relationship has higher-priority over

the distance cost attribute, it can be naturally implemented

by construction using lexical product, as shown in the fol-

lowing PVS code:

5

firstExample: THEORY

BEGIN

IMPORTING AlgebraInstance, lexProduct

firstAlgebra: THEORY = lexProduct[A2,B2]

END firstExample

Here firstAlgebra is defined to be the concrete algebra

modeling this BGP system. It is constructed from customer-

provider component algebra A2 and shortest path algebra B2

by applying lexical product, where A2 and B2 are defined in

the imported theory AlgebraInstance. First, we show

the definition of A2 that enforces ISP customer-provider pol-

icy simply as an instance of cpA, where the uninterpreted

constant c is mapped to 3.

AlgebraInstance: THEORY

BEGIN

IMPORTING cpA{{ c := 3 }}
A2:THEORY =

routeAlgebra{{
sig = cpA.SIG,

label = cpA.LABEL,

labelApply(l:cpA.LABEL,s:cpA.SIG)

= mod(l+s,c),

prohibitPath = c + 1,

prefRel(s1,s2:cpA.SIG) = (s1<=s2)}}
...

END AlgebraInstance

Likewise, concrete algebra B2 for shortest path can be de-

fined in terms of addA as follows:

IMPORTING addA{{n:= 16, m:=16}}
B2:THEORY =

routeAlgebra{{
sig = addA.SIG,

label = addA.LABEL,

labelApply(l:int,s:int) = l+s,

prohibitPath=16,prefRel(s1,s2:int)

=(s1<=s2)}}

Where uninterpreted bounds on signature/labels m/n in addA

are mapped to 16, which is the actual value used in distance

vector protocol practice. Finally, by type checking, PVS

automatically figures out all type correctness conditions to

ensure consistency. All of the TCCs are discharged with

default/high-level proof procedure in one step. This ensures

the BGP system we derived from atomic algebras addA,

cpA by using composition operator ⊗ are indeed a valid

routing algebra that is guaranteed to converge.

In summary, we observe that by incorporating metarout-

ing abstract theory, a non-specialized standard proof assis-

tant like PVS, can be used to specify a specific routing pro-

tocol instance with great ease. And the routing algebra se-

mantics is enforced by proof obligations (TCCs) automati-

cally generated in PVS, all of which can be discharged by

either PVS default TCC proof strategy or high-level strategy

grind in one step!

5. FUTURE WORK

A straightforward application of the specification tech-

nique we explored in this paper is to construct incrementally

in PVS the routing algebraic model for complicated BGP

Figure 2: Classification of BGP algebras

systems by using the base algebra blocks and composition

operators we developed in this paper, and the resulting al-

gebraic model checked in PVS is then used as part of de-

sign document to derive the real BGP implementation. To

achieve full set support for the modeling of BGP system via

metarouting, we plan to encode in PVS more base routing

algebras, such as TAG which is critical in the modeling of

complicated routing policies, and more composition opera-

tors, such as scoped product, which models a BGP system

running in and between administrative regions (i.e. the be-

havior of BGP protocol across AS boarder).

Furthermore, we conceive a more ambitious (adventur-

ous) use of PVS to aid the verification of BGP system con-

vergence using a relaxed algebra model. As depicted in Fig-

ure 2, we label the set of atomic metarouting algebras with

type A and denote them with the inner ring. We then ob-

served that all metarouting algebras that can be composed

from type A algebras by composition satisfy monotonicity

by definition and therefore fall into type B algebras repre-

sented by the middle ring. Sobrinho’s original paper [9]

showed that monotonicity is a sufficient (not necessary) con-

dition for BGP system convergence. There are known BGP

systems that converge but violate monotonicity, and this re-

veals existence of type C algebras modeling the set of con-

verging BGP systems that are not monotonic. By relax-

ing the monotonicity property, we would like to explore the

modeling and reasoning of type C systems that fall outside

Monotonic type B Algebra (the middle ring) but are equally

good with respect to convergence. Taking this basic ap-

proach one step further, instead of starting from the alge-

bra model, we would like to develop in PVS an algebraic

representation of a given BGP system that falls outside the

scope of current metarouting algebra, and with the aid of

PVS proof engine, decide if that corresponding BGP system

falls into type C and converges or type D that does not con-

verge.

6. REFERENCES

6

[1] EE, C. T., CHUN, B.-G., RAMACHANDRAN, V.,

LAKSHMINARAYANAN, K., AND SHENKER, S.

Resolving Inter-Domain Policy Disputes. In

SIGCOMM (2007).

[2] GRIFFIN, T. G., SHEPHERD, F. B., AND WILFONG,

G. The stable paths problem and interdomain routing.

IEEE/ACM Trans. Netw. (2002).

[3] GRIFFIN, T. G., AND SOBRINHO, J. L. Metarouting.

In ACM SIGCOMM (2005).

[4] GRIFFIN, T. G., AND WILFONG, G. An Analysis of

BGP Convergence Properties. SIGCOMM Comput.

Commun. Rev. (1999), 277–288.

[5] GUNTER, E. L. Doing algebra in simple type theory.

[6] KILLIAN, C., ANDERSON, J., JHALA, R., AND

VAHDAT, A. Life, death, and the critical transition:

Finding liveness bugs in systems code. In NSDI

(2007).

[7] LABOVITZ, C., MALAN, G., AND JAHANIAN, F.

Internet Routing Instability. ACM/IEEE Trans. on

Networking (1998).

[8] OWRE, S., AND SHANKAR, N. Theory interpretations

in pvs. Tech. rep., 2001.

[9] SOBRINHO, J. Network routing with path vector

protocols: theory and applications. In SIGCOMM

(2003).

[10] SOBRINHO, J. An algebraic theory of dynamic

network routing. Tech. rep., October 2005. (William

R. Bennett Prize 2006).

[11] WINDLEY, P. J. Abstract theories in hol. In HOL’92:

Proceedings of the IFIP TC10/WG10.2 Workshop on

Higher Order Logic Theorem Proving and its

Applications (1993), North-Holland/Elsevier,

pp. 197–210.

7

A Test Generation Framework for Distributed
Fault-Tolerant Algorithms

Alwyn Goodloe
National Institute of Aerospace

Corina S. Păsăreanu
Carnegie Mellon

University/NASA Ames

David Bushnell
TracLabs/NASA Ames

Paul Miner
NASA Langley

ABSTRACT
Heavyweight formal methods such as theorem proving have
been successfully applied to the analysis of safety critical
fault-tolerant systems. Typically, the models and proofs
performed during such analysis do not inform the testing
process of actual implementations. We propose a frame-
work for generating test vectors from specifications written
in the Prototype Verification System (PVS). The method-
ology uses a translator to produce a Java prototype from
a PVS specification. Symbolic (Java) PathFinder is then
employed to generate a collection of test cases. A small ex-
ample is employed to illustrate how the framework can be
used in practice.

1. INTRODUCTION
Verification and validation of distributed fault-tolerant sys-
tems is a continuing challenge for safety-critical systems. In
order to provide V&V support for distributed fault-tolerant
algorithms, we are exploring a combination of technologies.
Ultimately, fault tolerance consists of establishing and main-
taining consensus between distributed computational
resources, especially when a bounded subset of these re-
sources is faulty. A full analysis requires an understanding
of both the distribution and failure modes of the sensors,
effectors, and computational resources. There are several
different valid ways of architecting these systems to meet
fault-tolerance requirements. This compounds the problem
of providing a collection of tools supporting V&V activities.
Substantiating fault-tolerance claims requires a combination
of analysis and test. We are researching an approach to V&V
where the test-vectors are generated from formal models ex-
pressed using SRI’s Prototype Verification System (PVS).

Given that safety-critical systems are usually developed to
exacting certification criteria, system failures are often the
result of unanticipated events such as dirty voltage on a

bus or a hardware fault. A formal model of a fault-tolerant
system should explicitly model the faults that the system can
handle and a testing regime should validate that the system
does indeed process these as advertised. Thus testing the
actual system must include injecting faults into the system.
One preferred way to do this is to employ a test harness that
can inject data into the system so that it appears as if a fault
has occurred. Given a PVS specification, we are developing
a methodology for generating these tests automatically.

Rather than develop a new tool suite from scratch, we ap-
ply two existing tools to the task of test case generation. A
PVS to Java translator, developed to create executable pro-
totypes from the specification, is applied to generate a real-
ization of the protocol preserving the correctness properties
shown to hold in the PVS model. Symbolic Java PathFinder,
a model-based automated software test generation tool [9],
is then used to generate test vectors that can be used by
V&V engineers to test actual protocol implementations.

The paper is organized as follows. We first introduce a case
study of a failure in the space shuttle. The next section
provides an overview of fault-tolerance. This is followed by
an overview of a PVS model of a small consensus protocol.
Next is a brief description of the PVS-to-Java translator. We
then discuss Symbolic Java PathFinder. Section 7 discusses
test case generation for the protocol. Finally, we discuss
related works and conclude.

2. FAILURE IN THE SPACE SHUTTLE

The Space Shuttle’s data processing system has four gen-
eral purpose computers (GPC) that operate in a redundant
set. There are also twenty three multiplexer de-multiplexers
(MDM) units aboard the orbiter, sixteen of which are di-
rectly connected to the GPCs via redundant shared busses.
Each of these MDMs receive commands from guidance navi-
gation and control (GNC) running on the GPC and acquires
requested data from sensors attached to it, which is then sent
to the GPCs. In addition to their role in multiplexing/de-
multiplexing data, these MDM units perform analog/digital
conversion. Data transfered between the GPC and MDMs
is sent in the form of serial digital data.

The GPCs execute redundancy management algorithms that

23 June 2009

8

FA2

GPC1

GPC2 GPC3

GPC4

Figure 1: Shuttle Data Processing System (GPCs
and FA2)

include a fault detection, isolation, and recovery (FDIR)
function. During the launch of shuttle flight Space Trans-
portation System 124 (STS-124), there was reportedly a pre-
launch failure of the fault diagnosis software due to a “non-
universal I/O error” in the second flight aft (FA2) MDM [3],
which is polled by the GPCs as shown in Figure 1. Accord-
ing to [3,4], the events unfolded as follows:

• A diode failed on the serial multiplexer interface adapter
of the FA2 MDM.

• GPC 4 receives erroneous data from FA2. Each node
votes and views GPC 4 as providing faulty data. Hence
GPC 4 is voted out of the redundant set.

• Three seconds later, GPC 2 also receives erroneous
data from FA2. In this case, GPC 2 is voted out of the
redundant set.

• In accordance with the Space Shuttle flight rules [22],
GPC 2 and GPC 4 are powered down.

• GPC 3 then reads FA2’s built-in test equipment and
determines that GPC 3 is faulty at which point it too
is removed from redundancy set leaving only GPC 1
at which time engineers terminated the work and the
problem with FA2 was isolated and the unit replaced.

The above set of events sequentially removed good GPC
nodes, but failed to detect and act on the faulty MDM.
Based on the analysis reported in [4], it appears the system
had a single point of failure. Even though the nodes were
connected to the MDM via a shared bus, conditions arose
where different nodes obtained different values from MDM
FA2.

3. FAULT-TOLERANCE
The terms ‘failure’, ‘error’, and ‘fault’ have technical mean-
ings in the fault-tolerance literature. A failure occurs when
a system is unable to provide its required functions. An er-
ror is “that part of the system state which is liable to lead to
subsequent failure,” while a fault is “the adjudged or hypoth-
esized cause of an error” [20]. For example, a sensor may
break due to a fault introduced by overheating. The sensor
reading error may then lead to system failure.

We are primarily concerned with architectural-level fault-
tolerance [8]. A fault-tolerant system is one that continues
to provide its required functionality in the presence of faults.

A fault-tolerant system must not contain a single point of
failure such that if that single subsystem fails, the entire
system fails (for the faults tolerated). Thus, fault-tolerant
systems are often implemented as distributed collections of
nodes such that a fault that affects one node or channel will
not adversely affect the whole system’s functionality.

Faults can be classified according to the hybrid fault model
of Thambidurai and Park [28]. Here, we characterize the
faults of a node in a distributed system based on the mes-
sages other nodes receive from it. The same characterization
could be made of channels. First, a node that exhibits the
absence of faults is non-faulty or good. A node is called be-
nign or manifest if it sends only benign messages. Benign
messages abstract various sorts of misbehavior that are reli-
ably detected by the transmitter-to-receiver fault-detection
mechanisms implemented in the system. For example, a
message that suffers a few bit errors may be caught by a
cyclic redundancy check. In synchronized systems, nodes
that send messages received at unexpected times are also
considered to be benign. A node is called symmetric if
it sends every receiver the same message, but these mes-
sages may be arbitrary. A node is called asymmetric or
Byzantine if it sends different messages to different receivers,
and at least one of the messages received is not detectably
faulty [19]. (Note that the other message may or may not
be incorrect.)

We model faulty behavior exclusively within the communi-
cation model. This leads to an observational classification of
fault effects. The fault effect classification model we employ
is derived from the Azadmanesh and Kieckhafer [1] general-
ization of the Thambidurai and Park [28] hybrid fault model.
These fault classifications are from the perspective of the re-
ceivers. Each source node is classified according to its worst
observed error manifestation. The classification is a func-
tion of both the behavior of the node and how that behavior
is perceived by a specified collection of observers.

The nodes are classified according to the following defini-
tions:

good All receivers receive correct values.

omissive symmetric All receivers receive either correct
values or manifestly incorrect values (including the
possibility of no message at all). All receivers observe
the same pattern of messages.

omissive asymmetric Some receivers may receive correct
messages, while others may receive manifestly incor-
rect values.

transmissive symmetric All receivers observe the same
pattern of messages. Messages may be incorrect.

fully transmissive asymmetric (Byzantine) Receivers may
receive arbitrarily different values.

Some protocols are defined to operate correctly under the
assumption that the possible fault behaviors are limited to
specific subsets of these possible observable fault manifes-
tations. Whenever this is done, there is an obligation to

23 June 2009

9

validate the fault hypotheses, since the various theoretically
possible fault manifestations have been observed in both lab-
oratory and deployed systems [11]. Likewise, if a system pur-
ports to continue to operate correctly under some bounded
number of Byzantine faults, this too must be validated.

In the case study given in Section 2 the nodes were connected
to the MDM via a shared bus, yet conditions arose where
different nodes obtained different values from MDM FA2.
This is consistent with the MDM FA2 failing in a Byzan-
tine fashion sending different values to the GPCs using the
topology in Figure 1. Note that the triple-redundancy vot-
ing scheme employed in the case of the shuttle would have
masked many faults, but not Byzantine faults. The design-
ers may have simply assumed that such Byzantine faults
were too unlikely to occur to warrant the additional com-
plexity needed to handle them, yet they appear to have oc-
curred in practice. This illustrates the need for the V&V
process to test not only the fault model advertised by the
system, but to test the assumptions built into that fault
model.

V&V of fault-tolerant systems requires that the test engi-
neer fully exercise the faults purportedly covered by the fault
model. In cases where the system’s fault model does not ac-
commodate Byzantine faults, it may still be desirable from
the V&V perspective to demonstrate that such assumptions
actually hold and if not, how a system functions in the pres-
ence of such faults. The tests must include faults that are
physically possible, but not logically anticipated. Such faults
may arise from hardware failures, radiation faults, as well as
from traditional inputs. So the V&V engineer must produce
a range of inputs, a range of faults, and inject the said faults
into the system and observe their effects.

4. FORMAL MODEL
Consider the situation of a transmitter node (this could be a
sensor as in the shuttle example) that sends data to a num-
ber of receiver nodes. As we have seen, the transmitter, a
receiver, or the interconnect may suffer a fault that causes a
receiver to compute a received value that differs from those
received by the other receivers. A simple variant of the oral-
messages Byzantine protocol [19] can be employed to mask
a bounded number of these errors. The protocol that we
consider uses Relay nodes. The data flow of the protocol is
illustrated in Figure 2, where the transmitter sends a mes-
sage to each of the relay nodes, which, in turn, sends the
value they received to each of the end nodes. At the re-
ceiver, a majority vote is performed on the values received.
If the number of faults are appropriately bounded, then the
nodes have achieved consensus.

We built a small PVS model of this protocol, where each
node has a core functional component and network inter-
face (NIC) (receiver/sender) components. This architecture
is illustrated in Figure 3. The components are connected
by FIFO queues. A message sent from the transmitter to
the relay nodes is placed in the queue to the transmitter’s
NIC sender, which places the message in queues connect-
ing it to the receiver NICs at each of the relay nodes. The
relay module removes the message from the NIC receiver
queue and places it into a queue leading to the NIC sender,
which copies the message into the queue of each receiver.

Transmitter

ReceiverRelay

Receiver
Relay

Relay Receiver

Figure 2: Simple Oral Messages Protocol

We assume a synchronous execution model with the nodes
assumed to work in lock-step as if on a global clock. For
instance, the transmitter sends its value to its NIC sender
at clock tick 1, the value is sent to the relay node’s NIC
receiver at tick 2, etc.

In the fault model for our system, the transmitter is assumed
to be subject to fully transmissive asymmetric errors. The
relay nodes are assumed to be more reliable, say due to the
use of redundant pairs, but subject to omissive asymmetric
faults.

4.1 NIC Receiver
We now consider the PVS model of the NIC receiver in some
detail. The NIC receiver is parameterized by the number of
inbound communication channels, maxsize, and the global
time at which the state machine is to execute. The messages
are assumed to be of type Frame. The state of the NIC
receiver is formed from the product of the following:

• wires : below(maxsize) → fifo[Frame]. The wires
connect the receiver NIC to the sender NIC. As il-
lustrated in Figure 3 each queue in the sequence is
connected to a different node.

• from_nic : below(maxsize) → fifo[Frame]. This se-
quence of queues is used to pass the data received to
the relay or end receiver state machines.

• enabled : below(maxsize) → boolean. If enabled(i)
is true, then the source node i (the source node at-
tached to wires(i)) is assumed to be valid. The value
can be false for a number of reasons including messages
being dropped or garbled.

• pc is the current global clock value.

At this time, we do not model details of buffering, CRC
checks etc. Instead, we focus on capturing the fault model
at this node. The state machine defining this component
has the signature

NICReciver × AllReceiveActions → NICReceiver,

23 June 2009

10

Transmitter

NIC Sender

NIC
Receiver

NIC Sender

Relay

NIC
Receiver

Receiver

NIC
Receiver

NIC Sender

Relay

NIC
Receiver

NIC Sender

Relay

NIC
Receiver

Receiver

NIC
Receiver

Receiver

Figure 3: Structure of the Model

where AllReceiveActions is defined as

AllRecActions:TYPE = below(maxsize) → Actions.

The PVS datatype Actions defines the allowed faults and is
defined as follows:

Actions : DATATYPE

BEGIN

Good : Good?

Garbled : Garbled?

Sym(frame:Frame) : Sym?

Asym(frame:Frame): Asym?

END Actions.

Recall that wires hold messages from each incoming chan-
nel and faults are not modeled anywhere else in our model
so a message is not corrupted or lost in transit. Instead,
we use AllReceiveActions to inject faults at the NIC re-
ceiver. This type acts as a filter so if AllRecActions(i) has
the value Good, the message received is assumed to be good
and is relayed on, the value Garbled is treated as a benign
fault or a dropped message and would be dropped, the value
Sym(frame) would result in using the value frame, with the
same value sent to each node, and Asym(frame) would re-
sult in the value frame being placed in the fom_nic(i) queue,
where each i may get a distinctly different value.

Each of the fault model classifications has an associated PVS
type that constrains the values of the filter. For instance
good messages are defined by the type:

AllGoodRecAction: TYPE =
{f:AllRecAction| ∀ (i:below(maxsize)): Good?(f(i))} ,

omissive asymmetric faults are defined by the type:

OmissAsymRecAction : TYPE = {f : AllRecActions |

∀ (i:below(maxsize)) : Good?(f(i)) ∨ Garbled?(f(i))}

and transmissive asymmetric faults are defined by the type:

TransAsymRecAction: TYPE =
{f: AllRecActions | ∀ (i:below(maxsize)):Asym?(f(i))}.

The PVS code for updating the from_nic component of the
NICReceiver state is given as follows.

λ(i:below(maxsize)):
CASES a(i) OF

Good : IF ¬ empty_fifo?(s ‘wires(i)) THEN

enqueue(topof(s ‘wires(i)) ,s ‘from_nic(i))
ELSE empty_fifo

ENDIF,
Garbled : empty_fifo ,
Asym(frame) : enqueue(frame ,s ‘from_nic(i)) ,
Sym(frame) : enqueue(frame ,s ‘from_nic(i))

ENDCASES,

which returns a new sequence of queues with the values de-
termined by entries in the action sequence a. The state ma-
chine also removes the value received from each of the fifo
queues comprising wires. If message i was garbled, then the
corresponding entry in enabled is set to false.

Above the state machines is a relational model where the
components get connected together and that drives the state
machine transitions. In the case of the NIC receiver, the
fault model applied to a particular node is chosen. Existen-
tial quantification is used to model nondeterministic choice.
Ideally we will want the faults to be created in a separate
module from the system under test in order to model a test
harness.

5. PVS TO JAVA TRANSLATOR
A PVS-to-Java translator [15] has been constructed as part
of a collaborative effort between NIA and the Radboud Uni-
versity Nijmegen. The input to our code generator is a
declarative specification written in PVS. Since we aim at a
wide range of applications, we do not fix the target language.
Indeed, the tool first generates code in Why, an intermediary
language for program verification [12]. Our current proto-
type generates Java annotated code from the Why code. In
the future, we may implement outputs for other functional
and imperative programming languages.

In addition to enabling multi-target generation of code, an-
other benefit of an intermediate language is that transfor-
mations and analysis that are independent from the target
language can be applied to the intermediate code directly.

Consider the PVS datatype Actions defined in the Section 4.
Each of the different actions becomes a subclass that ex-
tends the class Actions and has a constructor that takes
the generic class Frame as an argument.

public class ReceiveAction <Data> {
public class Actions { public Actions () {}}
public class Sym extends Actions {
FrameTh<Data>.Frame frame ;

23 June 2009

11

PVS specification

PVS2Why

Why2XML

XML representation
Why program XML2C

XMLWhy2...

Why program

XML2Java

(Annotated)
C program

(Annotated)
Java program

Krakatoa Caduceus

Other languages

Figure 4: Multi-target generation of verifiable code

public Sym (FrameTh<Data>.Frame frame) {
this . frame = frame ; } }

The higher order use of defined functions is facilitated by a
special Lambda class. This generic abstract class demands
that an application function is supplied for each instance.

public abstract class Lambda<T1 , T2> {
abstract public T2 apply (T1 obj) ; }

For all defined functions in PVS, a higher order version is
generated that satisfies the requirements of the Lambda class.

public Lambda<Actions , Boolean> SymRecognizer =
new Lambda<Actions , Boolean>(){
public Boolean apply (final Actions actions){
return SymRecognizer (actions) ;}} ;}

All functions are translated into currified syntax. This way
it is possible to translate all higher order uses of functions,
including partial application, into working Java programs.

In its current phase of development, the translator can only
translate PVS specifications that are written in functional
style, in particular, as a state machine. Relational speci-
fications, which typically model nondeterministic behavior,
must be hand coded. The existential quantification in the
specification, which is used to nondeterministically gener-
ate actions, gets replaced by hooks into the Symbolic Java
PathFinder tool.

6. SYMBOLIC (JAVA) PATHFINDER
For test case generation, we will use Symbolic (Java)
PathFinder (SPF) [9], a symbolic execution framework built
on top of the Java PathFinder model checker [23]. SPF com-
bines symbolic execution and constraint solving techniques
for the automated generation of test cases that achieve high
coverage. Symbolic PathFinder implements a symbolic exe-
cution framework for Java byte-code. It can handle mixed
integer and real inputs, input data structures and strings,
as well as multi-threading and input pre-conditions.

Symbolic execution [18] is a well-known program analysis
technique that uses symbolic values instead of actual data
as inputs and symbolic expressions to represent the values
of program variables. As a result, the outputs computed
by a program are expressed as a function of the symbolic
inputs. The state of a symbolically executed program in-
cludes the (symbolic) values of program variables, a path
condition (PC), and a program counter. The path condition
is a boolean formula over the symbolic inputs, encoding the
constraints which the inputs must satisfy in order for an ex-
ecution to follow the particular associated path. These con-
ditions can be solved (using off-the-shelf constraint solvers)
to generate test cases (test input and expected output pairs)
guaranteed to exercise the analyzed code.

