
'

&

$

%

Presented at the Monterey Workshop 2004 in Baden,

Vienna

'

&

$

%

The Interface is the Messagea

N. Shankar (with John Rushby, Sam Owre, Harald Ruess,

Leonardo de Moura, Ashish Tiwari)

URL: http://www.csl.sri.com/˜shankar/LEP.html

Group URL: http://fm.csl.sri.com

Computer Science Laboratory

SRI International

Menlo Park, CA

aSupported by NSF Grant Nos. CCR-ITR-0326540 and CCR-ITR-

0325808, DARPA REAL project, and SRI International.

1

'

&

$

%

An Opening Quote

The black box nature of the decision procedure is

frequently destroyed by the need to integrate it. . .

When sufficiently powerful theorem provers are

finally produced they will undoubtedly contain

many integrated decision procedures. . .

The development of useful decision procedures for

program verification must take into consideration

the problems of connecting those procedures to

more powerful theorem provers. Boyer and Moore

2

'

&

$

%

Overview

• Effective deductive engines are critical to automated

verification.

• Most uses are embedded: Type checkers, compilers,

constraint solvers, model checkers, test case

generators, program synthesizers.

• We need powerful components with rich semantic

interfaces as well as flexible integration frameworks.

• Achieving modularity through the integration of

independent components offers significant theoretical

and practical challenges.

• We report on our attempts at meeting this challenge

with PVS, SAL, and ICS.

3

'

&

$

%

Outline

• Arguments for and against modularity

• Some useful components

• Integration examples and experience

• Integration Frameworks

• Formal Architectures

4

'

&

$

%

The Modularity Challenge

Boyer and Moore’s 1985 paper contains a long litany of

problems that must be overcome when integrating decision

procedures into a theorem prover.

The issues they faced are still quite relevant:

• Need to manage language incompatibilities between client and

server.

• The communication overhead with an external component can

degrade performance.

• Need term information from the decision procedure to activate

lemmas.

• Need proof and dependency information from the decision

procedures.

• Pushing in and popping out of contexts can be expensive.

5

'

&

$

%

The Modularity Challenge

Butler Lampson has argued that the only successful
components are those like databases and compilers that
provide complex functionality through a relatively narrow
interface.

• Engineering to a flexible API is quite difficult.

• Ideas and algorithms are more portable than implementations.

• It is often easier to engineer and implement non-modular

interaction without the overhead.

• For any specific application, the functionality available may be too

much and/or too little.

• Enriching the interface often rules out certain optimizations.

6

'

&

$

%

Why Modularity?

• Individual tools such as decision procedures, theorem

provers, and model checkers have become extremely

specialized and sophisticated.

• The scope of formal analyses has been widened to
include test case generation, type checking, runtime
verification, static analysis, controller synthesis, and
proof generation.

◦ These analyses do need to be integrated.

• Diverse applications such as hardware, system code,
communication protocols, fault tolerance, and
embedded systems, require slightly different tool
combinations.

◦ Building/maintaining specialized tools is expensive.

7

'

&

$

%

Components

8

'

&

$

%

What is a Component?

A self-contained body of code whose functionality is

accessed through a well-defined interface.

A component must typically be reusable in a number of

different contexts.

From the point of deduction, we can identify three (possibly

overlapping) classes of components:

1. Libraries: BDDs, term manipulation and indexing,

computer algebra, numerical analysis, polyhedral

operations, formalization libraries.

2. Offline Procedures: SAT solvers, model checkers, proof

search procedures.

3. Online Procedures: Ground decision procedures,

constraint solvers, rewrite engines.

9

'

&

$

%

A Library Component: BDDs

Binary Decision Diagrams (BDDs) are a widely used

DAG-structured canonical representation for Boolean

expressions.

BDD packages do come with a rich API for building

boolean terms, applying quantification, taking fixpoints,

clustering, variable ordering, garbage collection, and for

displaying information in readable form.

The APIs of different BDD packages are not fully

standardized, but the usability of a package is largely

determined by the richness of its API.

Is standardization of APIs desirable/tenable?

Will standardization of APIs restrict progress?

10

'

&

$

%

Offline Component: SAT Solvers

A SAT solver for propositional logic needs to indicate if a

given set of clauses (e.g., p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q) is

satisfiable or unsatisfiable.