Symbolic PathFinder implements a non-standard interpre-
tor for byte-codes on top of JPF. The symbolic information
is stored in attributes associated with the program data and
it is propagated on demand during symbolic execution. The
analysis engine of JPF is used to systematically generate and
explore the symbolic execution tree of the program. JPF is
also used to systematically analyze thread interleavings and
any other forms of non-determinism that might be present
in the code; furthermore JPF is used to check properties of
the code during symbolic execution. Off-the-shelf constraint
solvers/decision procedures are used to solve mixed integer
and real constraints. We handle loops by putting a bound
on the model-checker search depth and/or on the number of
constraints in the path conditions.

By default, Symbolic PathFinder generates vectors of test
cases, each test case representing input-output vector pairs.
In order to test reactive systems, such as the fault toler-
ance protocols that we are studying here, we have extended
Symbolic PathFinder to also generate test sequences (i.e., se-
quences of test vectors) that are guaranteed to cover states
or transitions in the models (other coverages such as con-
dition, or user-defined are also possible). This works by
instructing Symbolic PathFinder to generate and explore
all the possible test sequences up to some user pre-specified
depth (or until the desired coverage is achieved) and to use
symbolic, rather than concrete, values for the input param-
eters.

7. PRELIMINARY RESULTS: TEST CASE

GENERATION
We have begun applying Symbolic PathFinder to the Java
code generated from the PVS specifications for the case
study described in Section 4. Each of the PVS models for the
components of the system (wires, senders, receivers, relays,
and so on) was translated into a Java class through the pro-
cess described in Section 5. We applied SPF to these classes
combined with the hand-written driver code (also described
in Section 5).

Both the connections among the components and the model’s
execution policy are implemented in the driver code. The
Java code that was automatically derived from the PVS
specifications does not assume any particular inter-component
connections or execution policy. Since this case study ini-
tially assumes a synchronous execution policy with a global
clock, our first implementation of a driver is a simple single-
threaded model which can be outlined as:

23 June 2009

12

. . . wire components together . . .

for (int pc=0; pc<maxPc ; pc++) {
sender1 . step () ;
nicSender1 . step () ;
nicReceiver1 . step () ;
. . . }

To perform test case generation, we identified the inputs to
the protocols as being the different types of faults that can
be injected on the receiver side to test the fault tolerance
behavior. In the PVS model, the four possible component
fault types (Good, Garbled, Symmetric, Asymmetric) are in-
troduced into the NIC Receiver through the Actions PVS
datatype (see Section 4.1). However, our Java code sim-
plifies this by implementing the four fault types as simple
integers in the range 0,..,3. This is only for convenience
— it does not materially affect the model.

As a second simplification for this initial trial, we modeled
only a single sender wired to two receivers. Future runs
will expand the model to cover the full case study shown in
Figure 3.

In order to generate test cases with SPF, we needed to an-
notate the Java code so that SPF knows that the integer
Actions are the symbolic variables for which path condi-
tions must be derived. This is easily done. The original
driver code which sets up the array of actions (i.e. possible
faults):

int [] actions = new int [maxsize] ;
for (int i = 0; i < maxsize ; i++)

actions [i] = . . . some fault type in 0 , 1 , 2 , 3 . . . ;

is modified to tell SPF that the integers in actions[] are
to be treated symbolically:

int [] actions = new int [maxsize] ;
for (int i = 0; i < maxsize ; i++)

String symVarName = "rcvr-" + (rcvrID++) "-error" ;
actions [i] = Debug . getSymbolicInt (0 ,3 ,symVarName) ;

Debug.getSymbolicInt (min, max, name) is a utility method
in SPF which tells the model checker to generate a symbolic
integer named name whose range is min. . . max. This is the
only annotation needed to apply SPF.

Running SPF then produces the test inputs from the path
conditions:

Constraint 1:

rcvr-1-error == Good &&

rcvr-0-error == Good

Constraint 2:

rcvr-1-error == Garbled &&

rcvr-0-error == Good

...

Constraint 15:

rcvr-1-error == Symmetric &&

rcvr-0-error == Asymmetric

Constraint 16:

rcvr-1-error == Asymmetric &&

rcvr-0-error == Asymmetric

We then ran the Java code with these sixteen tests and mea-
sured the coverage. In some Java classes the coverage was
less than 100%. Examining the code that was not executed
showed that most of statements were in code that is not
needed for the simple example used for this initial trial. A
few unexecuted lines are significant and are the result of
problems in the handwritten driver code. These problems
will be addressed in future our future work.

8. RELATED WORK
Almost all of the major theorem provers provide some form
of code generation their specification language. For instance,
theorem prover Isabelle/HOL even provides two code gener-
ators [2, 16], ACL2’s [17] specification language is a subset
of Common Lisp, and Coq [5] has a generator [21] that ex-
tracts lambda terms and translates them in either Haskell
or OCaml. Unlike the generator we use in this paper, these
languages are all functional programming languages.

While there has been a lot of work on specification-based
testing and test case generation [10, 13, 14], there has been
little work focusing on bridging the gap between theorem
proving and testing. The HOL-TestGen system [7] gener-
ates unit tests from Isabelle [24] specifications. The liter-
ature currently focuses on generating tests for common li-
braries. Sewell et al. have constructed a tool that uses HOL
specifications as an oracle for testing protocols [6], but their
focus is not on test case generation. An experiment in us-
ing PVS strategies to create random test cases directly from
PVS specifications is reported in [25].

The work presented here is also related to the use of formal
methods (including theorem proving and model checking)
for analyzing fault tolerance of circuits and systems [26,27].
In contrast to these works, our goal is to leverage the effort
of building and formally verifying models of such systems
into testing actual implementations.

9. CONCLUSION AND FUTURE WORK
Formal methods are increasingly accepted in the fault-tolerant
systems community as a means to analyze the correctness
of a design under the assumption of a well specified fault
model. Yet testing must be employed to validate an exe-
cutable against a model. Furthermore, testing should ex-
plore whether assumptions built into the fault model do
indeed hold. We present a methodology whereby a PVS
formal model drives the creation of a Java executable pro-
totype that can be used as reference implementation. Test
cases can then be generated by applying static analysis tech-
niques to the prototype implementation. The PVS-to-Java
translator and the Symbolic PathFinder tools enable this
process by automating much of the task.

The work reported in this paper is still preliminary and much
work remains to be done. The PVS-to-Java translator is still
evolving as features are added that will allow us to automati-
cally translate more of our model. SPF is similarly evolving.

23 June 2009

13

For instance, the ability to generate tests from the abstract
datatype Actions is under development.

The results reported in Section 7 reflect experiments in-
tended to test the feasibility of the methodology and to
drive what features need to be added to our tools. Our
next milestone is to be able to exercise the full protocol seen
in Section 3. Furthermore, we need to extend the generation
of test cases to also include the expected output (e.g. var-
ious observable protocol states) as our goal is to use these
test cases to test actual implementations. The protocol un-
der consideration is very basic. Once we have mastered the
process for this example, we expect to focus on more so-
phisticated protocols such as fault-tolerant distributed clock
synchronization.

Acknowledgments
We thank Eric Cooper, Mike Lowry and César Muñoz for
their comments. This work was partially supported by NASA
Cooperative Agreement NCC1-02043.

10. REFERENCES
[1] M. H. Azadmanesh and R. M. Kieckhafer. Exploiting

omissive faults in synchronous approximate
agreement. IEEE Transactions on Computers,
49(10):1031–1042, 2000.

[2] S. Berghofer and T. Nipkow. Executing higher order
logic. In P. Callaghan, Z. Luo, J. McKinna, and
R. Pollack, editors, Types for Proofs and Programs
(TYPES 2000), volume 2277 of LNCS, pages 24–40.
Springer, 2002.

[3] C. Bergin. Faulty MDM removed. NASA
Spaceflight.com, May 18 2008. Available at
http://www.nasaspaceflight.com/2008/05/

sts-124-frr-debate-outstanding-issues

-faulty-mdm-removed/. (Downloaded Nov 28, 2008).

[4] C. Bergin. STS-126: Super smooth endeavor easing
through the countdown to l-1. NASA Spaceflight.com,
November 13 2008. Available at
http://www.nasaspaceflight.com/2008/11/

sts-126-endeavour-easing-through-countdown/.
(Downloaded Feb 3,2009).

[5] Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development. Coq’Art: The
Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer Verlag, 2004.

[6] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell,
M. Smith, and K. Wansbrough. Rigorous specification
and conformance testing techniques for network
protocols, as applied to TCP, UDP, and Sockets. In
Proceedings of SIGCOMM 2005: ACM Conference on
Computer Communications (Philadelphia), published
as Vol. 35, No. 4 of Computer Communication Review,
pages 265–276, Aug. 2005.

[7] A. Brucker and B. Wolff. Test-sequence generation
with hol-testgen - with an application to firewall
testing. In B. Meyer and Y. Gurevich, editors, Tests
and Proofs, Lecture Notes in Computer Science 4454.
Springer-Verlag, 2007.

[8] R. W. Butler. A primer on architectural level fault
tolerance. Technical Report NASA/TM-2008-215108,
NASA Langley Research Center, 2008.

[9] C. Pasareanu and P. Mehlitz and D. Bushnell and K.
Gundy-Burlet and M. Lowry and S. Person and M.
Pape. Combining Unit-Level Symbolic Execution and
System-Level Concrete Execution for Testing NASA
Software. In International Symposium on Software
Testing and Analysis, pages 15–26. ACM Press, 2008.

[10] J. Chang and D. J. Richardson. Structural
specification-based testing: Automated support and
experimental evaluation. In Proceedings FSE’99, pages
285–302, Sept. 1999.

[11] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg.
Byzantine fault tolerance, from theory to reality. In
The 22nd International Conference on Computer
Safety, Reliability and Security SAFECOMP, Lecture
Notes in Computer Science, pages 235–248. Springer,
September 2003.

[12] J.-C. Filliâtre. Why: a multi-language multi-prover
verification tool. Research Report 1366, LRI,
UniversitÃl’ Paris Sud, Mar. 2003.

[13] A. Gargantini and C. Heitmeyer. Using model
checking to generate tests from requirements
specifications. In Proceedings of the 7th European
engineering conference held jointly with the 7th ACM
SIGSOFT international symposium on Foundations of
software engineer ing, pages 146–162. Springer-Verlag,
1999.

[14] J. Goodenough and S. Gerhart. Toward a theory of
test data selection. IEEE Transactions on Software
Engineering, June 1975.

[15] A. E. Goodloe, L. Lensink, and C. Muñoz. From
verified specifications to verifiable software. Technical
report, National Institute of Aerospace, 2008.

[16] F. Haftmann and T. A code generator framework for
Isabelle/HOL. In K. Schneider and J. Brandt, editors,
Theorem Proving in Higher Order Logics: Emerging
Trends Proceedings, number 364/07, 08 2007.

[17] M. Kaufmann, J. Moore, and P. Manolios.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[18] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, 1976.

[19] Lamport, Shostak, and Pease. The Byzantine generals
problem. ACM Transactions on Programming
Languages and Systems, 4:382–401, July 1982.
Available at http:

//citeseer.nj.nec.com/lamport82byzantine.html.

[20] J.-C. Laprie. Dependability—its attributes,
impairments and means. In B. Randell, J.-C. Laprie,
H. Kopetz, and B. Littlewood, editors, Predictability
Dependable Computing Systems, ESPRIT Basic
Research Series, pages 3–24. Springer, 1995.

[21] P. Letouzey. A New Extraction for Coq. In H. Geuvers
and F. Wiedijk, editors, Types for Proofs and
Programs, Second International Workshop, TYPES
2002, Berg en Dal, The Netherlands, April 24-28,
2002, volume 2646 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[22] NASA - Johnson Flight Center. Space shuttle
operational flight rules Volume A, A7-104, June 2002.
Available from http://www.jsc.nasa.gov

(Downloaded Nov 28, 2008).

[23] NASA Ames. Java PathFinder Version 3.1.1 User

23 June 2009

14

Guide.

[24] T. Nipkow, L. Paulson, and W. Wenzel. Isabelle HOL
- A proof Assistant for Higher-Order Logic. Lecture
Notes in Computer Science 2283. Springer Verlag,
2002.

[25] S. Owre. Random testing in pvs. In Workshop on
Automated Formal Methods, 2006.

[26] J. Rushby. Systematic formal verification for
fault-tolerant time-triggered algorithms. IEEE Trans.
Softw. Eng., 25(5):651–660, 1999.

[27] S. A. Seshia, W. Li, and S. Mitra. Verification-guided
soft error resilience. In Proc. Design Automation and
Test in Europe (DATE), April 2007.

[28] P. Thambidurai and Y.-K. Park. Interactive
consistency with multiple failure modes. In 7th
Reliable Distributed Systems Symposium, pages
93–100, October 1988.

23 June 2009

15

SAL, Kodkod, and BDDs for Validation of B Models

Lessons and Outlook

Daniel Plagge Michael Leuschel

Lehrstuhl Softwaretechnik und Programmiersprachen
Institut für Informatik

University of Düsseldorf

{plagge,leuschel}@cs.uni-duesseldorf.de

Ilya Lopatkin Alexei Iliasov

Alexander Romanovsky

School of Computing Science
Newcastle University

{Ilya.Lopatkin, Alexei.Iliasov,
Alexander.Romanovsky}@newcastle.ac.uk

Abstract

PROB is a model checker for high-level B and Event-B models
based on constraint-solving. In this paper we investigate alternate
approaches for validating high-level B models using alternative
techniques and tools based on using BDDs, SAT-solving and SMT-
solving. In particular, we examine whether PROB can be comple-
mented or even supplanted by using one of the tools BDDBDDB,
Kodkod or SAL.

Categories and Subject Descriptors I.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving—Logic Programming; D.2.4
[Software Engineering]: Software/Program Verification—Model
Checking; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical verifi-
cation; Specification techniques

General Terms Languages; Verification

Keywords Logic Programming; formal methods; model check-
ing; verification; animation.1

1. Introduction

Event-B is a formal method for state-based system modelling and
analysis evolved from the B-method [1]. The B-method itself is
derived from Z and based upon predicate logic with set theory
and arithmetic, and provides a wide array of sophisticated data
structures (sets, sequences, relations, higher-order functions) and
operations on them (set union, difference, function composition to
name but a few).

Event-B has a tool support in a form of the Rodin Platform [2],
which is extensible with plugins. The platform supports the mech-
anisms, essential for rigorous model development among which
model checking (exemplified by PROB) plays an important role in
ensuring the model correctness and understanding the system be-
haviour.

1 This research is partially supported by the EU funded FP7 project 214158:
DEPLOY (Industrial deployment of advanced system engineering methods
for high productivity and dependability).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AFM’09, June, 2009, Grenoble, France.
Copyright c© 2009 ACM 978-1-60558-117-0/08/07. . . $5.00

PROB [14, 16] is an animator for B and Event-B built in Prolog
using constraint-solving technology. It incorporates optimisations
such as symmetry reduction and has been successfully applied to
several industrial case studies.

Still, sometimes the performance of the tool is suboptimal, es-
pecially in the context of complicated properties over unknown
variables, which is the reason we have investigated alternate ap-
proaches for animating or model checking B specifications. More
precisely, we investigate whether model checking of B/Event-B
could by done by mapping to the input languages for other tools
making use of either SAT/SMT solving techniques or of BDDs. If
so, what is the performance difference compared to PROB’s current
constraint solving approach? Can the constraint solving approach
be combined with the alternate approaches? These are the ques-
tions we try to answer in this paper. In Section 2 we provide some
background information about PROB and its constraint solving ap-
proach. In Section 3 we elaborate on our experience in trying to use
the BDDBDDB package [28], which provides a Datalog/relational
interface to BDDs and has been successfully used for scalable static
analysis of imperative programs. In Section 4 we present our expe-
rience and first results in mapping B to Kodkod [26], a high-level
interface to SAT-solvers used by Alloy [12]. In Section 5, we turn
our investigation to SAL [24], based on the SMT-solver Yices. We
conclude with a discussion about related and future work in Sec-
tion 7.

2. ProB

PROB [14, 16] is an animator and model checker for the B-method
based on the constraint solving paradigm. Constraint-solving is
used to find solutions for B’s predicates. As far as model checking
technology is concerned, PROB is an explicit state model checker
with symmetry reduction [15, 27, 19]. While the constraint solving
part of PROB is developed in Prolog, the new LTL model checking
engine [20] is encoded in C.

Some of the distinguishing features of PROB are

• the support for almost full syntax of B, integration into Atelier
B and Rodin,

• the support for Z [23] and Event-B, building on the same kernel
and interpreter as for “classical” B,

• the support for other formalisms such as CSP [18] via custom
Prolog interpreters which can be linked with the B interpreter
[7].

However, in this paper we will concentrate on B and Event-B.
PROB uses a custom built constraint solver over the datatypes of
B. The base types of B are booleans, integers and user-defined base

23 June 2009

16

sets, while the composed types can be constructed using cartesian
product and the power set constructions. As such, B caters for sets,
relations, functions and sequences and provides many custom op-
erators on these datatypes (e.g., computing the inverse of a relation,
composing relations, ...). Note that the relations and functions can
be higher-order (and often are).

The performance of PROB is often good for animation and it has
been successfully applied to a variety of industrial specifications.
Recently, PROB has been extended to also deal with very large sets
and relations (with tens of thousands of elements or more) and it is
planned that PROB will be used by Siemens in production in 2009
for validating assumptions about rail network topologies [17].

In some real life scenarios, PROB can actually be more efficient
than, e.g., Spin or SMV working on equivalent lower-level models
(see [13] or or [11]). Still, there are many scenarios where the
performance is not (yet) adequate.

For example, PROB’s performance can be disappointing when
values for variables have to be found which satisfy complicated
predicates, and those constraints allow little deterministic con-
straint propagation to occur (see, e.g., the example in Section 4.3).
For example, finding values for the constants of a B model which
satisfy complicated predicates can be very challenging. Another
scenario with similar characteristics is the use of PROB as a dis-
prover [4] for proof obligations: here one wants to find values
which make the hypotheses of the proof true but the consequent
false.

In this paper we investigate whether PROB can be comple-
mented by other technologies in order to improve its performance.
We also study whether the entire constraint solving engine could be
replaced, if other technologies turn out to be universally superior.

3. BDDs via Datalog

Symbolic model checking with binary decision diagrams (BDDs)
has become very popular since the very successful applications on
hardware models [6]. We investigated, if and how we could use this
approach for Event-B or B models.

BDDBDDB [28] offers the user a Datalog-like language that aims
to support program analysis. It uses BDDs to represent relations
and compute queries on these relations. We wanted to use the tool
to find states that violate the invariant of a model, using Datalog
queries that follow the schema

check(S) :- init(I),do_events(I,S),inv_violated(S).
do_events(A,A).
do_events(A,B) :- step(A,C),do_events(C,B).
step(A,B) :- event_X(A,B).
step(A,B) :- event_Y(A,B).

check(S) should return a reachable state that violates the invariant.
To find such a state, we start in an initial state I, do zero or more
operations from I to S via do_events and check if the resulting
state violates the invariant with inv_violated. do_events(A,B)
is specified by doing either zero steps (A and B are the same) or
doing one step to an intermediate state C and continuing recursively.
step again models the transition between two states by an event,
here e.g. event_X and event_Y.

What can not be seen in the query above is how an initial state,
a state that violates the invariant or an event is specified. To do that,
one has to represent a state of the model as a bit-vector and events
have to be implemented as relations between two of those bit-
vectors. These relations have to be constructed by creating BDDs
directly with the underlying BDD library (JavaBDD) and storing
them into a file.

If we take e.g. a model that contains two integers a and b, and
an event with the action a := a + b, we have to define a boolean
formula that specifies for every bit of a in the new state how it

correlates with the bits of a and b in the original state and for all
other bits that they stay the same.

Soon after starting experimenting with BDDBDDB it became ap-
parent that due to the lack of more abstract data types than bit vec-
tors, the complexity of a direct translation from B to BDDBDDB was
too high, even for small models. So we abandoned this approach,
especially as there are other tools like SAL or Kodkod that give us
the possibility to use symbolic approaches but offer a more power-
ful interface to define the models.

4. SAT Solving via Kodkod

Kodkod [26] is a constraint solver for first order logic that offers
an extensive set of operations on relations. It uses an underlying
SAT-solver (like minisat) to find solutions to a given problem.

It seems to be much more suitable for our purpose than the
previously mentioned low-level approach using BDDs, because
sets and relations (Kodkod considers sets as unary relations) are
heavily used in B specifications. To use Kodkod, one basically has
to provide four things to find solutions for a problem:

• An universe of atoms.

• n-ary relations between the atoms.

• A predicate, called formula, is constructed as an abstract syntax
tree and can refer to previously defined relations.

• Bounds on the relations define which atoms can be in each
relation.

Kodkod then provides possible instances for the relations.
Kodkod itself does not define an input language, but comes as a

Java library and the user defines the components of the problem via
the API. We used this library to implement a component of PROB
that runs in a separate process. We do not replace a whole B spec-
ification by a kodkod problem description but we rather replace
single predicates. This allows us to mix Kodkod and PROB’s con-
straint solving technique, which is particular useful if components
of the specification are not translatable.

4.1 Translation from B to Kodkod

In a first approach, we restricted ourselves to expressions that used
only deferred sets or enumerated sets as data types. To translate a
B predicate into a Kodkod problem, we do the following:

First, we construct the atoms of Kodkod’s universe by creating
an atom for each element of an enumerated set. Deferred sets
can be treated the same way, because PROB assigns a fixed finite
cardinality to each deferred set.

Then we can translate the given (i.e. enumerated or deferred) set
into an unary relation which contains exactly all atoms that belong
to its elements. The information that the relation contains exactly
those atoms is specified as a bound on the relation. We translate
each element of an enumerated set to an unary singleton relation
which contains exactly the associated atom.

For every variable (or constant) that is referenced in the pred-
icate we create a Kodkod relation. If the variable’s type is a set
or relation, the translation is straight-forward, if the variable’s type
is an element of a deferred or enumerated set, we have to add the
predicate that the relation is a singleton.

B expressions often have a direct Kodkod counterpart: E.g. the
cartesian product, set union, intersection and difference, reverse
and closure of a relation, the relational image. Some expressions
can be translated using other existing constructs. E.g. the domain
restriction S ⊳ R with S ⊆ A and R ∈ A ↔ B can be rewritten
into S ⊳ R = R ∩ (S × B), that again can be translated directly.
Identifiers are translated to references to the according relations, as
described above. Also many B predicates like conjunction, disjunc-

23 June 2009

17

PROB

B interpreter

Java process

Kodkod

problem, values

values

Figure 1. PROB and Kodkod

tion, negation, universal and existential quantification, set member-
ship, subsets, etc. can be directly translated.

Fig. 3 shows an example of a predicate in B syntax and the cor-
responding Kodkod formula. The predicate is part of a specification
of a control flow analysis and we use it below for a small perfor-
mance comparision between Kodkod and PROB. The formula is
taken from the output of the toString method of the correspond-
ing Java object and only slightly modified to improve readability.
One can see that it’s very similar to the original B predicate, the
additional one lentry in the beginning states that lentry is a
singleton set. && is the logical conjunction, . the relational image,
& the intersection, ~ the inverse and -> the cartesian product.

Limitations of the translation Currently the data type of each
expression that we translate must be an element of a given set,
a subset of a given set, or a relation between those types. Our
approach does not support types like sets of sets, as those cannot
be translated to Kodkod easily.

Another limitation is that we currently do not consider integers.
Kodkod has limited support for integers, one can specify integers
and sets of integers and use basic operations like addition or multi-
plication on them. Internally, Kodkod maps each integer to an atom
(at least if a set of integers is used) and uses a bit encoding with
a fixed number of bits for the integer operations. Integer overflows
are silently ignored. We are currently working on a version which
first does a static analysis on the B predicate to determine the possi-
ble intervals of each expression. This is needed to pass a maximum
bit width to Kodkod that guarantees the integer operations to be
correct. Additionally, we need the intervals to create an atom for
each possible integer if a set of integers is used in an expression.

4.2 Interaction between PROB and Kodkod

To make use of Kodkod’s features in PROB, a predicate in the in-
ternal syntax tree is replaced by a special syntax element that de-
scribes a Kodkod representation of the predicate. When the inter-
preter encounters this element the first time, the description of the
problem is sent to a separate Java process (see Fig. 1). After this ini-
tialisation phase, each time the interpreter evaluates the predicate,
the currently known values of used variables are sent to the pro-
cess, which in turn returns possible values (calculated by Kodkod)
for the remaining variables of the predicate.

In the example above, PROB would send the value of succ, and
the Java process returns the 7 possible values for L and lentry.

4.3 Performance comparison

For now, we do not have an exhaustive performance comparison
between PROB and Kodkod. Evaluating two extreme examples
suggests that depending on the problem, either approach can show
its strength.

Kodkod and large relations Kodkod does not seem to scale well
when encountering large relations. This has only been relevant for
certain applications of PROB, such as the property verification on
real data [17]. The log-log plot in Figure 2 contains a small experi-
ment where the performance of the set-difference operation is anal-
ysed. PROB scales linearly, while Kodkod exhibits an exponential
growth (slope of the Kodkod curve > 1).

0.0 s

0.0 s

0.1 s

1.0 s

10.0 s

100.0 s

1000.0 s

10000.0 s

100 1,000 10,000 100,000 1,000,000

ProB Kodkod

Figure 2. Performance of PROB vs Kodkod on large sets

Blocks = {b1, b2, b3, b4, b5, b6, bentry, bexit}
succs = {bentry 7→ b1, b1 7→ b2, b2 7→ b3, b3 7→ b3, b3 7→ b4,

b4 7→ b2, b4 7→ b5, b5 7→ b6, b6 7→ b6, b6 7→ bexit}

The predicate in B syntax

lentry ∈ L

∧ succs−1[L \ {lentry}] ⊆ L

∧ ∀l.(l ∈ L ⇒ lentry ∈ (L ⊳ succs ⊲ L)+[{l}])

and encoded in Kodkod

one lentry && lentry in L &&
((L-lentry) . ~succs) in L &&
all l: one Blocks | (l in L =>
lentry in (l.^(((L->Blocks)&succs)&(Blocks->L))))

Figure 3. Finding loops in a control flow graph

Finding loops in a control flow graph For a certain class of
problems, Kodkod is much faster. The problem given in Fig. 3 is
encoded in a B-machine by defining the basic blocks Blocks as an
enumerated set, the relation succs as a constant and the predicate as
a precondition for an operation with two parameters L and lentry.

PROB needs 683 sec to find all 7 solutions without Kodkod-
support. When the predicate is replaced by a call to the Kodkod-
process, the computation time reduces to 10 ms.

4.4 Conclusion and ongoing work

For certain problems, the use of a SAT solver via Kodkod seems
very promising. We do not see that this approach might replace the
constraint solving mechanism of PROB, because there still will be
constructs in specifications that are very hard to translate.

The lack of support for integers turned out to be a hurdle for try-
ing out more examples. So we are currently working on supporting
integers and will then continue the evaluation of this approach.

The possibility to mix predicates that are handled by Kodkod
or PROB’s constraint solving algorithm in the interpreter has the
advantage that we can use Kodkod without having to drop the sup-
port for part of the specification language. However, for making
symbolic techniques like bounded model checking available, we
must be able to translate the whole specification, because PROB’s
interpreter just supports explicit model checking. We are currently
thinking about ways to circumvent this restriction by using predi-
cate abstraction [8].

5. SAL

SAL [24] is a model-checking framework combining a range of
tools for reasoning about information systems, in particular concur-
rent systems, in a rigorous manner. The core of SAL is a language

23 June 2009

18

for constructing system specifications in a compositional way. The
SAL tool suite includes a state of the art symbolic (BDD-based)
and bounded (SAT-based) model checkers.

The overall aim of our work is to investigate the potential ap-
plications of SAL in a combination with the Rodin platform, a de-
velopment tool for the Event-B formalism. Unlike SAL, Rodin re-
lies mostly on theorem proving for model analysis. We are looking
for a way of complementing the Rodin platform with a plugin that
would automate some of the more difficult tasks such as liveness,
deadlock freeness and reachability analysis.

5.1 Event-B to SAL translation

In this section we describe our ongoing work on translating Event-
B models into the input language of SAL. We report the results
on initial experiments on verifying Event-B models in the SAL
framework. The benchmark for our efforts is PROB[14, 16]. Since
PROB is Prolog-based, we had started with an expectation of
achieving some performance advantage for a considerable subset
of problems.

Table 1 and Figure 4 present the comparative performance of the
PROB Event-B model checker and SAL 2 run on the result of trans-
forming the same model into the input language of SAL. The first
model is a synthetic benchmark based on bubble sort algorithm. In
this model a single event swaps neighbouring elements of an array
if they are in a wrong order. The other four models are the examples
bundled with PROB distribution. These demonstrate the translation
and the performance of some of the most ”inconvenient” parts of
Event-B syntax for SAL: sets, functions, relations and operators on
them such as union, intersection, cardinality and etc.

In the comparison tables ”SAL run” stands for the time of iterat-
ing through the state space, and ”SAL total” is the total time includ-
ing generation of model checker. On the charts we show PROB and
total SAL times with values connected by lines where there is an
evident dependency between the size of state space and correspond-
ing timings. During model checking the Club specification we were
changing several parameters, and each of them had its effect on the
size of state space and total model checking time. Thus we show
results for this model as a set of non-connected points. All figures
are meaningful for comparative analysis only: they could change
substantially depending on the operating system, compiler distribu-
tion, and, obviously, the performance of a machine on which tests
are run.

These results are obtained with default settings in both model
checkers. By enabling hash or nauty symmetries, one is able to
obtain much better results in PROB (see also [13]) , although
this requires some understanding on when these options should
be enabled. In some cases, symmetry reduction may slow down
the process but mostly it reduces the model checking time. For
example, with hash symmetry enabled, PROB can model check
the Scheduler specification with parameter set to 5 in just 0.25s
compared to 1.7s with default settings (see Table 2). Also, for Life
with set size 20, PROB only generates 232 states with symmetry
and the model checking time goes down to 2.2 seconds. Finally, for
Club with MaxInt = 20 and set size 4, the number of states goes
down to 682 from 3597, and the model checking time goes down
to roughly 6 seconds.

Reasoning on timings we obtained during our experiments,
we drew preliminary conclusions about efficiency of SAL model
checker on our models:

• SAL verification stage alone can be more than 10x up to 1000x
faster than PROB (without symmetry) for a large class of mod-
els;

2 All timings are obtained using sal-smc model checker

Sort

Parameters States PROB SAL run Sal total

array[3] of 1..10 1000 18 sec 0.08 sec 0.2 sec
array[4] of 1..10 10000 5 min 41 sec 0.1 sec 0.3 sec
array[6] of 1..10 1000000 > 30 min 13 sec 14 sec
array[6] of 1..12 2985984 > 30 min 29.5 sec 30.7 sec

Life

Parameters States PROB SAL run Sal total

set size = 5 243 0.9 sec 0.06 sec 0.28 sec
set size = 7 2187 11.8 sec 0.06 sec 0.42 sec
set size = 8 6561 72.5 sec 0.06 sec 0.8 sec
set size = 20 > 109 > 20 min 0.28 sec 2.7 sec

Max

Parameters States PROB SAL run Sal total

MaxInt = 7 256 1.4 sec 0.06 sec 0.22 sec
MaxInt = 8 512 3.3 sec 0.05 sec 0.25 sec
MaxInt = 9 1024 7.8 sec 0.08 sec 0.26 sec
MaxInt = 10 2048 20.7 sec 0.08 sec 0.28 sec
MaxInt = 11 4096 61 sec 0.09 sec 0.25 sec
MaxInt = 12 8192 3 min 18 sec 0.2 sec 0.6 sec
MaxInt = 30 > 109 > 30 min 0.4 sec 2 sec
MaxInt = 50 > 1015 > 30 min 2.2 sec 7.4 sec

Scheduler

Parameters States PROB SAL run Sal total

set size = 3 35 0.24 sec 0.05 sec 0.47 sec
set size = 4 124 0.7 sec 0.1 sec 1.8 sec
set size = 5 437 1.7 sec 0.1 sec 55 sec

Club

Parameters States PROB SAL run Sal total

capacity = 1..2
set size = 3 368 1.8 sec 0.03 sec 0.6 sec
MaxInt = 10
capacity = 1..2
set size = 4 958 4.6 sec 0.03 sec 5 sec
MaxInt = 10
capacity = 1..2
set size = 4 3358 11.8 sec 0.03 sec 5.5 sec
MaxInt = 30
capacity = 1..2
set size = 4 5758 30.3 sec 0.05 sec 6 sec
MaxInt = 50
capacity = 1..2
set size = 4 119758 > 30 min 0.05 sec 6 sec
MaxInt = 10000
capacity = 1..2
set size = 5 2408 9.5 sec 0.05 sec 4 min 29 sec
MaxInt = 10
capacity = 1..3
set size = 4 3597 14.2 sec 0.03 sec 5.4 sec
MaxInt = 20

Table 1. Comparison on Event-B and SAL specifications

• even in the case of enabled symmetry in PROB, SAL shows
either better or comparable performance;

• the bottleneck of SAL model checking performance is in the
pre-verification analysis and checker generation stages. In par-
ticular, unfolding quantifiers may take ∼ 95% of generation
time;

• SAL model checking time strongly depends on the complexity
of theorems, complex computations in theorems dramatically
reduce the overall performance.

In these models, we used a classical representation of sets in
predicates adopted from [25]. Let us look at an excerpt from a B
model which uses sets:

23 June 2009

19

Figure 4. Comparison on Event-B and SAL specifications

SETS s ...

CONSTANTS total ...

VARIABLES a ...

INVARIANT a⊂s & card(a)≤total ...

OPERATIONS

add(b) = WHEN b∈s & b/∈a THEN a:=a∪{b} END;

...

The corresponding SAL specification is

modelname: CONTEXT =

BEGIN

ntype: TYPE = {n: prob!NAT1 | n <= prob!MaxSetSize};
s: CONTEXT = set{ntype;};

main: MODULE =

BEGIN

LOCAL a: s!Set ...

TRANSITION [

([](b:ntype): add:

NOT s!contains(a, b) --> a’ = s!union(a, b))...

END

th: theorem main ⊢
G(EXISTS(n: prob!SizeType):

s!size(a, n) AND n<=total);

END

And the implementation of cardinality test is

size(s: Set, n: natural): boolean =

(n=0 and equals(s, Empty)) or

(n>0 and exists (f: [[1..n] -> T]) :

(forall (x1, x2: [1..n]): f(x1)=f(x2) => x1=x2) and

(forall (y: T): s(y) <=>

(exists (x: [1..n]) : f(x)=y)));

Such calculation of cardinality involves an excessive use of quan-
tifiers. In [9] a brute-force approach is proposed which iterates
through a function from a set type to boolean. We believe that this
can still be improved upon. Since SAL natively supports arrays, we
encoded sets as arrays of boolean type with an index being mapped
to values of a set type. Essentially, a set (and its derivatives such
as relation and function) is represented as a characteristic function.
The approach brings a number of advantages. For instance, car-
dinality calculation is realised with a relatively efficient recursive
function:

sizesofar(s: Set, n: SetArrayType): prob!SizeType =

if s[n] then 1 else 0 endif +

if n>1 then sizesofar(s, n-1) else 0 endif;

size(s: Set): prob!SizeType = sizesofar(s, prob!MaxSetSize);

As a further optimisation technique, for each set we introduce
an auxiliary variable storing the current set size. This variable is
updated each time the set is changed.

With our new style of set translation, the example above is trans-
formed into the following:

modelname: CONTEXT =

BEGIN

s: CONTEXT = set;

main: MODULE =

BEGIN

LOCAL a: s!Set, a size: prob!SizeType ...

INITIALIZATION ...; n = set!size(a); ...

TRANSITION [

([](b:set!SetArrayType): add:

NOT s!contains(a, b) -->

a’ = s!union(a, b); a size’ = set!size(a’);)...

END

th: theorem main ⊢ G(a size <= total);

END

With this approach an invariant (SAL safety theorem) does not
involve the heavy calculation of a set size. Unsurprisingly, this re-
sults in a significant performance benefit for the models operating
on sets. We present the comparison of these timings in Table 2 and
Figure 5.

Figure 5. The comparative results for the efficient set translation
(Sal, new)

5.2 Ongoing work on the plugin

Our ongoing work is focusing on incorporating the SAL model
checker into the Rodin platform. A number of steps are being
performed to achieve this. We are aiming at developing a nearly
complete mapping of Event-B to the SAL input language. We
do not consider it practical to attempt to cover the whole of the

23 June 2009

20

Club

Parameters States PROB Sal, old SAL, new

capacity = 1..2
set size = 5 2408 9.5 sec 4 min 29 sec 0.3 sec
MaxInt = 10
with symmetry 216 ≈ 1.5 sec
capacity = 1..2
set size = 6 5857 39.4 sec 0.4 sec
MaxInt = 10
with symmetry 245 ≈ 2.5 sec
capacity = 1..2
set size = 8 31738 >10 min 0.7 sec
MaxInt = 10
with symmetry 288 ≈ 4 sec

Scheduler

Parameters States ProB Sal, old SAL, new

set size = 5 437 1.7 sec 55 sec 0.4 sec
with symmetry 21 0.25 sec
set size = 7 5231 39.2 sec 0.7 sec
with symmetry 36 0.5 sec

Table 2. The comparative results for the efficient set translation
(Sal, new)

Event-B mathematical language. Instead, we intend for our tool to
cooperate with the PROB model checker so that models that cannot
be handled with SAL are automatically handled by PROB.

The result of developing the language mapping would be an
automated translation of Event-B models into SAL. The next step
is in providing a user with a meaningful feedback from the tool.

The summary of our translation approach is given in Table 3. It
covers the main Event-B model elements such as events, invariant,
variables, etc.

Since SAL requires variable types to be predefined and finite, all
variables of an Event-B model must be automatically constrained
to finite (and small) ranges. In Event-B models, definition of a vari-
able type is a part of invariant. Therefore, constraints on variables
can be obtained by analysing the invariant. In case of unbound type
the model translator would use predefined ranges either specified
by user or taken by default.

SAL supports enumerated types which can be used for encoding
Event-B given sets. However, considering our general implementa-
tion of sets we see reasonable to map enumerated values into a
range of integers at the translation level. The result of a SAL model
checking would be traced back to the Event-B enumeration and
given to a user as a feedback in terms of the initial model.

Along with solutions to translating Event-B models into SAL,
we have identified a number of challenges:

• the use of cartesian products, relational composition and related
operators often leads to a state explosion even in examples with
modest model state space;

• it is apparent that some constructs of Event-B, such as closure,
set comprehension and others, are very hard to translate into
anything that would not preclude checking of interesting model
properties;

• for some language constructs, it is easier to do partial transla-
tion. That is, we choose to assume that some properties hold
without checking them to gain a performance benefit. This, for
example, happens when accessing a function - there is no check
of well-formedness of a function construct. Our intention is to
benefit for the Rodin platform static checker and theorem prover
to simplify translation by relying on the properties of a model
already demonstrated by a static checker or a theorem prover.

General scheme

Event-B SAL

Model + context Single module within a single SAL context

Events Named guarded commands in TRANSI-
TION block of a module

Event guards Transition guards

Non-
deterministic
choice (ANY)

Variable becomes a parameter of a guarded
command, the predicate becomes a part of a
guard. The event is splitted into two transi-
tions if necessary.

Invariants Constraints on variables and sets go into
type definition, remaining becomes a theo-
rem

Contexts

Carrier sets Enumerated types or arrays

Constants Constants

Named proper-
ties

Part of type definition, and guard of initial-
ization transition

Types

Basic types Subranges of equivalent SAL types. Sub-
ranging depends on model being translated
and model checking parameters.

Sets + operations Arrays of reasonable size and operations on
them

Total functions +
operations

Total functions

Partial func-
tions, injections,
surjection +
operations

Either definition in predicates or optimized
using arrays

Table 3. Translation scheme

6. Related Work

Preliminary experience with translating Event-B to Alloy is re-
ported in [22], but empirical results are not available yet. The au-
thors also encountered the problem encoding complicated expres-
sions of B in Alloy:

“Expressions are the hardest part to encode. There is not
only a myriad of complex expressions in Event-B but given
that Alloy uses only flat relations, some Event-B expres-
sions that introduce relations with nested sets generate many
(and potentially large) Alloy expressions.” [22]

Note that Daniel Jackson’s dream was to work directly in Z,
whose notation of expressions and predicates is very similar to
B, but he abandoned that goal and developed the Alloy language

23 June 2009

21

much more suitable for automated analysis.3 Hence, it is no wonder
that translating Z or B into Alloy is not trivial. The Z2SAL [10]
project has similar goal as the translation to SAL shown here. Initial
translations were not very efficient (see discussion in [20]), but
more recent translations seem to perform better.

7. Conclusion and Future Work

We presented three approaches to model check B or Event-B spec-
ifications by translating them to other formalisms. A first naı̈ve at-
tempt to use low-level methods like BDDs soon turned out to be
impractical and has no apparent advantage over using a more so-
phisticated tool.

SAL and Kodkod both are very promising. There is still room
for improvements of the translation to support more expressions
and to enhance the efficiency of the translated model. For some sce-
narios, using those translations gives us a much faster model check
than PROB currently offers. On the other hand, for some tasks the
constraint-solving approach of PROB is much more efficient (e.g.,
when working on large relations). As such, we believe there is con-
siderable advantage in trying to combine these approaches (rather
than one approach supplanting the other).

For SAL there is still the problem in translating more compli-
cated Event-B data structures efficiently. Indeed, we have found
that the SAL input language imposes a number of restrictions on
what can be translated and how it is translated. For some objects,
such as functions, the semantic gap between native Event-B for-
mulae and SAL translation makes the interpretation of SAL output
a bigger challenge than it could be. In addition, with a complex
translation one has to worry about validity of the translation rules.
As a way to overcome these limitations we are considering the pos-
sibility of translating a subset of Event-B mathematical language
directly into Yices. The resulting tool could be used to improve the
performance of PROB model checker and also to build a more ca-
pable disprover plugin [21].

References

[1] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

[2] J.-R. Abrial, M. Butler, and S. Hallerstede. An open extensible tool
environment for Event-B. In ICFEM06, LNCS 4260, pages 588–605.
Springer, 2006.

[3] Y. A. Ameur, F. Boniol, and V. Wiels, editors. ISoLA 2007, Workshop

On Leveraging Applications of Formal Methods, Verification and Vali-

dation, Poitiers-Futuroscope, France, December 12-14, 2007, volume
RNTI-SM-1 of Revue des Nouvelles Technologies de l’Information.
Cépaduès-Éditions, 2007.

[4] J. Bendisposto, M. Leuschel, O. Ligot, and M. Samia. La validation de
modèles event-b avec le plug-in prob pour rodin. Technique et Science

Informatiques, 27(8):1065–1084, 2008.

[5] E. Börger, M. Butler, J. P. Bowen, and P. Boca, editors. Abstract

State Machines, B and Z, First International Conference, ABZ 2008,

London, UK, September 16-18, 2008. Proceedings, volume 5238 of
Lecture Notes in Computer Science. Springer, 2008.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and

Computation, 98(2):142–170, Jun 1992.

[7] M. Butler and M. Leuschel. Combining CSP and B for specification
and property verification. In Proceedings of Formal Methods 2005,
LNCS 3582, pages 221–236, Newcastle upon Tyne, 2005. Springer-
Verlag.

[8] S. Das and D. L. Dill. Successive approximation of abstract transition
relations. In Proceedings of the Sixteenth Annual IEEE Symposium on

Logic in Computer Science, 2001. June 2001, Boston, USA.

3 Invited talk “Recent Advances in Alloy” at iFM 2007 in Oxford.

[9] J. Derrick, S. North, and A. J. H. Simons. Z2sal - building a model
checker for z. In Börger et al. [5], pages 280–293.

[10] J. Derrick, S. North, and T. Simons. Issues in implementing a model
checker for Z. In Z. Liu and J. He, editors, ICFEM, LNCS 4260, pages
678–696. Springer, 2006.

[11] T. Hörne and J. A. van der Poll. Planning as model checking: the per-
formance of prob vs nusmv. In R. Botha and C. Cilliers, editors, SAIC-

SIT Conf., volume 338 of ACM International Conference Proceeding

Series, pages 114–123. ACM, 2008.

[12] D. Jackson. Alloy: A lightweight object modelling notation. ACM

Transactions on Software Engineering and Methodology, 11:256–290,
2002.

[13] M. Leuschel. The high road to formal validation. In Börger et al. [5],
pages 4–23.

[14] M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, FME 2003: Formal Methods,
LNCS 2805, pages 855–874. Springer-Verlag, 2003.

[15] M. Leuschel, M. Butler, C. Spermann, and E. Turner. Symmetry
reduction for B by permutation flooding. In Proceedings B2007,
LNCS 4355, pages 79–93, Besancon, France, 2007. Springer-Verlag.

[16] M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for
the B method. STTT, 10(2):185–203, 2008.

[17] M. Leuschel, J. Falampin, F. Fritz, and D. Plagge. Automated property
verification for large scale b models. submitted, 2009.

[18] M. Leuschel and M. Fontaine. Probing the depths of CSP-M: A new
FDR-compliant validation tool. In Proceedings ICFEM 2008, LNCS,
pages 278–297. Springer-Verlag, 2008.

[19] M. Leuschel and T. Massart. Efficient approximate verification of
B via symmetry markers. In Proceedings International Symmetry

Conference, pages 71–85, Edinburgh, UK, January 2007.

[20] M. Leuschel and D. Plagge. Seven at a stroke: LTL model checking
for high-level specifications in B, Z, CSP, and more. In Ameur et al.
[3], pages 73–84.

[21] O. Ligot, J. Bendisposto, and M. Leuschel. Debugging Event-B
Models using the ProB Disprover Plug-in. Proceedings AFADL’07,
Juni 2007.

[22] P. J. Matos and J. Marques-Silva. Model checking event-b by encoding
into alloy. In Börger et al. [5], page 346.

[23] D. Plagge and M. Leuschel. Validating Z Specifications using the ProB
Animator and Model Checker. In J. Davies and J. Gibbons, editors,
Proceedings IFM 2007, LNCS 4591, pages 480–500. Springer-Verlag,
2007.

[24] The SAL website. http://sal.csl.sri.com.

[25] G. Smith and L. Wildman. Model checking Z specifications using
SAL. In ZB, pages 85–103, 2005.

[26] E. Torlak and D. Jackson. Kodkod: A relational model finder. In
O. Grumberg and M. Huth, editors, TACAS, LNCS 4424, pages 632–
647. Springer, 2007.

[27] E. Turner, M. Leuschel, C. Spermann, and M. Butler. Symmetry
reduced model checking for B. In Proceedings Symposium TASE

2007, pages 25–34, Shanghai, China, June 2007. IEEE.

[28] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In PLDI ’04: Proceed-

ings of the ACM SIGPLAN 2004 conference on Programming lan-

guage design and implementation, pages 131–144, New York, NY,
USA, 2004. ACM Press.

23 June 2009

22

Automatic Synthesis of an Efficient Algorithm for the
Similarity of Strings Problem

Luca Chiarabini
LMU Mathematisches Institut, Theresienstrasse 39, D-80333 München, Germany

chiarabi@mathematik.uni-muenchen.de

ABSTRACT
In this paper we propose a method for the automatic synthe-
sis an efficient program for the similarity of strings problem.
The synthesis is performed by the proof assistant MINLOG,
a proof assistant for the machine-extraction of realistic pro-
grams from proofs. The originality of the proposed method
rely on the fact that the extracted algorithm is in dynamic
programming style. The method we propose can not be
applied automatically to an arbitrary proof; it can be seen
more as a general schema (that has to be instantiated case
by case) to follow in order extract dynamic programs from
proofs.