Modern SAT solvers are based on the 1960 work of Davis
and Putnam

Γ

Γ, p | Γ,¬p
split p and ¬p are not in Γ.

κ, C ∨ l̄, l

κ, C, l
unit

A SAT solver must provide satisfying assignments, but also

allow additional clause constraints, provide proofs and

interpolants, and . . .

Despite the availability of fast SAT solvers, most groups

find it easier to implement their own custom SAT solvers.

11

'

&

$

%

Online Component: Ground Decision Procedures

(GDP)

GDPs form the core of many proof engines and handle

problems such as, for a theory T ,

• Word problem (WP): Does T |= P for Σ-atom P?

• Uniform Word Problem (UWP): Does T |= Γ → P for

the set of Σ-atoms Γ and Σ-atom P?

• Clausal Validity Problem (CVP): Does T |= Q1 ∨ . . . ∨Qn

for Σ-literals (Σ-atoms or their negations)?

12

'

&

$

%

APIs for Ground Decision Procedures

It has been argued that decision procedures should not be
black-box constructions, but should be

1. Online: Process assertions dynamically to construct contexts.

2. Resettable: Allow saving, backtracking, and switching between

contexts.

3. Queriable: Allow queries and simplifications with no change to the

context.

4. Integrable: Allow fine-grained integration with other tools, possibly

implemented in a different language, with seamless garbage

collection and error signalling.

5. Evidence producing: Proof objects and counterexamples.

13

'

&

$

%

ICS: Integrated Canonizer and Solver

SRI’s ICS is a GDP that provides an ask/tell API as

described.

It is implemented in OCaml and provides both a C and Lisp

interface.

ICS supports a modular combination of linear arithmetic

equality and inequality over rationals and integers,

uninterpreted term equality, arrays, bit vectors, datatypes.

ICS can be used offline through a shell API as well as

interactively through a read-eval-print loop.

ICS has been integrated within sal-inf-bmc and the

ECLiPSe constraint programming system.

14

'

&

$

%

Integration

15

'

&

$

%

Integrating GDPs and SAT solving

GDP + SAT is a good test-case for the effectiveness of

integration for solving SAT(mod T).

CVP can be used as a subroutine in proving the validity of

quantifier-free formula, e.g,

x+ 2 ∗ y = z → f(4 ∗ y − z) = f(−x).

A näıve approach to SAT(mod T) would be to convert the

formula to CNF and check the validity of each clause with

the GDP, but this can be prohibitively expensive.

Several recent approaches leverage the efficiency of SAT

solvers.

The eager approach (used by UCLID) reduces satisfiability

(in T) of A to the Boolean satisfiability of A ∧ L for a set of

generated lemmas L.

16

'

&

$

%

Lazy Integration of GDP and SAT

The lazy approach (used by ICS, Verifun, CVC) employs a

GDP to examine splitting decisions and ignore assignments

that are unsatisfiable in the theory, while adding clause

lemmas reflecting this unsatisfiability.

For most efficient backtracking, the GDP should return the

minimal conflict set of literals. This often requires

irredundant proofs. (See Justifying Equality.)

ICS has a SAT solver (written in C++) that is uses the ICS

API.

ICS benchmarks well against the other systems (CAV’04).

Still, many things could be done better within a unified

SAT/GDP development.

17

'

&

$

%

Integration Frameworks

18

'

&

$

%

SAL: Symbolic Analysis Laboratory

SAL was initiated precisely to serve as an integration

testbed for transition system analysis tools.

SAL has an intermediate language (designed with David Dill

and Tom Henzinger) for the modular description of

transition systems, both finite and infinite.

The analysis tools that have been developed for SAL include

1. An explicit-state model checker (sal-esmc)

2. A symbolic model checker for LTL properties (sal-smc)

3. A witness-generating model checker for CTL properties (sal-wmc)

4. A finite-state bounded model checker (sal-bmc)

5. An infinite-state bounded model checker (sal-inf-bmc)

6. A test case generator

7. A symbolic simulator (sal-sim)

19

'

&

$

%

Scriptable Model Checking

Interfaces to the CUDD and ICS (and other decision

procedure) packages are available through a Scheme

front-end.

Tools are defined using Scheme scripts (with lots of flags to

control different parameters).

Test case generation can try different strategies, e.g., BMC

for shallow targets, followed by slicing, and SMC for deep

targets.