1. INTRODUCTION
A widely studied problem in bioinformatic is to find the
distance between two given sequences of symbols (over an
alphabet Σ) The two main technique developed in this area
to solve this problem turned out to be the edit distance and
the similarity of strings [1].

Edit distance focus on the transformation of the first list into
the second one using a restricted set of operations (insertion
I , deletion D, matching M , and replacement R) Given two
lists we define the edit distance problem the task of finding
the minimum number of insertions, deletions and substi-
tutions operations to transform the first list to the second
one. Once the right set of basic operation is found, this is
stored in a string called edit transcript (build on the alpha-
bet I ,D,M , and R) that will constitute the output of the
problem (Figure 1, line 1).

The other way to measure the distance of lists is the so called
similarity method. The idea is based on the concept of string
alignment. Given two strings l1 and l2, an alignment of l1
and l2 is obtained inserting a new symbol “ ” (named space)
(that does not belong to Σ) into the strings l1 and l2 and
then placing the two strings one above the other, so that
every character or space in either list is opposite a unique
character or space in the other list, and no space is opposite

c©ACM, (2009). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in PUBLICATION, {VOL#,
ISS#,(DATE)} http://doi.acm.org/10.1145/{nnnnnn.nnnnnn }
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

to another space (Figure 1, lines 2,3). We indicate by (δ1, δ2)
a general alignment the lists l1 and l2. Here δ1 and δ2 are
strings over Σ ∪ { }. Afterwards the similarity between l1
and l2 is defined as the greatest E((δ1, δ2)) with E function
with values in N that associate a score to each alignment
(δ1, δ2).

1 : R I M D M D M M I

2 : v i n t n e r
3 : w r i t e r s

(1)

Figure 1: Alignment (lines 2, 3) and edit-transcript (line

1) of the strings wintner and writers. It is possible to note

how the two methods are equivalent: a mismatch in the

alignment correspond to a replacement in the edit tran-

script, a space in the alignment contained in the first

string correspond to the insertion of the opposite char-

acter in first string, and a space in the alignment con-

tained in the second string correspond to a deletion of

the opposite character in the first string.

In computational biology the similarity of l1 and l2 is ef-
ficiently solved using dynamic programming; in fact the
problem can be solved storing in a matrix M , of dimen-
sion |l1| × |l2|, the values of the similarities between all the
prefixes of length i ≤ |l1| and j ≤ |l2| of l1 and l2. This could
be seen as a sort of generalization of the Fibonacci problem
to 2-dimensions.

In this work we will formalize the similarity problem in the
proof assistant MINLOG (www.minlog-system.de). MIN-

LOG is intended to reason about computable functions of
finite type using minimal logic. A major aim of the MINLOG

project is the development of practically useful tools for the
machine-extraction of realistic programs from proofs. We
will extract, from the proof of the existence of an alignment
with highest score between two given strings the naive ex-
ponential program to compute the similarity of strings. Af-
terwards, we will propose a method to transform the given
proof into another from which it will be possible to extract
a more efficient program, in dynamic programming style.

We propose a method that we name list as memory. The
idea consist in evaluating a sufficient amount of data in ad-
vance so that the extracted algorithm gets to reuse it instead
of recomputing it each time it is needed. This is done intro-
ducing in the proof a list of ad-hoc axioms. The method we
propose can not be applied automatically to an arbitrary

23 June 2009

23

proof; it can be seen more as a general schema (that has
to be instantiated case by case) to follow in order extract
dynamic programs from proofs.

The paper is organized as follow: in section 2 we revisit
the basic logical notions regarding the program extraction
from constructive proofs, in section 3 we formalize the proof
of the existence of an alignment with highest score between
lists and we extract a program from the proof. The designed
solution enumerate all the alignments in order to find the
right one, and this generate an exponential running time
algorithm. In section 4 we present a proof transformation to
apply to the proof presented in section 3, in order to extract
an algorithm in dynamic programming style. In section 5, we
make some final considerations over the presented method
and future works.

2. MODIFIED REALIZABILITY FOR FIRST
ORDER MINIMAL LOGIC

2.1 Gödel’s T
Types are built from base types N (Naturals) , L(ρ) (lists
with elements of type ρ) and B (booleans) by function (→)
and pair (×) formation. The Terms of Gödel’s T [2] are
simply typed λ-calculus terms with pairs, projections (πi)
and constants (constructors and recursive operators for the
basic types)

Types ρ, σ ::= N |B |L(ρ) | ρ → σ | ρ × σ

Const c ::= 0N |Succ
N→N | ttB |ffB | (:)L(ρ) | ::ρ→L(ρ)→L(ρ) |

Rσ
N
|Rσ

L(ρ) |R
σ
B

Terms r, s, t ::= c |xρ|(λxρrσ)ρ→σ|(rρ→σsρ)σ |(π0tρ×σ)ρ|

(π1tρ×σ)σ | (rρ, sσ)ρ×σ

The expression (:) represents the empty list, and (a0 ::
. . . :: an :) a list with n+1 elements. We equip this calculus
with the usual conversion rules for the recursive operators,
applications and projections (Figure 2).

In the MINLOG proof assistant, extracted programs are pre-
sented in a textual style, that we briefly describe now along
with the correspondence with the above mathematical nota-
tions: in programs produced by MINLOG, tt and ff are type-
set #tt and #ff respectively; ρ × σ as (rho@@sigma), L(ρ)
as (list rho), λx.t is written as ([x]t), (Rσ

N/B/L(ρ) b s)
as (Rec (nat/bool/list rho => sigma) b s) and (π0/1e) as
(left/right e). Finally the term (Rσ

B r s)t is printed as (if

t r s).

2.2 Heyting Arithmetic
We define Heyting Arithmetic HAω for our language based
on Gödel’s T, which is finitely typed. We define negation
¬ϕ by ϕ→ ⊥.

Formulas: Atomic formulas (P~t~ρ) (P a predicate symbol,
~t, ~ρ lists of terms and types), ϕ→ ψ, ∀xρϕ, ∃xρϕ, ϕ ∧ ψ.

Derivations: By the Curry-Howard correspondence it is con-
venient to write derivations as terms: we define λ-terms Mϕ

for natural deduction proofs of formulas ϕ together with the
set OA(M) of open assumptions in M .

(ass) uϕ, OA(u)={u}
(∧+) (〈Mϕ, Nψ〉ϕ∧ψ), OA(〈M,N〉)=OA(M) ∪ OA(N)
(∧−

0) (Mϕ∧ψ0)ϕ , OA(M0)=OA(M)
(∧−

1) (Nϕ∧ψ1)ψ , OA(N1)=OA(N)
(→+) (λuϕMψ)ϕ→ψ , OA(λuM)=OA(M)\{u}
(→−) (Mϕ→ψNϕ)ψ, OA(MN)=OA(M) ∪ OA(N)

(∀+) (λxρMϕ)∀x
ρϕ, OA(λxM)=OA(M)

provided xρ 6∈ FV(ϕ), for any uϕ ∈OA(M)

(∀−) (M∀xρϕtρ)ϕ, OA(Mt)=OA(M)

Usually we will omit type and formula indices in derivations
if they are uniquely determined by the context or if they are
not relevant.

We use ∃ and ∨ in our logic, if we allow appropriate axioms
as constant derivation terms:

∃+
xρ,ϕ : ∀xρ(ϕ→ ∃xρϕ)

∃−
xρ,ϕ,ψ : ∃xρϕ→ (∀xρϕ→ ψ) → ψ with 6∈ FV (ψ)

We use the following axioms to perform proofs by induction
over naturals (N), booleans (B) and lists of elements of type
ρ (L(ρ)):

Indn,A : A[n 7→ 0] → (∀n.A→ A[n 7→ Sn]) → ∀nNA,

Indp,A : A[p 7→ tt] → A[p 7→ ff] → ∀pBA,

Indl,A : A[l 7→ nil] → (∀x, l.A→ A[l 7→ cons(x, l)]) → ∀lL(α)A

Finally we use the constant derivation term (IFϕ),

IFϕ : ∀pB(p → ϕ) → ((p → ⊥) → ϕ) → ϕ

to perform case distinction on boolean terms w.r.t. a goal
formula ϕ.

2.3 Short Excursus in Program Extraction from
Proofs

Clearly proper existence proofs have computational content.
A well-known and natural way to define this concept is the
notion of realizability, which can be seen as an incarnation of
the Brouwer-Heyting-Kolmogorov interpretation of proofs.

2.3.1 Type of a Formula
We indicate by τ (ϕ) as the type of the term (or “program”)
to be extracted from a proof of ϕ. More precisely, to every
formula ϕ is possible to assign an object τ (ϕ) (a type or the
“nulltype” symbol ε). In case τ (ϕ) = ε proofs of ϕ have no
computational content; such formulas ϕ are called Harrop
formulas.

τ (P (~x)) =



αP ifP is a predicate variable with assignedαP
ε Otherwise

τ (∃xρϕ) =



ρ if τ (ϕ) = ε
ρ× τ (ϕ) Otherwise

τ (∀xρϕ) =



ε if τ (ϕ) = ε
ρ→ τ (ϕ) Otherwise

τ (ϕ ∧ ψ) =

8

<

:

τ (ϕ) if τ (ψ) = ε
τ (ψ) if τ (ϕ) = ε
τ (ϕ) × τ (ψ) Otherwise

τ (ϕ→ ψ) =

8

<

:

τ (ψ) if τ (ϕ) = ε
ε if τ (ψ) = ε
τ (ϕ) → τ (ψ) Otherwise

23 June 2009

24

Rσ
N : σ → (N → σ → σ) → N → σ Rσ

L(ρ) : σ → (ρ→ L(ρ) → σ → σ) → L(ρ) → σ
(Rσ

N b f) 0 7−→ b (Rσ
L(ρ) b f) [] 7−→ b

(Rσ
N b f) (n+ 1) 7−→ f n ((Rσ

N b f) n) (Rσ
L(ρ) b f) (a :: l) 7−→ f l ((Rσ

L(ρ) b f) l)

Rσ
B : σ → σ → B → σ π0(r, s) −→ r

(Rσ
B r s)tt 7−→ r π1(r, s) −→ s

(Rσ
B r s)ff 7−→ s (λx.r)s −→ r[x := s]

Figure 2: Conversion rules for typed Gödel T

2.3.2 Extraction Map
From every derivation M of a computationally meaning-
ful formula ϕ (that is, τ (ϕ) 6= ε) is possible to define its
extracted program [[M]] of type τ (ϕ)[3]. If τ (ϕ) = ε then
[[M]] = ε.

[[uϕ]] = xϕu (xϕu uniquely associated with ϕ)

[[λuϕM]] =



[[M]] if τ (ϕ) = ε

λx
τ(ϕ)
u [[M]] Otherwise

[[Mϕ→ψNψ]] =



[[M]] if τ (ϕ) = ε
[[M]][[N]] Otherwise

[[〈Mϕ, Nψ〉]] =

8

<

:

[[N]] if τ (ϕ) = ε
[[M]] if τ (ψ) = ε
〈[[M]], [[N]]〉 Otherwise

[[Mϕ∧ψi]] =



[[M]] if τ (ϕ) = ε or τ (ψ) = ε
πi[[M]] if Otherwise

[[(λxρM)∀xϕ]] = λxρ[[M]]

[[M∀xϕt]] = [[M]]t

Content of the proof constants:

[[∃−
xρ,ϕ,ψ]] =



λxρfρ→τ(ψ).fx If τ (ϕ) = ε

λxρ×τ(ϕ)fρ→τ(ϕ)→τ(ψ).f(π0x)(π1x)Otherwise

[[∃+
xρ,ϕ]] =



λxρx If τ (ϕ) = ε

λxρyτ(ϕ).〈x, y〉 Otherwise

[[Indn,ϕ(n)]] = Rσ
N

[[Indl,ϕ(l)]] = Rσ
L(ρ)

[[Indt,ϕ(t)]] = Rσ
B

2.3.3 Realize a formula
Correctness of the extracted programs is guaranteed by the
notion of modified realizability. Intuitively, if t is the ex-
tracted program from the derivation M of the formula ϕ
equal to ∀x∃y.P (x, y) then for each x the formula P (x, t(x))
is provable correct (Soundness) i.e. t (modified) realize ϕ

(written (tmrϕ))

rmrP (~t) = P (~t)

rmr (∃x.ϕ) =



εmrϕ[x/r] if τ (ϕ) = ε
π1rmrϕ[x/π0r] Otherwise

rmr (∀x.ϕ) =



∀x.εmrϕ if τ (ϕ) = ε
∀x.rxmrϕ Otherwise

rmr (∃ncx.ϕ) =



∃ncx.εmrϕ if τ (ϕ) = ε
∃ncx.rmrϕ Otherwise

rmr (∀xnc.ϕ) =



∀ncx.εmrϕ if τ (ϕ) = ε
∀ncx.rmrϕ Otherwise

rmr (ϕ→ ψ) =

8

<

:

εmrϕ→ rmrψ if τ (ϕ) = ε
∀x.xmrϕ → εmrψ if τ (ϕ) 6= ε = τ (ψ)
∀x.xmrϕ → rxmrψ Otherwise

rmr (ϕ ∧ ψ) =

8

<

:

εmrϕ ∧ rmrψ if τ (ϕ) = ε
rmrϕ → εmrψ if τ (ψ) = ε
π0rmrϕ→ π1rmrψ Otherwise

Theorem 2.1 (Soundness). Let M be a derivation of
a formula ϕ from assumptions ui : ϕi. Then we can find
a derivation of the formula ([[M]] mr ϕ) from assumptions
ūi : xui

mr ϕi.

Proof. Induction on M [4].

3. FORMALIZATION OF THE SIMILARITY
PROBLEM

Let l1 and l2 be two lists built on the alphabet Σ, with Σ
equal to N>0 (the set of naturals strictly higher than zero),
0 6∈ Σ be the space character and α : N × N → Z be a
scoring function.

Given two lists l1 and l2 over Σ, in figure 3 we give an in-
ductive definition of the family of sets Al1,l2

i,j , the alignments
of the first i ≤ |l1| characters of l1 and j ≤ |l2| characters of
l2.

In figure 3 and in the rest of the paper we make use of the
following conventions: n, m, i and j ranges over N, |l| is the
length of l, l[i] is the i+ 1-th character of l, head(a :: l) = a,
tail(a :: l) = l, pren(l) is a partial operator that return the
first n elements of l, 0n is the list composed by a sequence
of n zeros, l ·g the operation of appending the list g to l and
(a1, . . . , an) is the list composed by ai ∈ N.

We associate a score to each alignment by the evaluator

23 June 2009

25

(A0)
((:), (:)) ∈ A

l1,l2
0,0

(A1)
(0j+1, prej+1(l2)) ∈ A

l1,l2
0,j+1

(A2)
(prei+1(l1), 0

i+1) ∈ A
l1,l2
i+1,0

(δ1, δ2) ∈ A
l1,l2
i+1,j

(A3)
(δ1 · (0 :), δ2 · l2[j]) ∈ A

l1,l2
i+1,j+1

(δ1, δ2) ∈ A
l1,l2
i,j+1

(A4)
(δ1 · l1[i], δ2 · (0 :)) ∈ A

l1,l2
i+1,j+1

(δ1, δ2) ∈ A
l1,l2
i,j

(A5)
(δ1 · l1[i], δ2 · l2[j]) ∈ A

l1,l2
i+1,j+1

Figure 3: Induction definition of the alignments Al1,l2
|l1|,|l2|

function E : Al1,l2
i,j → (N×N → N) → N defined on the in-

ductive structure of Al1,l2
i,j (Figure 4). The function E takes

in input an alignment, a scoring function and return the
score of the input alignment. Our goal is to find the align-
ment in Al1,l2

|l1|,|l2|
with highest score (this score will be the

similarity between l1 and l2) with respect to a given scoring
function α.

Remark Many problems can be modeled as special case of
similarity by choosing an appropriate scoring function α.
Let consider (below) the definition of the longest common
subsequence problem.

Definition 3.1. A subsequence of a string l is specified
by a list of indices i1 < i2 < . . . < ik for some k ≤ |l|. The
subsequence specified by this list is the string l[i1]l[i2] . . . l[ik]

Definition 3.2 (Longest Common SubsequenceProblem).
Given two strings l1 and l2 a common subsequence of l1 and
l2 is a sequence that appear both in l1 and l2. The Longest
Common Subsequence Problem consist in finding the longest
common subsequence between l1 and l2

For example, 145 is a common subsequence of 114666725
and 1124375 but 11475 is the longest common ones. The
solution of the longest common subsequence problem can be
obtained from the solution of the similarity of lists problem
by choosing a scoring function α that scores a “1” for each
match and “0” for each mismatch or presence of a 0 (the
result will depend by the implemented strategy to solve the
problem since there could be more alignments with the same
highest score).

Now we show formally that given a couple of lists l1, l2 over
Σ there exists always an alignment in Al1,l2

|l1|,|l2|
of maximum

score with respect to α.

Theorem 3.1.
∀l1, l2∃δ1, δ2((δ1, δ2) ∈ Al1,l2

|l1|,|l2|
)∧

∀δ′1, δ
′
2((δ

′
1, δ

′
2) ∈ Al1,l2

|l1|,|l2|
→ E(δ′1, δ

′
2) ≤ E(δ1, δ2))

Proof. We assume l1 and l2. In order to prove the thesis
we prove the following statement:

∀n,m∃δ1, δ2((δ1, δ2) ∈ Al1,l2
n,m)∧

∀δ′1, δ
′
2((δ

′
1, δ

′
2) ∈ Al1,l2

n,m) → E(δ′1, δ
′
2) ≤ E(δ1, δ2)

Obviously we obtain the thesis instantiating this assertion
on |l1| and |l2|. From now on we will write Q(δ1, δ2, n,m)
for

((δ1, δ2) ∈ Al1,l2
n,m)∧∀δ′1, δ

′
2((δ

′
1, δ

′
2) ∈ Al1,l2

n,m) → E(δ′1, δ
′
2) ≤ E(δ1, δ2)

We go by induction on n and m.
Base Case[n = 0] We prove

∀m∃δ1, δ2Q(δ1, δ2, 0,m)

by case distinction over m:

Base Case[n = 0, m = 0]: Q((:), (:), 0, 0) by rule (A0).
Induction Step[n = 0, m+ 1]
We have Q(0m+1, prem+1(l2), 0,m+ 1) by rule (A1).

Induction Step[n+ 1] We now assume

∀m∃δ1, δ2Q(δ1, δ2, n,m) (2)

and we must show

∀m∃δ1, δ2Q(δ1, δ2, n+ 1,m)

By induction over m:

Base Case[n+ 1, m = 0]
Q(pren+1(l1), 0

n+1, n+ 1, 0) by (A2)

Induction Step[n+ 1, m+ 1]: Assume

∃δ1, δ2Q(δ1, δ2, n+ 1,m) (3)

we have to prove

∃δ1, δ2Q(δ1, δ2, n+ 1, m+ 1)

By (3) there exists δ′1,δ
′
2 such that (δ′1, δ

′
2) ∈ Al1,l2

n+1,m and

such that for every (δ1, δ2) ∈ Al1,l2
n+1,m

E(δ1, δ2) ≤ E(δ′1, δ
′
2) (4)

Instantiating (2) on m + 1 there exists δ′′1 , δ
′′
2 such that

(δ′′1 , δ
′′
2) ∈ Al1,l2

n,m+1 and for every (δ1, δ2) ∈ Al1,l2
n,m+1

E(δ1, δ2) ≤ E(δ′′1 , δ
′′
2) (5)

Instantiating (2) onm there exists δ′′′1 , δ
′′′
2 such that (δ′′1 , δ

′′
2) ∈

Al1,l2
n,m and for every (δ1, δ2) ∈ Al1,l2

n,m

E(δ1, δ2) ≤ E(δ′′′1 , δ
′′′
2) (6)

Now we have to dispatch over the following cases:

ip1. E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]):

23 June 2009

26

(E0)
E[((:), (:))]α = 0

(E1)
E[(0j, prej(l2))]α =

Pj

k=1
α(0, l2[k])

(E2)
E[(prei(l1), 0

i)]α =
P

i
k=1

α(l1[k], 0)

E[(δ1, δ2)] = n
(E3)

E[(δ1 · (0 :), δ2 · l2[j])]α = n + α(0, l2[j])

E[(δ1, δ2)] = n
(E4)

E[(δ1 · l1[i], δ2 · (0 :))]α = n + α(l1[i], 0)

E[(δ1, δ2)] = n
(E5)

E[(δ1 · l1[i], δ2 · l2[j])]α = n + α(l1[i], l2[j])

Figure 4: Induction definition of the evaluator function E

Then, only 2 cases are possible:

ip1.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]):
We claim Q(δ′1 · (0 :), δ′2 · l2[m + 1], n + 1, m + 1). This is

proved dispatching over (δ1, δ2) in Al1,l2
n+1,m+1. In fact for ev-

ery (δ1, δ2) ∈ Al1,l2
n+1,m+1 only three cases are possible

ip1.1.1.(δ1, δ2) = (δ∗1 · (0 :), δ∗2 · l2[m + 1]):

E(δ1, δ2) = E(δ∗1 · (0 :), δ∗2 · l2[m+ 1])

= E(δ∗1 , δ
∗
2) + α((0 :), l2[m+ 1]) by(E3)

≤ E(δ′1, δ
′
2) + α((0 :), l2[m+ 1]) by (4)

= E(δ′1 · (0 :), δ′2 · l2[m+ 1]) by(E3)

ip1.1.2. (δ1, δ2) = (δ∗1 · l1[n + 1]), δ∗2 · (0 :)):

E [(δ1, δ2)] = E(δ∗1 · l1[n+ 1], δ∗2 · (0 :))

= E(δ∗1 , δ
∗
2) + α(l1[n+ 1], (0 :)) by(E4)

≤ E(δ′′1 , δ
′′
2) + α(l1[n+ 1], (0 :)) by (5)

= E(δ′′1 · l1[n+ 1], δ′′2 · (0 :))

≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]) by (ip1)

ip1.1.3. (δ1, δ2) = (δ∗1 · l1[n + 1]), δ∗2 · l2[m + 1]) :

E [(δ1, δ2)] = E(δ∗1 · l1[n+ 1], δ∗2 · l2[m+ 1])

= E(δ∗1 , δ
∗
2) + α(l1[n+ 1], l2[m+ 1]) by(E5)

≤ E(δ′′′1 , δ
′′′
2) + α(l1[n+ 1], l2[m+ 1]) by (6)

= E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])

≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]) by (ip1.1)

ip1.2. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′1 · (0 :), δ′2 · l2[m + 1]):
We claim Q(δ′′′1 · (l1[n+1]), δ′′′2 · l2[m+1], n+1, m+1). The
proof of this claim is done, as in the previous case, dispatch-
ing over (δ1, δ2) in Al1,l2

n+1,m+1.

ip2. E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m + 1]): Then
there exists only two cases:

ip2.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′′1 · l1[n + 1], δ′′2 · (0 :)):
We claim Q(δ′′1 · l1[n+ 1], δ′′2 · (0 :), n+ 1, m+ 1).
ip2.2. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′′1 · l1[n + 1], δ′′2 · (0 :)):
We claim Q(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1], n+ 1, m+ 1). The
proofs of the previous two claims is done dispatching over
(δ1, δ2) in Al1,l2

n+1,m+1.

The theorem 3.1 can be simply modified in order to con-
struct not only the alignment with highest score but also
the score itself (that is the similarity).

The program extracted from the previous proof is the fol-
lowing:

[l,g,alpha]
(Rec nat=>nat=>(list nat @@ list nat))
([m] if (m=0) ((:), (:))

((zeros (m+1)), (pre (m+1) g))
([n, f: (nat=>(list nat @@ list nat))]
(Rec nat=>(list nat, list nat))
((pre (n+1) l), (zeros (n+1)))
([m,(d_1’,d_2’)]
[LET (d_1’’, d_2’’) = (f (m+1)) IN
[LET (d_1’’’, d_2’’’) = (f m) IN
[IF ((E (d_1’’:+: l[n+1]) 0 alpha) <=

(E (d_1’:+: (:)) (d_2’:+: g[m+1]) alpha))
[IF ((E (d_1’’’:+: l[n+1]) (d_2’’’:+: g[m+1]) alpha)

<=(E (d_1’:+: (:)) (d_2’:+: g[m+1]) alpha))
((d_1’:+:(:)), (d_2’:+: g[m+1]))
((d_1’’’:+: l[n+1]) (d_2’’’:+: g[m+1]))]

[IF ((E (d_1’’’:+: l[n+1]) (d_2’’’:+: g[m+1]) alpha)
<=(E (d_1’’:+: l[n+1]) (d_2’’:+: (:)) alpha))

((d_1’’:+: l[n+1]) (d_2’’ :+: (:)))
((d_1’’’:+:l[n+1]) (d_2’’’:+:g[m+1]))]]]])))|l||g|

Here we indicated by (pre n) the operator pren, by (zeros

n) the string 0n, by E the function E and by alpha the
scoring function α.

Complexity of the Extracted Algorithm: The com-
plexity of the extracted program can be modeled by the
following recurrence:

T1(n,m) =



k1m n = 0
T2(m) n > 0

with

T2(m) =

8

<

:

k2n m = 0
T2(m− 1) + T1(n− 1, m)+
T1(n− 1, m− 1) + 2k3max(n+m)

m > 0

Here k1, k2, k3 are general constants and 2k3max(n +m) is
the cost for the application of the append operation in the
body of the nested recursion. The complexity of the ex-
tracted program then will be given by T1(|l1|, |l2|). Given
n > 0 and m > 0 the unfolding of T1(n,m) can be repre-
sented as a ternary tree where the lowest branch has high
m and the highest n+m. Thus the extracted programs has
a number of recursive calls in Ω(3m) ∩ Ω(3n+m).

23 June 2009

27

4. LIST AS MEMORY PARADIGM
To drastically reduce the complexity of our extracted pro-
gram, we developed a method that we named list as memory.
The idea consist in evaluating a sufficient amount of data in
advance so that the extracted algorithm gets to reuse it in-
stead of recomputing it each time it is needed.

The basic idea is still to prove Theorem3.1 by a double in-
duction (before on the length |l1| of the first list and by a
nested induction on |l2| length of the second list) but this
time using an additional data structure w, a FIFO (First In
First Out) list where we store the alignments with highest
score computed in the previous steps. The list w will be built
and updated during the proof and it will constitutes part of
the witness of the new proof together with the alignment of
highest score.

Thus assuming we want to compute the best alignment of
the first n+ 1 characters of l1 and m+ 1 character of l2, we
will assume w to be the following list of alignments:

(δ1, δ2)
l1,l2
n,m , (δ1, δ2)

l1,l2
n,m+1, . . . , (δ1, δ2)

l1,l2
n,|l2|

,

(δ1, δ2)
l1,l2
n+1,0, (δ1, δ2)

l1,l2
n+1,1, . . . , (δ1, δ2)

l1,l2
n+1,m

with (δ1, δ2)
l1,l2
i,j alignment of highest score between the first

i characters of l1 and j characters of l2. At this point the
intended alignment it will be computed considering the head
of w, (δ1, δ2)

l1,l2
n,m , the head of the tail of w, (δ1, δ2)

l1,l2
n,m+1 and

the recursive call of the nested induction on l2 (the alignment
of highest score between the first n+ 1 element of l1 and m
elements of l2, that here occur as last element in w) Once
the new alignment is computed the list w has to be properly
updated.

So in general the idea is to replace the double instantiation
of the induction hypothesis (2) in Theorem 3.1 (that corre-
spond to the two recursive calls in the extracted algorithm)
with a reading operation of the head and the head of the tail
of our memory list w.

In order to use such memory list in our proof we have to
modify in an appropriate way the original proof of the The-
orem 3.1. More precisely we introduce the predicate MEM ⊆
L(N>0) × L(N>0) × N × N × L(L(N) × L(N)) where,

• (MEM l1 l2 0 v w), stands for “in w are stored the the
v + 1 alignments (0k, prek(l2)) with k = 0, . . . v” (here
we assume 00 = (:) and pre0(l2) = (:)) and

• (MEM l1 l2 (u + 1) v w), stands for “in w are stored the
|l2| + 2 alignments of highest scores between the first
j and k characters of l1 and l2 with

(j, k) ∈ {(u, v), . . . , (u, |l2|), (u+ 1, 0), . . . , (u+ 1, v)}

and the following set of axioms specifying the necessary op-
erations to build and correctly update the memory list w:

[I](Initialization),

∀l1, l2,m,w(MEM l1 l2 0m (initml2))

with

(initml2) =



((:), (:)) m = 0
((init (m− 1)) : + : (0m, prem l2)) 0 < m

[H] (Head of the list):

∀l!, l2, n,m,w(MEM l1 l2 (n+ 1)mw) →
Q(π0(headw), π1(headw), n,m)

[HT] (Head of the tail):

∀l!, l2, n,m,w(m < |l2|) → (MEM l1 l2 (n+ 1)mw) →
Q(π0(head(tailw)), π1(head(tailw)), n,m+ 1)

[CL] (Change Line):

∀l1, l2, n,m,w(MEM l1 l2 n |l2|w) →
(MEM l1 l2 (n+ 1) 0 ((tailw) : + : ((pren+1 l1), 0

n+1))

[OSOR1] (One Step On the Right 1):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|) → (Qδ′1 δ

′
2 nm) →

(MEM l1 l2 nmw) →
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1])) →
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) ≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1])) →
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′1 · (0 :), δ′2 · l2[m+ 1])))

with (δ′′′1 , δ
′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).

[OSOR2] (One Step On the Right 2):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|) → (Qδ′1 δ

′
2 nm) →

(MEM l1 l2 nmw) →
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1])) →
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) � E(δ′1 · (0 :), δ′2 · l2[m+ 1])) →
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])))

with (δ′′′1 , δ
′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).

[OSOR3] (One Step On the Right 3):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|) → (Qδ′1 δ

′
2 nm) →

(MEM l1 l2 nmw) →
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m+ 1])) →
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) ≤ (δ′′1 · l1[n+ 1], δ′′2 · (0 :))) →
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′1 · l1[n+ 1], δ′′2 · (0 :))))

with (δ′′′1 , δ
′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).

[OSOR4] (One Step On the Right 4):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|) → (Qδ′1 δ

′
2 nm) →

(MEM l1 l2 nmw) →
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m+ 1])) →
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) � (δ′′1 · l1[n+ 1], δ′′2 · (0 :))) →
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])))

with (δ′′′1 , δ
′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).

Theorem 4.1. [I] → [CL] → [H] → [HT] → [OSOR1] →
[OSOR2] → [OSOR3] → [OSOR4] → ∀l1, l2(∃δ1, δ2(δ1, δ2) ∈

Al1,l2
|l1|,|l2|

∧∀δ′1, δ
′
2((δ

′
1, δ

′
2) ∈ Al1,l2

|l1|,|l2|
→ E(δ′1, δ

′
2) ≤ E(δ1, δ2)))∧

23 June 2009

28

∃w(MEM l1 l2 |l1| |l2|w)

Proof Sketch. Assume [I], [CL], [H], [HT], [OSOR1],
[OSOR2], [OSOR3], [OSOR4] l1 and l2. In order to prove
the thesis we prove the following assertion:
∀n,m(∃δ1, δ2(δ1, δ2) ∈ Al1,l2

n,m ∧
∀δ′1, δ

′
2(δ

′
1, δ

′
2) ∈ Al1,l2

n,m → E(δ′1, δ
′
2) ≤ E(δ1, δ2))∧

∃w(MEM l1 l2 nmw)

By induction on n and m.
Base Case[n = 0] We prove

∀m∃δ1, δ2Q(δ1, δ2, 0, m) ∧ ∃w(MEM l1 l2 0mw)

by case distinction over m:
Base Case[n = 0, m = 0]
Q((:), (:), 0, 0) ∧ ∃w(MEM l1 l2 0 0 (init 0 l2))) by rule (A0) and
[I].
Induction Step[n = 0, m+ 1]
We have Q(0m+1, prem+1(l2), 0, m+ 1) ∧
∃w(MEM l1 l2 0 (m+ 1) (init (m+ 1) l2)) by rule (A1) and [I].

Induction Step[n+ 1]
We now assume

∀m∃δ1, δ2Q(δ1, δ2, n,m) ∧ ∃w(MEM l1 l2 nmw) (7)

and we show

∀m∃δ1, δ2Q(δ1, δ2, n+ 1, m) ∧ ∃w(MEM l1 l2 (n+ 1)mw)

By induction over m:

Base Case[n + 1, m = 0] Q(pren+1(l1), 0
n+1, n + 1, 0) by

(A2). Then instantiating (7) on |l2| we have w such that
∃w(MEM l1 l2 n |l2|w) and by [CL] we have (MEM l1 l2 (n +
1) 0 ((tailw) · ((pren+1 l1), 0

n+1)).

Induction Step[n+ 1, m+ 1] Assume

∃δ1, δ2Q(δ1, δ2, n+ 1, m) ∧ ∃w(MEM l1 l2 (n+ 1)mw) (8)

we prove

∃δ1, δ2Q(δ1, δ2, n+1, m+1)∧∃w(MEM l1 l2 (n+1) (m+1)w)

By (8) there exists δ′1,δ
′
2 such that (δ′1, δ

′
2) ∈ Al1,l2

n+1,m and

such that for every (δ1, δ2) ∈ Al1,l2
n+1,m

E(δ1, δ2) ≤ E(δ′1, δ
′
2) (9)

By (8) let w be such that (MEM l1 l2 (n+1)mw). By [HT], we

have that (δ′′1 , δ
′′
2) ∈ Al1,l2

n,m+1 and for every (δ1, δ2) ∈ Al1,l2
n,m+1

E(δ1, δ2) ≤ E(δ′′1 , δ
′′
2) (10)

with (δ′′1 , δ
′′
2) = (head(tailw)).

By [H] we have that that (δ′′′1 , δ
′′′
2) ∈ Al1,l2

n,m and for every

(δ1, δ2) ∈ Al1,l2
n,m

E(δ1, δ2) ≤ E(δ′′′1 , δ
′′′
2) (11)

with (δ′′1 , δ
′′
2) = (headw). Now we have to dispatch over the

following cases:

ip1.E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]): Then,
only 2 cases are possible:

ip1.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]):

We claim

Q(δ′1 · (0 :), δ′2 · l2[m+ 1], n+ 1, m+ 1)

and

(MEM l1 l2 n (m+ 1) ((tailw) · (δ′1 · (0 :), δ′2 · l2[m+ 1])))

This is proved dispatching over (δ1, δ2) in Al1,l2
n+1,m+1 and by

[OSOR1], ip1 and ip1.1.

ip1.2. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′1 · (0 :), δ′2 · l2[m + 1]):

We claim

Q(δ′′′1 · (l1[n+ 1]), δ′′′2 · l2[m+ 1], n+ 1, m+ 1)

and

(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])))

This is proved dispatching over (δ1, δ2) in Al1,l2
n+1,m+1 and by

[OSOR2], ip1 and ip1.2

ip2. E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m + 1]):Then
there exists only two cases:

ip2.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′′1 · l1[n + 1], δ′′2 · (0 :)):
We claim

Q(δ′′1 · l1[n+ 1], δ′′2 · (0 :), n+ 1, m+ 1)

and

(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′1 · l1[n+ 1], δ′′2 · (0 :)))

Proved dispatching over (δ1, δ2) in Al1,l2
n+1,m+1 and by [OSOR3],

ip2 and ip2.1

ip2.2. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′′1 · l1[n + 1], δ′′2 · (0 :)):
We claim

Q(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1], n+ 1, m+ 1)

and

(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]))

Proved dispatching over (δ1, δ2) in Al1,l2
n+1,m+1 and by proved

by [OSOR4], ip2 and ip2.2

From the previous proof we can extract the following pro-
gram:

[l,g,alpha]
(Rec nat=>nat=>((list nat@@list nat)@@

(list(list nat@@list nat))
([m] [if (m=0)

(((:),(:)) , ((:),(:)))
(((nZeros (m+1)), (nPrefix (m+1) g)),(init (m+1) g)

([n,f:(nat=>((list nat@@list nat)@@
(list(list nat@@list nat)))]

(Rec nat=>((list nat@@list nat)@@
(list(list nat@@list nat)))

LET w = (f |g|) IN
(((nPrefix (n+1) l), (nZeros (n+1))) ,

((tail w):+:((nPrefix (n+1) l),(nZeros(n+1)))))
([m,((d_1’,d_2’),w)]

23 June 2009

29

[LET (d_1’’, d_2’’) = (head (tail w)) IN
[LET (d_1’’’, d_2’’’) = (head w) IN

[IF((E (d_1’’:+: l[n+1]) 0 alpha) <=
(E (d_1’:+: (:)) (d_2’:+: g[m+1]) alpha))

[IF((E(d_1’’’:+: l[n+1])(d_2’’’:+: g[m+1])alpha)
<=(E (d_1’:+: (:))(d_2’:+: g[m+1]) alpha))

(((d_1’:+:(:)),(d_2’:+:g[m+1])),
((tail w):+:(d_1’:+:(:)),(d_2’:+:g[m+1])))

(((d_1’’’:+: l[n+1])(d_2’’’:+:g[m+1])),
((tail w):+:(d_1’’’:+: l[n+1])(d_2’’’:+:g[m+1])))]

[IF((E(d_1’’’:+: l[n+1]) (d_2’’’:+: g[m+1])alpha)
<= (E(d_1’’:+:l[n+1]) (d_2’’:+: (:))alpha))

(((d_1’’:+: l[n+1])(d_2’’ :+: (:))),
((tail w):+:((d_1’’:+: l[n+1]) (d_2’’:+:(:)))))

(((d_1’’’:+: l[n+1]) (d_2’’’:+: g[m+1])),
((tail w):+:((d_1’’’:+:l[n+1]) (d_2’’’:+:g[m+1]))))

]]]])))|l| |g|

4.0.4 Complexity Considerations
The complexity of the extracted program can be modeled
by the following recurrence (here we have as additional pa-
rameter the length of g):

T1(n,m) =



k1m n = 0
T2(n,m) n > 0

with

T2(n,m) =



T1(n− 1, |g|) m = 0
T2(n,m− 1) + 2k2max(n+m) m > 0

Here k1 and k2 are general constants. Given |l| > 0 and
|g| > 0 the unfolding of T1(|l|, |g|) can be represented by the
following |l| × |g| matrix of list of calls:

T1(|l|, |g|) → T2(|l|, |g|) → . . . → T2(|l|, 0)
→ T1(|l|−1, |g|) → T2(|l| − 1, |g|) → . . . → T2(|l| − 1, 0)

...
→ T1(1, |g|) → T2(1, |g|) → . . . → T2(1, 0)

and being the complexity of each call 2k2max(|l| + |g|) then
T1(|l|, |g|) is in O(|l||g|max(|l| + |g|))

5. CONCLUSIONS
With an opportune modification of the alignment definition
in Figure 3 we can avoid the cost relative to the applica-
tions of the append function. In this way, the extracted
program from the efficient implementation of the existence
of an alignment with highest score will have a complexity in
O(|l||g|). Future work will regards a sort of automation of
the presented method.

6. REFERENCES
[1] Dan Gusfield. Algorithms on Strings, Tree and

Sequences. Cambridge University Press, 1997.

[2] M.H. Sørensen and P.Urzyczyn. Lectures on the
Curry-Howard Isomorphism, volume 149 of Studies in
Logic and the Foundations of Mathematics. Elsevier,
2006.

[3] G. Kreisel. Interpretation of Analysis by means of
Functionals of Finite Type. In A. Heyting, editor,
Constructivity in Mathematics, 1959.

[4] Helmut Schwichtenberg. Minimal logic for computable
functionals. February 2008.

23 June 2009

30

Model-Checking Modulo Theories at Work:
the integration of Yices in MCMT

Silvio Ghilardi
Dipartimento di Scienze dell’Informazione

Università degli Studi di Milano

ghilardi@dsi.unimi.it

Silvio Ranise
Dipartimento di Informatica

Università degli Studi di Verona

silvio.ranise@univr.it

ABSTRACT
Recently, the notion of an array-based system has been in-
troduced as an abstraction of infinite state systems (such
as parametrised systems) which allows for model checking
safety properties by SMT solving. Unfortunately, the use
of quantified first-order formulae to describe sets of states
makes checking for fix-point and unsafety extremely expen-
sive. In this paper, we describe (static and dynamic) tech-
niques to overcome this problem which have been imple-
mented in the (declarative) model checker mcmt. We de-
scribe how such techniques have been combined with Yices
(the back-end SMT solver) and discuss some interesting ex-
perimental results.

Keywords
Declarative model checking, Backward reachability, SMT,
Yices

1. INTRODUCTION
Safety properties for classes of infinite state systems can be
checked by a (backward) reachability analysis, i.e. repeat-
edly computing the pre-image of the set of unsafe states
(obtained by complementing the property to be verified)
and checking for fix-point and emptiness of the intersection
with the set of initial states. This analysis is a decision
procedure for some classes of parametrised systems [1], i.e.
systems consisting of a finite (but unknown) number n of
identical processes which can be modelled as extended fi-
nite state automata, manipulating variables whose domains
can be unbounded, like integers. The challenge is to verify
properties for any number n of processes.

Backward reachability analysis is parametrised with respect
to the topology of the parametrised system and the domains
of the variables manipulated by each process in the system.
Sometimes, the topology of the system can be safely ab-
stracted away (e.g., by counting abstraction [7]) so as to ob-
tain a guarded transition systems where only numeric vari-

ables are used. Systems based on constraint solving tech-
niques capable of handling this kind of transition systems
have been successful for some classes of systems (see, e.g.,
again [7]). However, for many parametrised, counting ab-
stractions are not precise and spurious counter-examples are
introduced. To overcome this problem, there have been at-
tempts at designing ‘topology-aware’ backward reachability
analyses (see, e.g., [2, 3, 4]). Usually, these approaches en-
codes the topology in a suitable data-structure which allows
for the finite representation of an infinite set of states of the
parametrised systems while the data manipulated by each
process in the system are handled declaratively by (numeri-
cal) constraints. These approaches are hybrid as they exploit
both dedicated data structures and (declarative) constraints
to represent the infinite sets of states of the system. This
implies that the computation of the pre-image also requires
manipulations of constraint expressions for the data vari-
ables and of the structure encoding the topology of the sys-
tem. So, while manipulations on constraints depends only
on very general properties of the constraint structure itself
and can thus be re-used without much effort, this is not
the case for the topology which is represented by ad hoc

data structures. In fact, every time the topology changes,
the computation of the pre-image must be designed from
scratch and the requirements ensuring the termination of
the backward analysis must be checked; e.g., the existence
of a suitable pre-order (i.e. it is a reflexive and transitive
binary relation) on configurations which finitely represent
infinite set of states (see [1] for details).

In [9], to overcome all these problems and obtain a fully
declarative approach to backward reachability of infinite state
systems, we proposed the notion of array-based systems as
a suitable abstraction for parametrised systems as well as
sequential programs manipulating arrays, or lossy channel
systems. The idea is to use classes of first-order formulae
to represent an infinite set of states of the system so as to
simplify the computation of pre-images. As it is standard
in deductive verification of software, arrays are modelled by
functions. In this framework, both the topology and the
data manipulated by the systems are specified by using a
suitable class of first-order structures, which is modularly
and uniformly obtained by combining a class of structures
for the topology and one for the data via the functions rep-
resenting arrays. More precisely, both the topology and the
data of the system are specified by first-order theories, which
are pairs formed by a (first-order) language and a class of
(first-order) structures. In this way, the union of the lan-

23 June 2009

31

guages augmented with the function symbols representing
arrays yields the language of the formulae representing the
states of the system.

In order to mechanize the backward reachability analysis us-
ing formulae to represent states, three requirements must be
satisfied. First, the class of formulae used to represent states
must be closed under pre-image computation. Second, the
tests for fix-point and safety should be reduced to decidable
logical problems. Third, sufficient conditions on the theories
specifying the topology and the data must be identified so as
to guarantee termination of the backward reachability anal-
ysis. All these requirements have been investigated in our
previous works [9, 12] and the interested is pointed to those
papers for details. In particular, we recall that the compu-
tation of the pre-image for the class of guarded assignment
systems consists of simple manipulations of formulae and
that it is straightforward to show closure under pre-image
computation [12]. We also recall how it is possible to reduce
the checks for fix-point and safety to Satisfiability problems
Modulo the Theories (SMT) for the topology and the data
of the system of first-order formulae containing (universal)
quantifiers. Under suitable hypotheses on the theories, this
SMT problem turns out to be decidable [9, 12]. However,
this is not yet enough to ensure the termination of the back-
ward reachability analysis: in [9], we showed how to intro-
duce a pre-order on the set of configurations of the system
and observed that termination is achieved when such a pre-
order is a well-quasi-order1 (this is the case, among others,
of broadcast protocols and lossy channels systems).

In this paper, we focus on the pragmatics of our approach
and discuss techniques that allowed us to implement a pro-
totype tool, called mcmt,2 which proved to be competitive
with the state-of-the-art model checker (for parametrised
systems) PFS [2]. The crucial problem is solving the SMT
problem for fix-point and safety checking, because it is re-
quired to be able to handle quantified formulae which makes
the off-the-shelf use of SMT solvers problematic. In fact,
even when using classes of formulae with decidable satisfia-
bility problem, currently available SMT solvers are not yet
mature enough to efficiently discharge formulae containing
(universal) quantifiers, despite the fact that this problem
has recently attracted a lot of efforts (see, e.g., [6, 8, 5]). To
alleviate this problem, we have designed a general decision
procedure for the class of formulae satisfying the require-
ments above, based on quantifier instantiation and SMT
solving [9]. Unfortunately, the number of instances required
by the instantiation algorithm is still very large and prelim-
inary experiments have shown poor performances. This fact
together with the observation that the size of the formu-
lae generated by the backward search algorithm grows very
quickly demand a principled approach to the pragmatics of
efficiently integrating SMT solvers in backward analysis.

More precisely, we describe instance reduction heuristics which
allows us to reduce the number of instances to be considered
for the tests of fix-point and non-empty intersection with the

1A well-quasi-ordering ≤ on a set X is a quasi-ordering (i.e.,
a reflexive, and transitive binary relation) such that any
infinite sequence of elements x0, x1, x2, ... from X contains
an increasing pair xi ≤ xj with i < j.
2http://homes.dsi.unimi.it/~ghilardi/mcmt

initial set of states. We consider two types of techniques:
static and dynamic. We illustrate the former by showing
how a careful classification of the transitions based on their
shape allows us to reduce the number of (universally) quan-
tified variables and consequently also the number of their
instances. For dynamic instance reduction techniques, we
will see how to filter instances of formulae which cannot
contribute to show unsatisfiability by (computationally in-
expensive) reasoning modulo certain theories of enumerated

data-types. We also describe that during the exploration
of the symbolic state space by backward reachability, we
have observed a sort of “locality principle” for fix-point test-
ing whereby using the more recently visited formulae rep-
resenting the set of backward reachable states has proved
to detect unsatisfiability earlier; we call this chronological

fix-point checking.

Finally, we describe the general architecture of our model-
checker and its main loop while emphasizing the central role
played by the SMT solver Yices;3 and discuss some experi-
mental results about a heuristics that we have implemented
in the latest release of the tool.

2. ARRAY-BASED SYSTEMS AND MCMT

To make the paper self-contained, we briefly recall the no-
tion of array-based system and related safety problem. The
basic ingredients of an array based system are a theory TI

(with related signature ΣI) for describing the topology of
a system (i.e. TI is a theory specifying the structure of the
identifiers, also called indexes in the following, of processes
in a parametrized system) and another theory TE (with
related possibly multi-sorted signature ΣE) for describing
data (i.e. numerical values, program counter locations, etc.);
the array-based system has array variables a, b, . . . for local
data: these are function variables having the index sort as
source sort and some data sort as target sort. For example,
to specify a system which requires only to identify processes
by their identifiers, TI will be the theory of equality (without
functions); to state that processes are arranged in a linear
array, TI is the theory of linear orders whose signature con-
sists just of a binary relation < which allows one to locate
processes ‘on the left’ or ‘on the right’ of a given process. In-
deed, most available SMT solvers provide support for these
theories: the former can be handled by using (part of) a
congruence closure algorithm while the latter by using (part
of) a decision procedure for Linear Arithmetics. Since it
is more common to use constraints to handle the content of
data variables, we only mention that SMT solvers (and Yices
in particular) offer support for several instances of TE . In
particular, the theory of enumerated datatype (i.e. the the-
ory whose signature consists of only a finite set of constants
which are constrained to be pairwise distinct and to name
all the elements in the domain of any structure in the class
of models) is particularly useful to model control locations,
i.e. the states of the extended automaton representing the
processes in the system.