The model checker can be used interactively, much like a

proof checker.

The symbolic witnesses and counterexamples generated by

sal-wmc can also be explored interactively as a game.

What is missing is a tool bus, but more on this later.

20

'

&

$

%

PVS as an Integration Framework

PVS is a general-purpose specification and verification

framelwork integrating a number of deductive tools.

The PVS higher-order logic is quite convenient for

expressing mathematical content and for embedding other

logics.

The PVS theorem prover is driven by a rule interpreter that

applies inference rules to a leaf node, the proof goal, in a

proof tree.

There is an API for adding external inference procedures

(but should be used sparingly).

A strategy language is used to define compound proof

procedures such as those for induction, instantiation, and

rewriting.

21

'

&

$

%

Inference Components in PVS

A BDD-based Boolean simplifier and model checker are

essentially used through offline foreign function calls.

Translating from PVS to BDDese and back can be quite

complicated.

Garbage collection is not a problem unlike online integration.

The MONA library for WS1S is used to decide monadic

second-order logic formulas.

PVS has an interface for adding new GDPs for online use.

The GDP API must provide a few basic operations.

Ground evaluator for generating efficient, safely destructive

(Lisp) code from PVS operations.

22

'

&

$

%

Characteristics of an Integration Framework

SAL and PVS illustrate many of the elements of an
integration framework:

• A uniform language for communicating across components.

• A simple API for adding inference components.

• A powerful base set of components.

• A scripting language for defining complex inference schemes from

more primitive ones.

• A proof manager.

The devil is in the details, though.

23

'

&

$

%

PVS as a Component

PVS is used as a back-end deduction engine in several ways:

• PC/DC is an embedding of the Duration Calculus interval

temporal logic in PVS.

• Ag is a similar encoding of first-order dynamic logic.

• Graf and Säıdi’s Invariant Generator and InVest use PVS to

discharge abstraction proof obligations.

• PVS-Maple instruments the Maple CA system to generate PVS

proof obligations that ensure that the side conditions of each

operation are satisfied.

• The LOOP tool for Java verification at Nijmegen is used for the

symbolic execution of Java programs.

• The PBS system uses extended type checking in PVS to give a

simple but effective implementation of the B method.

• The TAME system is embeds proof methods for timed I/O

automata in PVS.

24

'

&

$

%

Looking Ahead

The Interface is the Message

25

'

&

$

%

Formal Architectures for Integration

A science of software design, then, must be about

radical, not about normal, design. Its chief goals

are to explicate the properties of decompositions

and combinations, in requirements, specifications,

assumptions about problem worlds, and software

components, and to support the tasks of choosing

and making appropriate decompositions and

combinations. Michael Jackson

Tractable correctness by construction results can provide

significant guidance in the design process. Their lack leaves

a posteriori verification of the designed system as the only

means to ensure its correctness (with the well-known

limitations). G. Gössler and J. Sifakis

26

'

&

$

%

Formal Architectures

Composition is the key to good software engineering.

A good composition framework provides an interface for

plugging in components so that they can interact safely

with each other.

Components can be analyzed independently in terms of

their composition interface (composability).

System properties emerge from component properties

(compositionality).

The system evolves smoothly through the addition of new

components, and the modification and refinement of

existing ones.

27

'

&

$

%

A Modular Architecture for Combination Decision

Procedures

Most natural conjectures employ a combination of theories:

arithmetic, uninterpreted functions, lists, and arrays, where

the individual theories often have efficient decision

procedures.

There is a long history of work on (non-modular)

combination decision procedures going back 25 years to

dating Nelson/Oppen and Shostak.

Recently, we (Ganzinger, Rueß, and S.) have developed a

mathematical theory of inference modules, their

composition, and refinement.

ICS is based on this architecture.

28

'

&

$

%

Inference Systems

An inference structure is a pair 〈Ψ,`〉 of a set of logical

states Ψ and an inference relation ` between states.

Each state ψ is of the form κ1| . . . |κn, where each κi is a

configuration.

An inference system for a theory T is an inference structure
that is

1. Conservative: The inference relation preserves satisfiability.

2. Progressive: The inference relation is well-founded.

3. Canonizing: A state is irreducible only if it is either ⊥ or is

satisfiable.

An inference system is a sound and complete decision procedure for

satisfiability.