Once TI and TE are fixed, we consider the tuple of function
symbols representing all array variables manipulated by the
system. For simplicity, here, we consider array-based system
with only one array variable a. Then, the specification of

3http://yices.csl.sri.com

23 June 2009

32

an array-based system consists of a formula I(a) describing
the initial sets of states and a transition formula τ(a, a′)
relating actual a and updated a′ array variables. A safety or
reachability problem for the array based system S = (a, I, τ)
is a formula U(a) specifying a set of states the system should
not be able to reach starting from a state in I and firing τ
finitely many times.

Formulae I, τ, U are subject to some syntactic restrictions [9,
12, 11] that guarantee that all safety and fix-point tests
needed for a standard backward reachability analysis [1] can
be reduced to quantifier-free SMT problems (modulo TI and
TE) by instantiation, i.e. to the kind of tests that can be ef-
ficiently handled by state-of-the-art SMT solvers like Yices.
In the following, we use two classes of formulae to describe
states: primitive differentiated and ∀I -formulae. The for-
mer is used to describe sets of unsafe state and consists of
the existential closure of conjunctions of literals containing
all the literals needed to say that quantified variables range
over distinct indexes (see [11] for details). The following is
an example of primitive differentiated formula:

∃x, y.(x 6= y ∧ a[x] =q2 ∧ a[y] =q2)

saying that there exists two distinct processes in the system,
identified by the identifiers x and y (which are constrained to
be distinct by the literal x 6= y) such that the control location
of the processes x and y is q2 (so, if q2 identifies the critical
section, then the formula above specifies the violation of
mutual exclusion). In other words, the formula describes
all the configurations of the system where there exists two
distinct processes which are both in control location q2.

The class of ∀I -formulae is used to describe the set of initial
states or invariants of the system. For example, to say that
all processes initially are in control location q0, it is possible
to use the formula: ∀x.a[x] =q0. Another example is the
negation of the primitive differentiated formula above, i.e.

∀x, y.((a[x] =q2 ∧ a[y] =q2)⇒ x = y)

describing the set of states of the system satisfying mutual
exclusion.

For transition formulae τ(a, a′), we use formulae that corre-
spond to guarded assignment systems. An example of such
formulae is the following:

∃x.(a[x] =q2 ∧ ∀j.a
′[j] = if j = x then q3 else q0),

where the first conjunct is the guard and the second is the
update. Notice that the update can be seen to model a
broadcast action in a parametrised system: a process x

which is in the control location q2 moves to q3 while all
the other processes react by going to control location q0.

2.1 An example specification in mcmt

To illustrate how to work with mcmt, we consider the ver-
ification of the key safety property of a protocol used to
maintain coherence in a system with multiple (local) caches
as used, for example, in commercial multiprocessor systems.
In the following, we specify the Illinois cache coherence pro-
tocol (see, e.g., [7] for details) as an array-based system in
mcmt.4 Each cache in the protocol may have four possible
4The file containing the complete specification of this ex-
ample (with many others) is available from http://homes.

control locations: invalid, dirty, shared, or exclusive.
This is specified to mcmt by the following declarations:5

:smt (define-type locations (subrange 1 4))

The keyword :smt tells the model checker that what follows
is a Yices expression and should be added to the current
context of Yices. In this case, we introduce the new type
symbol locations in the current Yices context whose val-
ues may range over the set of integers {1, 2, 3, 4}; where 1

encodes invalid, 2 encodes dirty, etc. If we use integers
to identify the different copies of a cache, the state of the
Illinois protocol can be naturally represented by an array
mapping a finite sub-set of the integers to locations. This is
declared as follows:

:local a locations

where the keyword :local tells mcmt that a is an array
variable whose indexes are a finite sub-set of the integers
and whose elements must be of type locations. This decla-
ration also implicitly defines the theory TE of the elements
stored in the array as the theory of an enumerated data-type
containing four distinct elements, identified by the numerals
from 1 to 4. At the beginning, all the caches in the Illi-
nois cache coherence protocol are in the state invalid. The
corresponding declaration in mcmt is the following:

:initial

:var x

:cnj (= a[x] 1)

The keyword :initial indicates that we are going to spec-
ify the set of initial states, :var specifies which (implicitly
universally quantified) variable is allowed to occur in the for-
mula, and :cnj says that the space separated list of formulae
(in Yices syntax) is intended to be read conjunctively. The
elements of the array variable a are accessed by using square
brackets as in C: this is a peculiarity of the mcmt syntax.
The logical reading of the piece of specification above is the
following formula: ∀x.a[x] = 1, where x is a variable of type
int.

The negation of cache coherence (describing the set of unsafe
states) is that there should not be any two local caches in
dirty or one cache in dirty and another one in shared.
This is specified in mcmt as follows:

:unsafe

:var x

:var y

:cnj (= a[x] 2) (> a[y] 1) (< a[y] 4)

dsi.unimi.it/~ghilardi/mcmt.
5The syntax of mcmt includes a sub-set of Yices syntax.
Roughly, the rule is that all the keywords starting with a
semicolon are specific to the model checker while the re-
maining should be valid expressions of the input language
of Yices.

23 June 2009

33

Indeed, the keyword :unsafe tells the tool that we are going
to specify the set of unsafe states, the two :var’s introduce
the (implicitly existentially quantified) variables which are
allowed to occur in the formula, and furthermore the two
variables are assumed to be mapped to two distinct integers
(this is because, when describing sets of states, mcmt uses
primitive differentiated formulae.The logical reading of this
piece of specification is thus the following:

∃x, y.(x 6= y ∧ a[x] = 2 ∧ a[y] > 1 ∧ a[y] < 4).

Notice that by using integers to encode locations, we are able
to avoid the explicit use of disjunction as a[y] > 1∧ a[y] < 4

is logically equivalent to a[y] = 2 ∨ a[y] = 3.

The full specification of the Illinois protocol requires eleven
transitions to be specified [7]. For lack of space, we just give
two of them:

:comment t1

:transition

:var x

:var j

:guard (= a[x] 1)

:numcases 2

:case (= x j)

:val 2

:case (not (= x j))

:val 1

:comment t2

:transition

:var x

:var j

:guard (= a[x] 2)

:numcases 2

:case (= x j)

:val 1

:case (not (= x j))

:val a[j]

The transition on the left is a (so-called) ‘write miss,’ i.e. one
cache (identified by x) gets an exclusive copy of the data and
it moves to the control location dirty if it was invalid,
whereas all others (identified by j) go to invalid. The
logical reading of this piece of specification is the following:

∃x.

„

a[x] = 1 ∧
∀j.a[j] =(if x = j then 2 else 1)

«

,

where a[x] = 1 is called a guard (cf. the keyword :guard)
and ∀j.a[j] =(if x = j then 2 else 1) is called a case-defined

function update (cf. the keyword :case). The values stored
in the elements of the array a after the execution of the tran-
sition are specified after the keyword :val. (If there is more
than one array variable, for each case of the function, the
user is supposed to specify the values of each array variable,
according to the order in which they were declared at the
beginning of the input file.) In its current release, mcmt sup-
ports case-defined functions with at most 20 cases, specified
by the :numcases keyword above. According to the logical
reading, the variable x is implicitly existentially quantified
while the variable j is implicitly universally quantified. And
this is so, despite the fact that the two variables are intro-
duced by the same keyword :var. To clarify this point, we
must say that, in mcmt, transitions may have at most two
existentially quantified variables and one universally quan-
tified variable: the former are assumed to have x and y as
identifiers while the latter to have j as identifier. This rigid
convention is to simplify parsing as much as possible and it
will be relaxed in future releases of the tool.

The transition on the right is called a ‘replacement,’ accord-
ing to which the content of a dirty cache is written in the
main memory: the cache gets invalidated, whereas the re-
maining ones maintain their status. The logical reading of

the transition on the right is given by following formula:

∃x.

„

a[x] = 2 ∧
∀j.a[j] =(if x = j then 1 else a[j])

«

.

Since to specify the initial and final set of states, and all the
transitions (also those not shown above), we have used only
the equality symbol, the theory TI over the indexes can be
assumed to be the theory of equality. This is a declarative
specification of the topology assumed by the cache coher-
ence protocols to ensure the coherence property. In general,
it is possible to characterize several different topologies for a
distributed system by choosing a suitable theory TI , such as
the theory of linear orders for linearly ordered collections of
processes, the theory of trees or graphs for the corresponding
topologies. mcmt supports the declarative specifications of
several different background theories both by using the :smt
directive—as explained above—to enrich the Yices context
with new type declarations and the keyword :system_axiom

that allows one to extend the context with axioms concern-
ing certain predicate symbols playing the role, for example,
of recognizers for trees or graphs.

Two remarks are in order. First, because of the declarative
approach underlying mcmt, alternative specifications of the
same cache coherence protocol can be fed to the system. For
example, those obtained by using counting abstraction [7]
are easy to formalize in mcmt and Yices gives support to
handle the resulting SMT problems which are modulo the
theory of Linear Arithmetics. In the case of the Illinois
protocol considered above, its counting abstraction is easily
handled by mcmt. For details on the performances on this
and other specifications, the reader is referred to Section 3.
The second remark is about the input specification language
of mcmt which is quite difficult to understand by humans.
However, this should not be regarded as a drawback since
the language has been designed for ease of parsing or as a tar-
get language of translators from richer and human-friendly
specification languages.

2.2 More specification constructs
We consider here a couple of interesting constructs of mcmt

specification language not exemplified by the (partial) spec-
ifications of the Illinois protocol given above.

Shared variables. An important mechanism to propagate
information in distributed systems is to have shared vari-
ables that processes can read or update. In mcmt, it is
possible to declare every such variable, say g, as follows:

:global g int

which means that g can be seen as a (single) integer variable.
However, the system requires to dereference its value as a
‘standard’ array variable (declared by :local) such that

∀x, y.g[x] = g[y], (1)

i.e. g stores the same value in every one of its cells. In other
words, every process in the system has a local copy of the
shared variable whose value is identical to the value of the
local copies of all the other processes. Indeed, transitions

23 June 2009

34

must be designed in such a way to ensure that processes
always have an identical copy of the same value. Internally,
the tool exploits the information contained in the :global

declaration by asserting the invariant (1) in the current Yices
context.

Universal guards. In the two transitions of the (original)
specification of the Illinois protocol, we have encountered
only existential conditions, specified by the keyword :guard.
However, there are other transitions of the protocol for which
universal (also called, global) conditions are required. In
general, this kind of transitions turns out to be useful for
specifying some class of parametrised systems, i.e. distributed
systems consisting of a finite collection of processes (see [13]
for examples of this). To illustrate the notion of universal
condition, consider a guard saying that a process i can ex-
ecute a transition if a certain condition is satisfied by all

processes j 6= i. mcmt supports also this kind of condition
by the keyword :uguard. Internally, the tool automatically
translates such universal guards into existential ones by re-
casting the parametrised system under consideration in the
so-called stopping failures model [13], which is quite close
to the approximate model of [3, 2]. The key property of
a parametrized system modelled according to the stopping
failures model is that processes may fail without warning
at any time. To formalize this, we add qcrash to the set of
control locations of each process in the system and a set of
transitions saying that it is always possible to go from any
control location to qcrash, for any process. Using qcrash it is
possible to transform a universal into an existential guard at
the expense of introducing more runs in the systems, thereby
preserving safety and even some liveness properties such as
recurrence (in practice, the system provides“real” safety cer-
tifications, but it can—quite rarely—give spurious traces of
unsafety). To illustrate, consider the universal guard saying
that a process i can execute a transition if a certain predicate
C is satisfied by all processes j 6= i. In the stopping failures
model, this can be expressed without the universal quantifi-
cation as follows: the process i takes the transition without
checking the predicate C and, concurrently, all processes
j 6= i not satisfying C move to the location qcrash; more-
over, all processes j 6= i satisfying C behave as originally
prescribed. For more details on this issue, the interested
reader is pointed to [12, 10].

3. ANATOMY OF MCMT

To solve safety problems, mcmt uses a refinement of ‘back-
ward reachability analysis’ (see, e.g., [1]). This procedure re-
peatedly computes the pre-images of the set of unsafe states.
The key peculiarity of mcmt—as anticipated by the spec-
ification of the Illinois protocol in the previous section—is
the use of a completely declarative approach where (a) both
the topology of and the elements manipulated by distributed
systems are formalized by (first-order) theories, (b) sets of
states are described by (a certain class of) logical formulae,
namely disjunctions of primitive differentiated formulae, and
(c) transitions are also described by (a certain class of) logi-
cal formulae, corresponding to guarded assignment systems.
There are two main crucial consequences of this approach.
First, let a be the array state variables of the system, K(a)
be a primitive differentiated formula describing the set of
reachable states, and τ(a, a′) be the formula describing one

of the transitions in the system (representing a guarded as-
signment); the computation of the pre-image Pre(τ,K) of
K(a) with respect to τ(a, a′) is greatly simplified. In fact,
it is possible to show [12] that Pre(τ,K), i.e.

∃a′.(τ(a, a′) ∧K(a′))

is logically equivalent to a disjunction of primitive differen-
tiated formulae. The second important consequence of the
declarative approach underlying mcmt is that checking for
fix-point and intersection with the set of initial states can
be reduced to a satisfiability problem modulo the combined
theories TI and TE which are “connected” by the array a.
The formulae to be checked for satisfiability are of the form
∃i∀jψ(i, j, a[i], a[j]), where i, j are tuples of index variables
and ψ is a quantifier free formula (notice that such formulae
contain universally quantified variables in j and the existen-
tially quantified variables in i may be regarded as Skolem
constants). Under suitable hypotheses on TI and TE , it
can be shown that the satisfiability of these formulae is de-
cidable [9]. The proof of the decidability result suggests a
two-phase procedure: (1) instantiate the universally quanti-
fied j to the Skolem constants i in all possible ways and (2)
check the satisfiability of the resulting quantifier-free for-
mulae modulo the theory obtained by the combination of
TI and TE . Indeed, for efficiency, the two phases should
be interleaved, the check for satisfiability can be done in-
crementally, and the satisfiability in the combination of TI

and TE can be solved by using standard combination meth-
ods readily available in state-of-the-art SMT solvers. The
instantiation phase is one of the main bottle-necks of the
system and many of the heuristics implemented in mcmt

have been developed to reduce the number of instantiations
to be considered.

The main modules of mcmt and their connections are de-
picted in Figure 1(a) while its main loop can found in Fig-
ure 1(b). Notice the key role played by Yices (cf. Fig-
ure 1(a)), as (almost) all modules in the system invoke the
available SMT solver. The integration of Yices in our model
checker has been greatly simplified by the availability of the
lightweight API. Particularly crucial to efficiently handle the
SMT problems of quantified formulae for fix-point and safety
checks is the incrementality of satisfiability checks so that
the quantifier-free instances are incrementally added and un-
satisfiability is reported as soon as possible. A nice set of
interface functionalities is still missing from the SMT-Lib
standardization effort.6 Once available, this would enable
us to perform interesting experimental investigations in us-
ing several SMT solvers by adopting the standard SMT-Lib
language.

3.1 Main loop
The system takes as input the description of a safety prob-
lem consisting of the formulae describing the initial set of
states (Init), its transitions (Tr), and the set of unsafe states
(Unsafe). First of all, transitions are processed to extract
relevant information for the successive computation of pre-
images (module classify at lines 1–2). This is done in or-
der to reduce the number of instantiated formulae in the
satisfiability checks at lines 3, 9, and 10. Then, the for-
mula ∃i.∀j.Unsafe(i) ∧ Init(j) is checked for satisfiability

6http://www.smt-lib.org/

23 June 2009

35

n

inst

classify

simplify

AV

Unsafe

Tr

Init

Yices

Minst

Pre
TBV

n

select

(a) Architecture

fun mcmt(Init ,Tr ,Unsafe)
1 Tr ℓ ← ∅;
2 foreach τ ∈ Tr do Tr ℓ ← classify(τ) ∪ Tr ℓ;
3 if inst(Init , getinds(Unsafe),Unsafe) = sat

then return unsafe;
4 P ← Unsafe; AV← ∅; TBV← ∅;
5 do

6 AV← AV ∪ P ;
7 foreach τ ℓ ∈ Tr ℓ do

8 N ← simplify(Pre(τ ℓ, P));
9 if Minst(AV ∪ TBV, getinds(N), N) = sat

then begin TBV← TBV ∪N ;
10 if inst(Init , getinds(N), N) = sat

then return unsafe;
end

11 end

12 if TBV 6= ∅ then P ← select(TBV);
13 while TBV 6= ∅;
14 return safe;

(b) Main loop

Figure 1: High-level description of mcmt

(line 3). The module inst implements the two-phase deci-
sion procedure for formulae of the form ∃i∀jψ(i, j, a[i], a[j])
sketched above; it takes the formulae Init and Unsafe as
input together with the set of (existentially quantified) in-
dex variables occurring in Unsafe (computed by the function
getinds); inst uses Yices to check the satisfiability of the re-
sulting quantifier-free formulae in the combination of the
theories over indexes and elements (see Figure 1(a)). If the
satisfiability check is positive, then the intersection between
the set of initial states and that of unsafe states is non-empty
and the array-based system is trivially unsafe (line 3). Oth-
erwise (lines 4–13), the main part of the algorithm for back-
ward reachability analysis is entered. The loop maintains
two sets AV and TBV of primitive differentiated formulae;
the former stores the sets of states which have been already
visited while the latter those which are still to be visited (see
the two circles in Figure 1(a)). The variable P contains the
set of states which is currently under consideration; when
entering the loop for the first time, this is the set of unsafe
states (line 4). In the loop, the pre-images of (formulae in)
P with respect to each transition in Tr are computed and
simplified (line 8). Each pre-image is tested for fix-point as
follows. The formula

∃i.∀j.P (i) ∧
^

V ∈AV∪TBV

¬V (j)

is checked for satisfiability (line 9); this is done by the mod-
ule Minst which goes over the set AV∪TBV and incrementally
invokes the module inst to handle the instantiation of each
formula V (see the dashed box in Figure 1(a)). Each (in-
stance of a) formula V in AV ∪ TBV is incrementally added
and checked in the current Yices context. (This is similar to
the forward redundancy elimination of resolution-style au-
tomated theorem provers.) If Minst concludes the unsatis-
fiability of the formula, then a fix-point has been reached
(as P →

W

AV∪TBV is valid) and the formula is discarded;
otherwise, it is added to the set TBV of the already visited
states (line 9). Then, it is tested whether the computed pre-
image has a non-empty intersection with the set of initial
states and, if the case, unsafety of the array-based system is
reported (line 10). Once all the pre-images of a certain set
of states have been computed, a new set of states is selected

(and deleted from) the set TBV of states yet to be visited,
if TBV is non-empty and the main loop is executed again
with the new choice of P .

Since the set AV is handled as a queue, mcmt explores on-

the-fly (i.e. while generating it) and breadth-first (according
to the order in which the user listed the transitions) the
‘state space graph’ of the safety problem under considera-
tion. The nodes of this graph are labelled by the primitive
differentiated formulae representing sets of backward reach-
able states. mcmt (using the option -r) is capable of produc-
ing a list of the visited nodes, the formulae labelling them,
and a graphical representation of the state space graph. The
first two in LATEX while the last one in the format supported
by the graphical tool GraphViz.7

3.2 Main modules
To complete the high-level description of mcmt, we now give
more details about the heuristics embodied in each module
of the architecture in Figure 1(a).

Pre. Let a be the array state variables of an array-based sys-
tem, P (a) := ∃k P (k, a[k]), where P is a primitive differen-
tiated conjunction of literals, and τ(a, a′) := ∃i (G(i, a[i]) ∧
a′ = λj.F (i, a[i], j, a[j])) be a transition corresponding to
a guarded assignment, where G is a conjunction of literals
and F is a case-defined function update (the use of the λ-
abstraction can be avoided by using universal quantification
as seen for the Illinois protocol). It is straightforward to
show [12] that Pre(τ, P) is equivalent to the following for-
mula:

∃i∃k.G(i, a[i]) ∧ P (k, F (i, a[i], k, a[k])). (2)

So, in principle, the implementation of Pre simply amounts
to (repeatedly) build up formula (2). However, there are two
crucial problems in using formula (2) without any further
manipulation. First, the number of existentially quantified
variables in the formula has grown since ∃ k is augmented
with ∃ i. Indeed, this put an additional burden on the quan-

7http://www.graphviz.org/

23 June 2009

36

tifier instantiation routine of the module inst. It would be
desirable to find ways to limit the growing number of exis-
tentially quantified variables in the prefix of the pre-image
or, even better, to ensure it remains constant. To this end,
the techniques described in [12] have been implemented in
the module classify which is described below. The second
problem in directly using (2) is that there is no guarantee it
to be in primitive differentiated form. To avoid this prob-
lem, the module Pre performs a case-analysis according to
the case-defined function update F so as to compute sev-
eral primitive differentiated formulae whose disjunction is
logically equivalent to (2). In order to reduce the number
of inconsistent updates (i.e. unsatisfiable formulae) so as to
reduce the number of formulae to be visited (i.e. added to
TBV), a satisfiability check is required. While Yices can
be invoked to do this, for efficiency reasons, it is better to
minimize the number of calls to the available SMT solver.
To this end, the module classify besides deciding how it is
possible to control the grow of the existential prefix for each
transition, it also derives useful information which allows for
computationally inexpensive satisfiability checks (see below
for more on this). If all the cheap tests are passed, Yices
must indeed be invoked.

classify. As explained above, the goal of this module is to
reduce the number of existentially quantified variables ∃i
that should be added to ∃k in the prefix of (2). The idea
to do this consists of trying to identify as many as possi-
ble variables in i with those already present in k. This is
justified by the observation that it is often the case that
naively adding the extra variables in i yields primitive dif-
ferentiated formulae which are immediately discharged by
the successive fix-point test (line 9 of Figure 1(b)); thereby
wasting computational resources. Under suitable hypothe-
ses on the theories over indexes and elements, it is possible
to predict whether this will happen before entering the main
loop implementing backward reachability analysis as it de-
pends on the form of the guards and the case-defined func-
tion updates used to define transitions (see [12] for details).
Concretely, this is done by generating certain proof obliga-
tions for Yices, whose unsatisfiability imply that some or all
of the additional variables in i can be identified with those
in k. For example, in the case of the Illinois protocol, classify

establishes that transition t2 may avoid to introduce a new
(existentially quantified) variable while for t1, this is not the
case and a new variables should be considered. The module
classify is capable of establishing the behavior of transition
with one and two existentially quantified variables and in-
dicates whether 0, 1, or 2 new variables must be introduced
by the module Pre. We call this technique static instance

reduction. In the pseudo-code of Figure 1(b), we indicate
that a transition τ have been analyzed by classify and the
resulting information is attached to the transition using the
label ℓ. Recall that τ ℓ also contains additional information
to allow for the cheap satisfiability tests mentioned above
and used by Pre but also by inst (see below). To illustrate
this point, consider an array variable a whose elements are
an enumerated data-type. Then, τ ℓ stores the value of a
after the execution of the transition (since we perform a
backward analysis, this is the only relevant value). In this
way, to check for unsatisfiability, it is sufficient to search in
a primitive differentiated formula, two literals of the form

a[i] = c and a[i] = d, for some index i, where c and d are
two distinct ‘values’ of the enumerated data-type. We call
this form of dynamic instance reduction as filtering modulo

enumerated data-types and we will see another use of it for
formulae describing sets of states below.

inst. As already said, one of the main bottle-necks in mcmt

is the generation of instances for the checks of fix-point and
non-empty intersection with the initial set of states. While
the module classify attempts to statically control the num-
ber of instances of a universally quantified formula by re-
ducing its number of universally quantified variables, our
experience showed that this is not enough and we need also
some technique to dynamically reduce the number of such
instances. To this end, the key observation is that there is a
large amount of instances which are useless in checking for
unsatisfiability. To understand the problem, recall that the
tool is required to check the satisfiability of the following
kind of formulae:

ϕ(i) ∧
^

{∀j.¬ψ(j) | ψ ∈ AV ∪ TBV}

where ϕ and the ψ’s are primitive differentiated formulae.
Roughly, the algorithm implemented in inst consists of as-
serting ϕ in the actual Yices context and then incrementally
enumerating all the instances of the ψ’s. Indeed, before con-
sidering a new instance, a satisfiability check is performed.
Now, consider again the case where there is an array vari-
able a whose elements belong to an enumerated data-type.
Assume that ϕ contains a literal of the form a[ik] = c (for
ik ∈ i) and a ψ contains a literal of the form a[jl] = d

(for jl ∈ j) such that c and d are two distinct values of the
enumerated data-type. Then, it may happen—during the
enumeration of the instances of a ψ—that jl is instantiated
to ik and this implies that the instances under consideration
are trivially satisfiable. To see this, rewrite ϕ as a[ik] = c∧ϕ′

and the instance of ψ as a[ik] = d∧ψ′ so as to obtain (after
simple logical manipulations) the formula

(a[ik] = c ∧ ϕ′) ∧ (a[ik] = d→ ¬ψ′),

which is trivially satisfiable, if ϕ is so. The module inst fil-
ters out useless instances by using this observation. This
is another facet of the filtering modulo enumerated data-
types technique applied to state formulae instead, as before,
to transitions: also the primitive differentiated formulae pro-
duced by Pre are decorated with additional information such
as the values in the arrays which range over enumerated
data-types. Despite its simplicity, this heuristics dramati-
cally reduces the numbers of instances which are passed to
the SMT solver to check the satisfiability of a single uni-
versally quantified formula. To appreciate the importance
of this heuristics, it is sufficient to observe that, to realize
a fix-point check for a newly visited set of states (line 9 of
Figure 1(b)), the module Minst is required to iterate the ap-
plication of inst for each formula in the set AV of already
visited states. Observe also that AV grows at each iteration
of the backward analysis loop. Fortunately, our experience
shows that few iterations in Minst are often sufficient and
that we have a higher probability for an earlier detection of
unsatisfiability when considering first those formulae which
have been added to AV more recently. We call this form of
dynamic instance reduction as chronological fix-point check-

ing.

23 June 2009

37

To conclude the description of the module inst, we mention
two further heuristics. First, in the generate-and-check al-
gorithm implemented in inst, the (incremental) satisfiability
check is done after considering each new instance. It is pos-
sible to change the frequency of this test by using the option
-p. Second, another heuristic belonging to the class of the
dynamic instance reduction can be activated by the option
-f. It consists of fixing the instantiation of a certain number
of the universally quantified formulae after visiting a given
number of sets of states. This makes the system incomplete
but it may give significant speed-ups.

select. When describing the main loop of the tool in Fig-
ure 1(b), we claimed that the symbolic state space of the
problem is explored breadth-first according to the order in
which the user listed the transitions. This is not precise be-
cause of the function select used to extract the next set of
states to be visited (line 12 of Figure 1(b)). In fact, along
the lines of the dynamic instance reduction technique, we
try to visit as a large part of the state space as possible by
using first those formulae with fewer variables; it is possible
to disable this heuristics by using the option -b.

simplify. This module performs some simple manipulations
of the primitive differentiated formulae computed by Pre

such as eliminating duplicated literals, orienting (according
to some total ground ordering) equalities, or perform some
simple normalization on arithmetic terms. It would be in-
teresting to have some simplification routines used inside
Yices available through the API so as to reuse the wealth
of well-engineered techniques to simplify constraints for our
tool and avoid to waste time duplicating functionalities.

4. EXPERIMENTS
mcmt has been implemented using the API light of Yices
and release 0.2.1 can be downloaded at the following address
http://homes.dsi.unimi.it/~ghilardi/mcmt.

As benchmarks, we have derived three sets of benchmarks
for mcmt from the safety problems in [3, 2]: the first is of
mutual exclusion protocols (with 7 problems, Table 1), the
second is of cache coherence protocols (with 4 problems, Ta-
ble 2), and the last is obtained as the counting abstraction
of the previous problems (Table 3). We used the theory of
finite linear orders as TI for the first set of problems and
the theory of equality as TI for the other two. The theory
TE for the first two sets is the combination of an enumer-
ated datatype theory for the control locations with theo-
ries for the data manipulated by the processes while for the
third sets is Linear Arithmetics (over the Integers). The ter-
mination of the backward reachability analysis for some of
these benchmarks specifying broadcast protocols and some
versions of the mutual exclusion protocols (e.g., bakery) is
guaranteed by applying results from [9]. In particular, it is
possible to show termination when TE is the theory of an
enumerated datatype (i.e. each process in the parametrised
system is modelled by a finite state automaton updating
variables whose domains consist only of finitely many val-
ues). However, according to the experience in [7], even when
termination is not guaranteed, we have obtained it in prac-
tice for all our benchmarks.

Columns 2-5 of the Tables report the statistics (timings are
in seconds and obtained on a Pentium Dual-Core 3.4 GHz
with 2 Gb Sdram) of the implementation of the main loop
in Figure 1(b) while columns 6-9 show the results for the
following variant (available in the latest release of the tool
only). We have replaced the instruction at line 12 with the
following block of code:

121 do

122 P ← select(TBV);
123 while TBV 6= ∅ ∧Minst(AV ∪ TBV, getinds(P), P) = unsat;

This is equivalent to check for fix-point a newly computed
set of backward reachable states before computing its pre-
images: if the test is positive (when the corresponding proof
obligation is unsatisfiable), we can not only avoid to com-
pute its pre-images but also eliminate it (recall that select

has the side-effect of deleting the selected formula from its
input set) so that its instances are no more considered when
checking for fix-point or non-empty intersection with the set
of initial states. (This technique is similar to the backward

redundancy elimination in resolution-style theorem provers.)
When the test for fix-point fails, the loop is exited and the
primitive differentiated formula P starts the main loop in
Figure 1(b).

Table 1 shows the usefulness of forward redundancy elimi-
nation as the seize of the problem grows. For the other two
tables, the situation is less clear. However, we remark that
all the cache coherence protocols that we have considered so
far (except the German) are quite small and a brute force
search of the tiny search space (see the column ‘#nodes’) is
likely to be more successful. Interestingly, there is some gain
in using forward redundancy elimination on the last problem
in this set (a difficult version of the German protocol, which
is well-known to be a significant benchmark for verification
tools).

Although a comparative analysis is somewhat difficult in
lack of a standard for the specifications of safety problems,
we report that mcmt performs comparably with the model
checkers PFSand UNDIP on small to medium sized problems
and outperforms them on larger instances.8 These tools use
a partially declarative approach by combining ad hoc algo-
rithms to explore the symbolic state space of a system and
constraint solvers for numerical data in order to reason on
the elements manipulated by the processes. By comparing
the statics of such systems with those of mcmt, it is ap-
parent that a significantly smaller number of sets of states
is visited during backward analysis. This is so because a
single primitive differentiated formula is capable of repre-
senting a large amount of (minimal) configurations that a
(partially) symbolic model checker, like PFS or UNDIP, is
forced to enumerate. However, we must point that the com-
pletely symbolic representation of sets of states contains a
lot of redundancy so that powerful heuristics are required
to make our approach to scale up to large and interesting
problems. The techniques for instance reductions described
above can be seen as an important class of heuristics capable
of handling this redundancy.

8http://www.it.uu.se/research/docs/fm/apv/tools/
{pfs,undip}

23 June 2009

38

depth #nodes #calls time depth #nodes #calls time

Bakery 9 29 221 0.104 9 28 252 0.124
Burns 14 57 497 0.216 14 57 429 0.188

Java M-lock 9 23 353 0.156 9 23 343 0.152

Dijkstra 13 40 392 0.148 13 38 256 0.096

Dijkstra (rv) 14 138 6905 5.756 14 127 4451 3.324

Szymanski 17 143 3266 2.208 17 136 3164 2.036

Szymanski (a) 23 2358 902017 24m19s 23 1745 475505 11m19s

Table 1: Mutual exclusion algorithms

depth #nodes #calls time depth #nodes #calls time

Mesi 3 2 175 0.032 3 2 177 0.028

Moesi 3 2 304 0.048 3 2 306 0.048
Illinois 4 8 998 0.196 4 8 1006 0.216

German 26 2985 322335 8m39s 26 2442 125060 3m51s

Table 2: Cache coherence protocols

depth #nodes #calls time depth #nodes #calls time

Mesi 3 2 18 0.008 3 2 22 0.012
Moesi 3 2 21 0.016 3 2 25 0.024

Illinois 3 4 82 0.036 3 3 56 0.020

German 9 13 46 0.028 9 13 63 0.028

Table 3: Cache coherence protocols: counting abstraction

Experimental results for a powerful heuristics for invariant
generation on the same set of benchmarks are also reported
in [11]. The command line option to active such a heuristics
is -i.

5. DISCUSSION
We have described the architecture and the main loop of
our model-checker mcmt based on a careful combination
of SMT solving (Yices), a backward reachability algorithm,
and heuristics to solve the proof obligations encoding the fix-
point tests and the checks for non-empty intersection with
the initial set of states.

We plan to extend mcmt in two directions. First, we intend
to implement or to import a quantifier elimination module
for the the variables ranging over the elements of the array
(for some theories TE admitting quantifier elimination, like
for instance Linear Arithmetic and its fragments). Once this
module is available, existentially quantified variables for ele-
ments can be used in the guards of the transitions: this will
enable mcmt to deal, for example, with some of the bench-
marks in [3]. Second, we want to support two-dimensional
arrays to model communication channels between processes:
this extension is crucial for mcmt to be able to treat—in
a natural way—concurrent processes communicating over
channels (see, e.g., [3] for examples of the verification of
this kind of distributed systems).

6. REFERENCES
[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay.

General decidability theorems for infinite-state
systems. In Proc. of LICS, pages 313–321, 1996.

[2] P. A. Abdulla, G. Delzanno, N. B. Henda, and
A. Rezine. Regular model checking without
transducers. In TACAS, volume 4424 of LNCS, pages
721–736, 2007.

[3] P. A. Abdulla, G. Delzanno, and A. Rezine.
Parameterized verification of infinite-state processes
with global conditions. In CAV, volume 4590 of LNCS,
pages 145–157, 2007.

[4] P. A. Abdulla, N. B. Henda, G. Delzanno, and
A. Rezine. Handling parameterized systems with
non-atomic global conditions. In Proc. of VMCAI,
volume 4905 of LNCS, pages 22–36, 2008.

[5] L. de Moura and N. Bjørner. Efficient e-matching for
smt solvers. In Proc. of CADE, LNCS, 2007.

[6] D. Déharbe and S. Ranise. Satisfiability solving for
software verification. Int. Journal on STTT, 2009. To
appear.

[7] G. Delzanno. Automatic verification of parameterized
cache coherence protocols. In Proc. of CAV, number
1855 in LNCS, 2000.

[8] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified
verification conditions using satisfiability modulo
theories. In Proc. of CADE-21, LNCS, 2007.

[9] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli.
Towards SMT Model-Checking of Array-based
Systems. In Proc. of IJCAR, LNCS, 2008.

[10] S. Ghilardi and S. Ranise. A Note on the Stopping
Failures Models. 2009. Draft, available from mcmt

distribution.

[11] S. Ghilardi and S. Ranise. Goal-Directed Invariant
Synthesis in Model Checking Modulo Thoeries. In
Proc. of TABLEAUX 09, LNCS, 2009. Full version
available at http://homes.dsi.unimi.it/~ghilardi/

allegati/GhRa-RI325-09.pdf.

[12] S. Ghilardi, S. Ranise, and T. Valsecchi. Light-Weight
SMT-based Model-Checking. In Proc. of AVOCS

07-08, ENTCS, 2008.

[13] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann, 1996.

23 June 2009

39

Graph-based Reduction of Program Verification Conditions

J.-F. Couchot
LIFC

University of Franche-Comté
F-25030 Besançon

couchot@lifc.univ-
fcomte.fr

A. Giorgetti
INRIA CASSIS / LIFC

University of Franche-Comté
F-25030 Besançon

alain.giorgetti@univ-
fcomte.fr

N. Stouls
AMAZONES INRIA / CITI

INSA Lyon
F-69621 Villeurbanne

Nicolas.Stouls@insa-
lyon.fr

ABSTRACT
Increasing the automaticity of proofs in deductive verifica-
tion of C programs is a challenging task. When applied
to industrial C programs known heuristics to generate sim-
pler verification conditions are not efficient enough. This
is mainly due to their size and a high number of irrelevant
hypotheses.

This work presents a strategy to reduce program verification
conditions by selecting their relevant hypotheses. The rele-
vance of a hypothesis is determined by the combination of a
syntactic analysis and two graph traversals. The first graph
is labeled by constants and the second one by the predicates
in the axioms. The approach is applied on a benchmark
arising in industrial program verification.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Verification, Experimentation

Keywords
Proof, hypothesis selection

1. INTRODUCTION
Deductive software verification aims at verifying program
properties with the help of theorem provers. It has gained
more interest with the increased use of software embedded
in, for instance, airplanes commands, cars or smart cards,
requiring a high-level of confidence.

In the Hoare logic framework, program properties are ex-
pressed by first-order logical assertions on program variables
(preconditions, postconditions, invariants, . . .). The deduc-
tive verification method consists in transforming a program,
annotated with sufficiently many assertions, into so-called

verification conditions (VCs) that, when proved, establish
that the program satisfies its assertions. In the KeY sys-
tem [2] a special purpose logic and calculus are used to prove
these verification conditions. The drawback of this approach
is has it is specific to a programming language and a target
prover. In contrast, a multi-prover approach is followed by
effective tools such as ESC/Java [10] for Java programs an-
notated using the Java Modeling Language [4], Boogie [1]
for the C# programming language, and Caduceus/Why [12]
for C programs. The latter also offers Java as input pro-
gramming language.

A theorem prover is invoked to establish the validity of each
verification condition. One of the challenges in deductive
software verification is to automatically discharge as many
verification conditions as possible. A key issue is that the
whole context of a verification condition is a huge set of
axioms modelling not only the property and the program
under verification, but also many features of the program-
ming language. Simply passing this large context to an auto-
mated prover induces a combinatorial explosion, preventing
the prover from terminating in reasonable time.

Possible solutions to reduce the VC size and complexity are
to optimize the memory model (e.g. by introducing sepa-
rations of zones of pointers [16]), to improve the weakest
precondition calculus [17] and to apply strategies for simpli-
fying VCs [14, 8, 18]. This work focuses on the latter. We
suggest heuristics to select axioms to feed automated theo-
rem provers (ATPs). Instead of blindly invoking ATPs with
a large VC, we present reduction strategies that significantly
prune their search space. The idea behind these strategies is
quite natural: an axiom is relevant if a prover applies it suc-
cessfully, i.e. without diverging, to establish the conclusion.
Relevance criteria are computed by the combined traver-
sal of two graphs representing symbol dependencies within
axioms. In the graph of constants edges represent the con-
joint presence of two constants in some ground axiom. In
the graph of predicates arcs represent logical dependencies
between predicates occuring in the same axiom.

In former work [5], selection was limited to ground hypothe-
ses and comparison predicates were not taken into account.
This led to unsatisfactory results, for instance when the con-
clusion is some equality between terms. The present work
extends selection to context axioms, comparison predicates
and hypotheses with quantifiers. We propose new heuristics
that increase the number of automatically discharged VCs.

23 June 2009

40

The plan of the article is as follows. Section 2 presents the
industrial C example that has motivated this work. This
case study is a part of the Oslo [3] secure bootloader an-
notated with a safety property. Section 3 presents the gen-
eral structure of a verification condition. Section 4 shows
how dependencies are stored in graphs. The selection strat-
egy of hypotheses is presented in Section 5. These last two
sections are the first contribution. The second contribu-
tion is the implementation of this strategy as a module of
Caduceus/Why [12]. Section 6 presents experimentation
results. Section 7 discusses related work, concludes and
presents future work.

2. TRUSTED PLATFORM CASE STUDY
Some new challenges for axiom filtering are posed by the
context of the PFC project on Trusted Computing (TC).
PFC (meaning trusted platforms in French) is one of the
SYSTEM@TIC Paris Region French cluster projects. The
main idea of the TC approach is to gain some confidence
about the execution context of a program. This confidence
is obtained by construction, by using a trusted chain. A
trusted chain is a chain of executions where each launched
program is previously registered with a tamperproof compo-
nent, such as the Trusted Platform Module (TPM) hardware
chipset. In this context of TC, we focus on the Oslo [3] se-
cure loader. This program is the first step of a trusted chain.
It uses some hardware functionalities of recent CPUs (AMD-
V or Intel-TET technologies) to initialize the chain and to
launch the first program of the chain.

The main trusted chain properties are temporal, but some
recent works [13, 15] propose a method to translate a tem-
poral property into first-order logic annotations in the code.
This method is systematic and generates a large amount of
VCs, including quantifications and arrays with many links
between them. Therefore, this approach is a good gener-
ator for VCs with a medium or low level of automaticity.
Table 1 gives some factual information about the studied
part of Oslo. The VCs of this benchmark are publicly avail-
able [24].

Oslo program and specification
Code ≈ 1500 lines
Specification ≈ 1500 lines (functional)
Number of VCs ≈ 7300 VCs

Observed part of Oslo
Observed code = 218 lines
Specification ≈ 1400 lines (functional and generated)
Number of VCs = 771 VCs

Table 1: Some Metrics about the Oslo Program

3. VERIFICATION CONDITIONS
The verification conditions (VC) we consider are first order
formulae whose validity implies that a piece of annotated
source code satisfies some property. This section describes
the general structure of VCs generated by Caduceus/Why.
A VC is composed of a context and a goal. This structure is
illustrated in Fig. 1.

The context depends on the programming language. It is
a first-order axiomatization of the language features used
in the program under verification. Typical features are data

Goal
︷ ︸︸ ︷

Context ⇒ Hypotheses ⇒ Conclusion

︸ ︷︷ ︸

Axioms

Figure 1: Structure of verification conditions

types or a memory model, enriched to allow the specification
of, e.g. separated pointer regions. For instance, a typical VC
produced by Caduceus/Why has a context with more than
80 axioms.

VCs are generated in the input format of many first-order
ATPs, among which Simplify [9] and SMT solvers [6]. The
Simplify automatic prover has a specific input language.
SMT solvers such as Alt-Ergo and Yices have a common
input language. Alt-Ergo is however addressed in the Why
input language for more efficiency. For SMT solvers, the
context is presented as a base theory, usually a combination
of equality with uninterpreted function symbols and linear
arithmetic, extended with a large set of specific axioms.

The goal depends on the program and on the property under
verification. When this property is an assertion about a
given program control point, the goal is generated by the
weakest precondition (wp) calculus of Dijkstra [11] at that
control point. The goal is considered as a conclusion implied
by hypotheses that encode the program execution up to the
control point.

Running example. Consider the following function:

struct p {

int x;

} p;

struct t {

struct p v[2];

} t;

/*@ requires \valid(a) &&

@ (\forall int i; 0<=i<=1 => \valid(a->v[i]))

@ assigns a->v[0].x */

void f(struct t *a) {

a->v[0].x = 2;

}

The requires annotation specifies a precondition and the
assigns annotation means that function f modifies no other
location than a->v[0].x. The hypotheses of the generated
VC are

valid(a),
(∀i : int . 0 ≤ i ≤ 1 ⇒ valid(a, shift(acc(mv, a), i)) ∧

valid acc(mpPM)),
valid acc range(mv, 2),
separation1 range(mv, 2), valid acc(mv),
r = acc(mv, a), r0 = shift(r, 0), and mx 0 = upd(mx, r0, 2).

23 June 2009

41

The conclusion is

not assigns(mx, mx 0, singleton(acc(mv, a))).

The meaning of these formulae is as follows. mpPM is the
pointer (P) memory (M) for the structures of type p. valid -

acc(m) means that the memory m is initialized, i.e. that
this memory is accessible from any valid pointer in the al-
location table. The first two hypotheses correspond to the
precondition. In the next two hypotheses the predicates
valid acc range(mv, 2) and separation1 range(mv, 2) respec-
tively mean that any access to the memory mv returns an ar-
ray t such that pointers t[0] and t[1] are valid and t[0] 6= t[1].
The last three hypotheses come from a flattening-like decom-
position of the statement a->v[0].x = 2 performed by the
VC generator. The function shift(t, i) allows access to the
index i in the array t. The conclusion translates the assigns
annotation into a relation between two memory values. mx

is the value of memory x before execution of f and mx 0 is
its value after execution of f. The third parameter is the
representation of a->v[0]. Our preprocessor eliminates the
last three hypotheses and the intermediary constants that
they introduce by considering that the conclusion is

not assigns(mx, upd(mx, shift(acc(mv, a), 0), 2),
singleton(acc(mv, a))).

(C)

4. GRAPH-BASED DEPENDENCY
Basically, a conclusion is a propositional combination of po-
tentially quantified predicates over some terms. Dependen-
cies between axioms and the conclusion can then arise from
terms and predicates. Terms in the goal may either come
from the annotated program (from statements or assertions)
or may result from a weakest precondition calculus applied
to the program and its assertions. The term dependency just
transcribes that parts of the goal (in particular, hypotheses
and conclusion) share common terms. It is presented in
Section 4.1. Two predicates are dependent if there is a de-
ductive path leading from one to the other. The predicate
dependency is presented in Section 4.2. Finally, Section 4.3
presents a special dependency analysis for comparison pred-
icates.

4.1 Term Dependency
In order to describe how hypotheses connect terms together
and according to previous work [5], an undirected connected
graph Gc is constructed by syntactic analysis of term occur-
rences in each hypothesis of a VC. The graph vertices are la-
beled with the constants occurring in the goal and with new
constants resulting from the following flattening-like process.
A fresh constant f i where i is some unique integer is cre-
ated for each term f(t1, . . . , tn) in the goal. There is a graph
edge between the two vertices labeled with the constants f i
and c when c is tj if tj is a constant and when c is the fresh
constant created for tj if tj is a compound term (1 ≤ j ≤ n).

Running example. An excerpt of the graph representing
the VC presented in Section 3 is given in Fig. 2. The vertices
shift 6 and acc 7 come from the second hypothesis and the
other vertices come from the conclusion (C).

4.2 Predicate Dependency
A weighted directed graph is constructed to represent im-
plication relations between predicates in an efficient way.

shift 6

acc 7

a

mv

acc 5 acc 3mx

shift 2singleton 4

upd 1

Figure 2: Example of Constant Dependency Graph

Intuitively, each graph vertex represents a predicate name
and an arc from a vertex p to a vertex q means that p may
imply q. What follows are details on how to compute this
graph of predicates, named GP . This section describes the
general approach. The next section adds a special treatment
for comparison predicates.

First, each context axiom is decomposed into a conjunctive
normal form (CNF). It is done in a straightforward way (in
contrast to optimised CNF decomposition [19]): axioms are
of short size and their transformation into CNF does not
yield a combinatorial explosion. The resulting clauses are
called axiom clauses. Each graph vertex is labeled with a
predicate symbol that appears in at least one literal of the
context. If a predicate p appears negated (as ¬p) in an
axiom clause, it is represented by a vertex labeled with p.
A clause is considered as a set of literals. For each axiom
clause Cl and each pair (l, l′) ∈ Cl ×Cl of distinct literals in
this clause, there is an arc in GP depending on the polarity
of l and l′. There are three distinct cases modulo symmetry
to consider. They are enumerated in Table 2, where p and
q are two distinct predicates. To reduce the graph size, the
contraposite of each implication is not represented as an arc
in the graph but is considered when traversing it, as detailed
in Section 5.2.

Value of the (l, l′) pair Arcs

(¬p, q) {p −→ q}
(p, q) {p −→ q}

(¬p,¬q) {p −→ q}

Table 2: Translating Pairs of Literals into Arcs.