29

'

&

$

%

Union–Find Inference System

Delete
x = y, V ; F

V ; F
if F (x) ≡ F (y)

Merge
x = y, V ; F

V ; F ◦ {orient(F (x) = F (y))}
if F (x) 6≡ F (y)

Contrad
x 6= y, V ; F

⊥
if F (x) ≡ F (y)

orient(x = y) returns y = x if variable x precedes variable y,

and x = y, otherwise.

Fusion: F . F ′ as {c = F ′(d)|c = d ∈ F}, and

Composition: F ◦ F ′ as (F . F ′) ∪ F ′.

30

'

&

$

%

Inference Modules

An inference module for a theory T is an open version of an

inference system.

Its configurations consist of a shared blackboard γ

consisting of inputs shared constraints, and a theory-specific

part θ that is like a private notebook.

The shared constraints are in a common theory T0.

The inference relation must be progressive, strongly

conservative over the shared variables, and relatively

canonical.

Two compatible inference modules can be composed, with

a configuration has the form γ; θ1; θ2, and the result is an

inference module for the union of the theories, under some

semantic restrictions.

31

'

&

$

%

Generalized Components

Contrad
(K; G; V); E

⊥
if T |= V, E → ⊥

Input
(K; Q, G; V); E

(K; G; Q, V); E
for Σ0[K]-literal Q

Abstract
(K; G{t}; V); E

(K; G{x}; V); x = t, E
for pure Σ[K]-term a, fresh x

Branch
(K; G; V); E

(K; G; P , V); E|(K; G;¬P , V); E

if P 6∈ V,¬P 6∈ V

for Σ0[K]-basis atom P

(K;G;V) is the blackboard with input G, shared workspace

V , and shared free variables K.

E is the private notebook.

Nelson–Oppen and Shostak combination methods are part

of a refinement hierarchy implementing generalized

components.

32

'

&

$

%

General Schemes for Combining Decision Procedures

The modular approach to combination decision procedures

unifies/generalizes/simplifies previous work on this topic.

It does not cover the case when we combine two theories T1

and T2 together with some bridging axioms, e.g., lists and

integers bridged by length.

The framework can be extended to (non-progressive)

semi-inference systems.

A more powerful composition framework should work with

heterogeneous logics and logical judgments, i.e., a tool bus.

33

'

&

$

%

A SAL Tool Bus

• A read-eval-print loop for invoking and interacting with

different tools.

• Judgments of the form T : P ` J which says that tool T
claims the validity of judgment J with proof P .

◦ Judgments can be syntactic (A is a well-formed formula in Σ,

A is simpler than B) as well as semantic (A is satisfiable in T).

• An API for adding new tools and libraries with

accompanying judgments.

• A scripting language for composing judgment

derivations through forward and backward chaining.

• The tool bus delivers extensible functionality, evidence

management, reproducibility, garbage collection,

independent of operational details.

34

'

&

$

%

Varieties of Judgment

• A is a well-formed formula.

• A is a well-typed formula in context C.

• a is a BDD representing the formula A.

• C′ is a decision procedure context representing Γ.

• A is satisfiable in theory T .

• Γ is a satisfying assignment for A.

• Γ is a minimal unsatisfiable set of literals.

The plan is to employ a metatheoretic framework like Twelf

to carry out semantic evidence management.

35

'

&

$

%

Previous Tool Integration Projects

• HOL-Voss (Joyce and Seeger) integrates symbolic

trajectory evaluation with HOL.

• PROSPER: A sockets-based architecture integrating

HOL98, Prover, and SMV.

• ETI: A tool interchange architecture for various model

checking tools.

• VeriTech: Semantic interchange framework for diverse

analysis tools.

• Gordon formalizes BDD operations in HOL through

judgments: If BDDs a and b represent formulas A and

B, then bdd/and(a, b) represents A ∧B.

• Berezin’s SyMP is an inference rule-based approach to

combining theorem proving and model checking.

36

'

&

$

%

Conclusions

Integration of components is a tough, tough challenge,

particularly for inference components.

Practical challenges involve designing interfaces that allow

flexible use without loss of efficiency.

The theoretical challenges are in designing integration

architectures that mediate fine-grained interaction between

inference components.

More generally, we need to move from components to

composition-centric architectures that are

safe/correct-by-construction, as exemplified by inference

systems/modules.

37