The intended meaning of an arc weight is that the lower the
weight is, the higher the probability to establish q from p
is. Therefore, the arc introduced for the pair (p, q) along
Table 2 is labeled with the number of predicates minus one
(card(Cl) − 1) in the clause Cl under consideration. For

23 June 2009

42

1

2

2

1

1 2

31

3

1 2
1 3

3
1

3

1

3

valid acc

valid

valid acc

valid

not assigns

not assigns

not in pset

not in pset

Figure 3: Example of Predicate Dependency Graph

instance, a large clause with many negative literals, with
¬p among them, and with many consequents, with q among
them, is less useful for a deduction step leading to q than the

smaller clause {¬p, q}. Finally, two weighted arcs p
w1−→ q

and p
w2−→ q are replaced with the weighted arc p

min(w1 ,w2)

−−−−−−→
q.

Running example. Figure 3 represents the dependency
graph corresponding to the definition of predicates valid,
not assigns and valid acc. It is an excerpt of the graph rep-
resenting the memory model of Caduceus/Why.

4.3 Handling Comparison Predicates
In a former work [5], equalities and inequalities were ig-
nored when memorizing predicate dependencies. This leads
to unsatisfactory results when (in)equality is central for de-
duction, e.g. when the conclusion is some equality between
terms. If we handle equality as the other predicates, the
process of Section 4.2 connects too many vertices with the
vertex labeled =. We have experienced that this reduction
of the graph diameter has a negative impact on the quality
of selection.

More generally the present section suggests a special con-
struction of graph vertices and edges for comparison predi-
cates. A comparison predicate is an equality =, an inequal-
ity 6=, a (reflexive) order relation (≤ or ≥) or an irreflexive
pre-order (> or <). The keys of this construction are the
support of types and the exploitation of some causalities
between comparison predicates.

4.3.1 Typed comparisons
Each comparison predicate ◦ is written ◦t where ◦ is =, 6=,
≤, <, ≥ or > and t is the type of the ◦ operands. For
simplicity, the focus is on the types t where ≤t and ≥t are
total orders, >t and <t are their respective reverse orders,
and ≤t is the union of <t and =t. A typical example is the
type int of integers.

x ≤ y ∧ y ≤ x ⇒ x = y (1)

x = y ⇒ x ≥ y (2)

x = y ⇒ y ≥ x (3)

x > y ⇒ x ≥ y (4)

x ≥ y ⇒ x > y ∨ x = y (5)

Figure 4: Some Axioms Relating Comparison Pred-
icates

Each comparison t1 ◦t t2 present in at least one axiom is
represented by two nodes respectively labeled with ◦t and
◦t, where =t, 6=t, ≤t, <t, ≥t, and >t respectively are 6=t,
=t, >t, ≥t, <t, and ≤t. For instance, the two nodes ≤int

and >int represent a total order on integers and its negation.
These labels are called the typed comparison predicates.

Apart from this difference in the definition of ◦t, the arcs
connected to typed comparison predicates are constructed
following the general rules described in Table 2.

4.3.2 Causalities between comparison predicates
Verification conditions are expressed as SMT problems in
AUFLIA logics [22]. Since the comparison predicates be-
tween integers are interpreted in AUFLIA, no context ax-
iom contributes to their definition. Figure 4 suggests such a
list of axioms. To lighten the figure, the predicates are not
indexed with int.

Adding these axioms to the context would be counterpro-
ductive. We propose instead to analyze them to enrich the
predicate graph as if they were in the context. Since the
algorithm of axiom selection does not take loops into ac-
count, the sole arcs of interest in the predicate graph are
between distinct nodes. It is then impossible to proceed so
on internal properties like reflexivity, irreflexivity, symmetry
or transitivity. This is the reason why Figure 4 is limited
to axioms between distinct predicates. The symmetric ax-
ioms where ≤ and < respectively replace ≥ and > are also
treated but are not reproduced. The arcs resulting from the
application of the rules of Table 2 to those ten axioms are
added to the graph of predicates.

5. AXIOM SELECTION
Relevant axioms remain to be selected. Intuitively, an axiom
is relevant with respect to a conclusion if a proof that needs
this axiom can be found. Variables and predicates included
in a relevant axiom are also called relevant.

Section 5.1 shows how to select relevant constants in, Sec-
tion 5.2 how to select relevant predicates and Section 5.3
how to combine these results to select relevant axioms. A
selection strategy is presented as an algorithm in Section 5.4.

5.1 Relevant Constants
A node in the graph of constants Gc is identified with its
labeling constant. Let n be the diameter of the graph of
constants Gc. Starting from the set C0 of constants in the
conclusion, a breadth-first search algorithm computes the
sets Ci of constants in Gc that are reachable from C0 with at

23 June 2009

43

most i steps (1 ≤ i ≤ n). Finally, unreachable constants are
added to the limit of the sequence

(
Cn

)

n∈N
for completeness.

Let C∞ be the resulting set.

To introduce more granularity in the computation of reach-
able constants, we propose as a heuristic to insert nodes that
are linked several times before nodes that are just linked
once. Semantically it gives priority to constants which are
closer to the conclusion. Notice that, in this case, the index
i of Ci does not correspond to a path length anymore.

Running example. The sequence of reachable constants
sets associated to the graph in Fig. 2 is:

C0 = {mx, mv, a},
C1 = C0 ∪ {acc 3, acc 5, acc 7},
C2 = C1 ∪ {singleton 4, shift 2},
C3 = C2 ∪ {shift 6},
C4 = C3 ∪ {upd 1} and
C∞ = C4.

5.2 Relevant Predicates
A predicate p is identified with the vertex labeled p and its
negation with the vertex labeled p in the graph of predicates
GP . A predicate symbol p is relevant w.r.t. a predicate sym-
bol q if there is a path from p to q in GP , or dually from q
to p. Intuitively, the weaker the path weight is, the higher
the probability of p to establish q is. Relevant predicates
extracted from GP are stored into an increasing sequence
(Ln)n∈N of sets. The natural number n is the maximal
weight of paths considered in the graph of predicates.

We now present how Ln is computed. The conclusion is
assumed to be a single clause. L0 gathers the predicates
from the conclusion. For each predicate symbol p that is
not in L0, a graph traversal computes the paths with the
minimal weight w from p to some predicate in L0.

Furthermore, contraposition of each implication is consid-
ered: let p1 and p2 be two node labels, corresponding either
to a positive or a negative literal. If the arc p1

w
−→ p2 is

taken into account, its couterpart p2 −→ p1 is too, with the
convention that p is p. Let n be the minimal distance from
L0 to the deepest reachable predicate. For 1 ≤ i ≤ n, Li is
the set of vertices of GP whose distance to L0 is less than
or equal to i. L∞ is the limit

⋃

i≥0 Li augmented with the
vertices from which L0 is not reachable.

Running example. From the predicate graph of the run-
ning example, depicted in Fig. 3 without the comparison
predicates for lack of space, the first five sets of reachable
predicates are

L0 = {not assigns},
L1 = L0 ∪ {valid, not in pset, =},
L2 = L1 ∪ {<int, valid acc,≤int},
L3 = L2 ∪ {valid acc, >int, 6=int,≥int} and
L4 = L3 ∪ {=, not in pset, valid,≤int, =int}.

5.3 Selection of Relevant Axioms
In this section, we present the main principles of the axiom
selection combining predicate and constant selection. A first
part describes hypothesis selection and a second one extends
the approach to axioms from the context.

Let (Ln)n∈N and
(
Cn

)

n∈N
respectively be the sequences of

relevant predicate and constant sets. Let i be a counter
which represents the depth of predicate selection. Similarly,
let j be a counter corresponding to the depth of constant
selection.

5.3.1 Hypothesis Selection
Let Cl be a clause from a hypothesis. Let V be the set
of constants of Cl augmented with constants resulting from
flattening (see Section 4.1). Let P be the set of predicates of
Cl . The clause Cl should be selected if it includes constants
or predicates that are relevant according to the conclusion.
Different criteria can be used to verify this according to its
sets P and V . Possible choices are, in increasing order of
selectivity

1. the clause includes at least one relevant constant or
one relevant predicate:

V ∩ Cj 6= ∅ ∨ P ∩ Li 6= ∅

2. the clause includes more than a threshold tv of rele-
vant constants or more than a threshold tp of relevant
predicates:

card(V ∩ Cj)/card(Cj) ≥ tv ∨ card(P ∩ Li)/card(Li) ≥ tp

3. all the clause constants and clause predicates are rele-
vant:

V ⊆ Cj ∧ P ⊆ Li

Our experiments on these criteria have shown that a too
weak criterion does not accomplish what it is designed for:
too many clauses are selected for few iterations, making the
prover quickly diverge. Thus, we only consider the strongest
criterion (3).

We have also often observed the case where only a conjunc-
tive part of a universally quantified hypothesis is relevant. In
that case, we split the conjunctive hypothesis into its parts
and the filtering criterion is applied to the resulting predi-
cates. A particular case is considered if a whole splittable
hypothesis is relevant according to the criterion. Indeed, we
then consider the original formula, in order to preserve its
structure, which can be exploited by provers.

5.3.2 Context Axioms
Consider now the case of selecting relevant axioms from the
context. Intuitively, an axiom of the context has to be se-
lected if one of the predicate relations it defines is relevant
for one hypothesis, i.e. the corresponding arc is used in the
computation of Li. Practically, for each arc that is passed
through while generating Li, we keep all the axioms of the
context that have generated this arc.

5.4 Selection Strategy
The selection strategy experimented in this work is described
in Fig. 5. The algorithm takes three parameters in input:

• a VC whose satisfiability has to be checked,

• a satisfiability solver Prover, and

23 June 2009

44

Parameters : VC, Prover, TO


























// Prover call without VC reduction
Res := Prover(VC, TO)
if Res = timeout then



















imax :=1 + Min depth giving reachable preds (VC)
jmax :=1 + Min depth giving reachable vars (VC)

i := 0;
j := 0;
While Res 6=unsat ∧ i ≤ imax do









// Prover call after VC reduction
Res := Prover(selection(VC, i, j), TO)
j := j + 1;
if j > jmax then
⌊

i := i + 1;
j := 0;

return Res;

Figure 5: General Algorithm Discharging a VC with
Axiom Selection

• a maximal amount of time TO given by the user to the
satisfiability solver to discharge the VC.

The algorithm starts with a first attempt to discharge the
VC without axiom selection. It stops if this first result is
unsatisfiable or satisfiable. Notice that in the latter case, re-
moving axioms cannot modify the result. Otherwise, Prover
is called following an incremental constant-first selection.

The two natural numbers imax and jmax are depth bounds
for Li and Cj computed during predicate graph and con-
stant graph traversals. Since we want to reach L∞ and C∞,
imax and jmax are initially computed by the tool as one plus
the minimal depth to obtain all reachable predicates and
constants. This is interpreted by the tool as the ∞ depth,
according to Sec. 5.2 and 5.1 (all predicates and constants
of the graphs).

The selection function implements the selection of axioms
(from context or hypotheses) according to the strongest cri-
terion (3). Discharging the resulting reduced VC into a
prover can yield three outcomes: satisfiable, unsatisfiable
or timeout.

1. If the formula is declared to be unsatisfiable, the pro-
cedure ends. Adding more axioms cannot make the
problem satisfiable.

2. If the formula is declared to be satisfiable, we may have
omitted some axioms; we are then left to increment
either i or j, i.e. to enlarge either the set of selected
predicates or the set of selected constants.

However, allowing predicates has a more critical im-
pact than allowing new constants, since constants do
not appear in context axioms. Therefore we recom-
mend to first increment j, increasing Cj until even-
tually C∞, before considering incrementing i. In this
later case, j resets to 0.

3. If the formula is not discharged in less than a given

time, after having iteratively incremented i and j, then
the algorithm terminates.

6. EXPERIMENTS
The proposed approach is included in a global context of an-
notated C program certification. A separation analysis that
strongly simplifies the verification conditions generated by
a weakest precondition calculus, and thus greatly helps to
prove programs with pointers has been proposed by T. Hu-
bert and C. Marché [16]. Their approach is supported by
the Why tool. The pruning heuristics presented here are
developed as a post-process of this tool.

Section 6.1 gives some implementation and experimentation
details. Section 6.2 presents experimental results on an in-
dustrial case study for trusted computing. This case study
raises new challenges associated to the certification of C pro-
grams annotated with a temporal logic formula. Section 6.3
finally gives results obtained on a public benchmark.

6.1 Methodology
All the strategies presented in this work are implemented in
OCaml as modules in the Why [12] tool in less than 1700
lines of code. Since these criteria are heuristics, their use
is optional, and Why has command line arguments which
allow a user to enable or disable their use. In the current
version, several others heuristics have been developed, which
are not considered because their impact on the performance
of Why seems to be less obvious. In order to use the pre-
sented algorithms, the arguments to include in the Why call
are:

- -prune-with-comp - -prune-context - -prune-coarse-pred-comp

- -prune-vars-filter CNF

The first parameter includes comparison predicates in the
predicate dependency graph. The second one requires filter-
ing not only hypotheses but also axioms from the context.
The third one requires to ignore arc weights. This option
gives better execution times on the Oslo benchmark. Fi-
nally, the fourth argument requires for rewriting hypotheses
into CNF before filtering.

The whole experiment is done on an Intel T8300@2.4GHz
with 4Gb of memory, under a x86 64 Ubuntu Linux.

6.2 Results of Oslo Verification
First of all, among the 771 generated VCs, 741 are directly
discharged, without any axiom selection. Next, the ap-
proach developed in [5] increases the result to 752 VCs.

Among the remaining unproved VCs, some rely on quanti-
fied hypotheses and others need comparison predicates that
are not handled in the previous work [5]. They have moti-
vated the present extensions, namely CNF reduction, com-
parison handling and context reduction. Thanks to these
improvements, 10 more VCs are automatically proved by us-
ing the algorithm described in Fig. 5 with the three provers
Simplify, Alt-Ergo 0.8 and Yices 1.0.20 with a timeout TO
of 10 seconds.

The imax and jmax limits depend on the VCs. Their observed
values do not go beyond imax = 6 and jmax = 7. These limits

23 June 2009

45

express the number of versions in which the VCs have been
cut. If edge weights are considered, then imax grows up to
imax = 18 and the execution time is twice as long. Figure 6
sums up these results.

Figure 6: Result Comparison on Oslo Benchmark
(771 VCs)

6.3 Public Why Benchmark
Our approach is developed in the Why tool, which trans-
lates Why syntax into the input syntax of several proof assis-
tants (Coq, HOL 4, HOL Light, Isabelle/HOL, Mizar, PVS)
and automated theorem provers (Alt-Ergo, CVC3, Simplify,
Yices, Z3). This section shows some experimental results on
the Why public benchmark1.

The Why benchmark is a public collection of VCs gener-
ated by Caduceus or Krakatoa. These tools generate VCs
respectively from C and Java programs, according to CSL
and JML specifications. Hence, it partially matches to our
requirements, since our work is focusing on the verification
of VCs generated by these tools. The only limitation is
that our method is focusing on VCs with a large amount of
hypotheses, in contrast to the ones presented in this bench-
mark.

This benchmark is provided in two versions corresponding
to two different pre-processes. Our results are similar with
both versions. Alt-Ergo discharges 1260 VCs directly and
1297 VCs with axiom selection, adding 3 VCs to the 1310
VCs directly discharged by Simplify.

7. RELATED WORK AND CONCLUSION
We have presented a new strategy to select relevant hypothe-
ses in formulae coming from program verification. To do so,
we have combined two separate dependency analyses based
on graph computation and graph traversal. Moreover, we
have given some heuristics to analyse the graphs with a suf-
ficient granularity. Finally we have shown the relevance of
this approach with a benchmark issued from a real industrial
code.

Strategies to simplify the prover’s task have been widely
studied since automated provers exist [28], mainly to pro-
pose more efficient deductive systems [28, 27, 26]. The
KeY deductive system [2] is an extreme case. It is com-
posed of a large list of special purpose rules dedicated to
1http://proval.lri.fr/why-benchmarks/

JML-annotated JavaCard programs. These rules make un-
necessary an explicit axiomatization of data types, memory
model, and program execution. Priorities between deduc-
tion rules help in effective reasoning. Beyond this, choosing
rules in that framework requires as much effort as choosing
axioms when targeting general purpose theorem provers.

The present work can be compared with the set of support
(sos) selection strategy [28, 20]. This approach starts with
asking the user to provide an initial sos: it is classically the
conclusion negation and a subset of hypotheses. It is then
restricted to only apply inferences with at least one clause
in the sos, consequences being added next into the sos. Our
work can also be viewed as an automatic guess of the ini-
tial sos guided by the formula to prove. In this sense, it is
close to [18] where initial relevant clauses are selected ac-
cording to syntactical criteria, i.e. counting matching rates
between symbols of any clause and symbols of clauses issued
from the conclusion. By considering syntactical filtering on
clauses issued from axioms and hypotheses, this latter work
does not consider the relation between hypotheses, formal-
ized by axioms of the theory: it provides a reduced forward
proof. In contrast, by analyzing dependency graphs, we sim-
ulate natural deduction and are not far from backward proof
search. By focusing on the predicative part of the verifica-
tion condition, our objectives are dual to those developed
in [14]: this work concerns boolean verification conditions
with any boolean structure whereas we treat predicative for-
mulae whose symbols are axiomatized in a quantified theory.
Even in a large set of context axioms, most of the time, each
verification condition only requires a tiny portion of this con-
text. In [23, 7] a strategy to select relevant context axioms
is presented, but it needs a preliminary manual task classi-
fying axioms. Our predicate graph computation makes this
axiom classification automatic. Recent advances have been
made in the direction of semantic selection of axioms [25,
21]. Briefly speaking, at each iteration, the selection of each
axiom depends on the fact whether a computed valuation is
a model of the axiom or not. By comparison, our syntactical
axiom selection is more efficient, indeed linear in the size of
the input formula.

In a near future we plan to apply the strategy to other case
studies. We also plan to investigate the impact on execution
time of various strategies discharging the same list of verifi-
cation conditions. We want to confirm or infirm with other
benchmarks that weighting predicate dependencies with a
formula length has no positive impact on automaticity but
has a significant negative impact on the execution time. We
also plan to integrate selection strategies in the Why tool or
in a target automated theorem prover.

8. ACKNOWLEDGMENTS
This work is partially funded by the French Ministry of Re-
search, thanks to the CAT (C Analysis Toolbox) RNTL
(Reseau National des Technologies Logicielles), by the SYS-
TEM@TIC Paris Region French cluster, thanks to the PFC
project (Plateforme de Confiance, trusted platforms), and
by the INRIA, thanks to the CASSIS project and the Ce-
ProMi ARC. The authors also want to thank Christophe
Ringeissen and the four anonymous referees for their insight-
ful comments.

23 June 2009

46

9. REFERENCES
[1] M. Barnett, K. R. M. Leino, and W. Schulte. The

Spec# Programming System: An Overview. In
Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices (CASSIS’04), volume
3362 of Lecture Notes in Computer Science, pages
49–69. Springer, 2004.

[2] B. Beckert, R. Hähnle, and P. H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY
Approach. LNCS 4334. Springer-Verlag, 2007.

[3] Bernhard Kauer. OSLO: Improving the security of
Trusted Computing. In 16th USENIX Security
Symposium, August 6-10, 2007, Boston, MA, USA,
2007.

[4] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of JML tools and applications. Technical
Report NIII-R0309, Dept. of Computer Science,
University of Nijmegen, 2003.

[5] J.-F. Couchot and T. Hubert. A Graph-based Strategy
for the Selection of Hypotheses. In FTP 2007 -
International Workshop on First-Order Theorem
Proving, Liverpool, UK, Sept. 2007.

[6] L. M. de Moura, B. Dutertre, and N. Shankar. A
tutorial on satisfiability modulo theories. In W. Damm
and H. Hermanns, editors, CAV, volume 4590 of
Lecture Notes in Computer Science, pages 20–36.
Springer, 2007.

[7] D. Deharbe and S. Ranise. Satisfiability Solving for
Software Verification. Submitted in 2006. See http:

//www.loria.fr/~ranise/pubs/sttt-submitted.pdf.

[8] E. Denney, B. Fischer, and J. Schumann. An empirical
evaluation of automated theorem provers in software
certification. International Journal on Artificial
Intelligence Tools, 15(1):81–108, 2006.

[9] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a
theorem prover for program checking. J. ACM,
52(3):365–473, 2005.

[10] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended static checking. Technical Report 159,
Compaq Systems Research Center, Dec. 1998. See
also http://research.compaq.com/SRC/esc/.

[11] E. W. Dijkstra. A discipline of programming. Series in
Automatic Computation. Prentice Hall Int., 1976.

[12] J.-C. Filliâtre and C. Marché. The
Why/Krakatoa/Caduceus platform for deductive
program verification. In 19th International Conference
on Computer Aided Verification, volume 4590 of
Lecture Notes in Computer Science, pages 173–177.
Springer, 2007.

[13] A. Giorgetti and J. Groslambert. JAG: JML
Annotation Generation for Verifying Temporal
Properties. In Luciano Baresi and Reiko Heckel,
editors, Fundamental Approaches to Software

Engineering, 9th International Conference, FASE
2006, volume 3922 of Lecture Notes in Computer
Science, pages 373–376. Springer, 2006.

[14] E. P. Gribomont. Simplification of boolean verification
conditions. Theoretical Computer Science,
239(1):165–185, 2000.

[15] J. Groslambert and N. Stouls. Vérification de
propriétés LTL sur des programmes C par génération
d’annotations. In AFADL’09, 2009. Short paper.

[16] T. Hubert and C. Marché. Separation analysis for
deductive verification. In Heap Analysis and
Verification (HAV’07), Braga, Portugal, Mar. 2007.

[17] K. R. M. Leino. Efficient weakest preconditions.
Information Processing Letters, 93(6):281–288, 2005.

[18] J. Meng and L. Paulson. Lightweight relevance
filtering for machine-generated resolution problems. In
ESCoR: Empirically Successful Computerized
Reasoning, 2006.

[19] A. Nonnengart and C. Weidenbach. Computing Small
Clause Normal Forms. In A. Robinson and
A. Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 6, pages 335–367.
Elsevier Science, 2001.

[20] D. A. Plaisted and A. H. Yahya. A relevance
restriction strategy for automated deduction. Artificial
Intelligence, 144(1-2):59–93, 2003.

[21] P. Pudlak. Semantic selection of premisses for
automated theorem proving. In G. Sutcliffe, J. Urban,
and S. Schulz, editors, CEUR Workshop Proceedings,
volume 257, pages 27–44, 2007.

[22] S. Ranise and C. Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB).
http://www.SMT-LIB.org, 2006.

[23] W. Reif and G. Schellhorn. Theorem proving in large
theories. In M. P. Bonacina and U. Furbach, editors,
Int. Workshop on First-Order Theorem Proving,
FTP’97, pages 119–124. Johannes Kepler Universität,
Linz (Austria), 1997.

[24] N. Stouls. Hypotheses selection applied to trusted
computing. http:
//perso.citi.insa-lyon.fr/nstouls/tools/oslo/.

[25] G. Sutcliffe and Y. Puzis. Srass - a semantic relevance
axiom selection system. In Springer, editor, Automated
Deduction - CADE-21, 21st International Conference
on Automated Deduction, Bremen, Germany, July
17-20, 2007, Proceedings, volume 4603 of Lecture
Notes in Computer Science, pages 295–310, 2007.

[26] L. Wos. Conquering the meredith single axiom.
Journal of Automated Reasoning, 27(2):175–199, 2001.

[27] L. Wos and G. W. Pieper. The hot list strategy.
Journal of Automated Reasoning, 22(1):1–44, 1999.

[28] L. Wos, G. A. Robinson, and D. F. Carson. Efficiency
and completeness of the set of support strategy in
theorem proving. J. ACM, 12(4):536–541, 1965.

23 June 2009

47

	Introduction
	Background
	Internet Routing
	Metarouting

	Basic Approach
	Compositional Routing Algebra
	Atomic Routing Algebra Instance
	Lexical Product and Route Selection
	A Concrete First Example

	Future Work
	References
	Introduction
	Background
	Internet Routing
	Metarouting

	Basic Approach
	Compositional Routing Algebra
	Atomic Routing Algebra Instance
	Lexical Product and Route Selection
	A Concrete First Example

	Future Work
	References

